
THESIS

EVALUATION OF ANOMALY DETECTION APPROACHES
USING SYSTEM CALL TRACES ON EMBEDDED LINUX

SYSTEMS AND COMPARISON WITH PROCESS
WHITELISTING APPROACHES

Submitted by
Payam Samimi

am Fachgebiet Agententechnologien in betrieblichen Anwendungen und der
Telekommunikation (AOT)

In partial fulfillment of the requirements
For the Degree of Master of Science

Technische Universität Berlin
Spring 2018

Gutachter:
Prof. Dr.-Ing. habil. Sahin Albayrak

Prof. Dr. habil. Odej Kao

Payam Samimi
Matrikelnummer : 367099

Mollwitz Str. 3, 14059, Berlin

Siemens AG
Mobility Division

Mobility Management
IT Security

This thesis is originated in cooperation with IT Security department in Mobility Division of
SIEMENS AG in Berlin.

I would like to thank Dipl. Alexander Markus Wischy Hernandez, as well as the entire IT-
Security team in the Mobility division at SIEMENS for giving me the opportunity to carry out
state-of-the-art research in this field.

Abstract

In recent years, embedded systems have become increasingly popular and progressively
used in various domains. Modern cars, equipment in smart homes, cell phones and criti-
cal infrastructures are instances of domains that have increasingly employed these systems.
Notwithstanding their diverse advantages, protecting these systems against security threats
prompts many challenges. It is believed, that owing to the interactive operation of embed-
ded systems with the real world, security attacks on these systems can cause physical and (in
some cases like car crashes) irreversible after-effects, containing serious harm to persons, or
even death.

Anomaly-based intrusion detection systems have been widely adopted in many domains
as a countermeasure against security attacks. They can detect anomalies through observing
the normal behaviour of the system. However, applying these systems in embedded applica-
tions prompts challenges such as handling the limited computation resources of embedded
systems, as well as the high rate of false positives in anomaly detection systems.

This thesis primarily tackles building an anomaly detection system for embedded appli-
cations with considering the aforementioned challenges. First, it provides an overview of a
classification of intrusion detection systems. Next, characteristics of embedded systems and
requirements in building IDS for these systems are analyzed. Additionally, an overview of
related approaches from other research studies is provided and their achieved results are
compared.

In the interest of overcoming these challenges and satisfying the requirements, this thesis
introduces a host anomaly-based intrusion detection system called Linux Intrusion Detec-
tion System (LIDS), which is divided into two sub-components and combines two different
techniques of monitoring process behavior: application whitelisting (AWL) and system calls
analysis. AWL are performed by the sub-component Watchdog on embedded devices and
is implemented based on the Linux Security Module framework. The second component
- Secure Homeland - operates on a server and performs system call trace analysis using
classification-based data mining techniques.

This work discusses various data representation methods of system call traces and evalu-
ates anomaly detection methods based on two of these representation techniques: sequence-
based and pattern frequency-based. Accordingly, this thesis explains and uses the Australian
Defence Force Academy Linux Dataset (ADFA-LD), which includes labeled system call traces
for normal and abnormal behavior of the system. For the evaluation, Weka tool has been
used, which is a set of machine learning algorithms for data mining tasks.

The results of this thesis show that the addressed approach in this work handles the com-
putation constraints of embedded systems efficiently and improves detection accuracy.

Zusammenfassung

In den letzten Jahren kamen eingebettete Systeme zunehmend in unterschiedlichen Bere-
ichen zum Einsatz. Als Beispiele sind selbstfahrende Kraftfahrzeuge, intelligente Haustech-
nik und kritische Infrastrukturen für den Anwendungsbereich solcher Systeme. Trotz der
vielen Vorteile der Anwendung dieser Systeme ist deren Sicherung eine große Herausforde-
rung. Insbesondere wegen ihrer direkten Interaktion mit Menschen können Sicherheitsan-
griffe in diesen Systemen irreparable Schäden verursachen.

Anomalieerkennungssysteme werden bereits in vielen Bereichen gegen Sicherheitsangriffe
eingesetzt. Diese Systeme können durch Überwachung des normalen Verhaltens eines Sys-
tems Anomalien erkennen. Anomalieerkennungssysteme beanspruchen jedoch große Rech-
enkapazitäten, über die eingebettete Systeme nicht verfügen.

Aus diesem Grund liegt der Fokus dieser Abschlussarbeit auf der Entwicklung von Anoma-
lieerkennungssytemen für eingebettete Systeme. In einem ersten Schritt werden die Anoma-
lieerkennungssysteme klassifiziert. Anschließend werden wesentliche Merkmale von einge-
betteten Systemen und die entstehenden Anforderungen bei der Entwicklung eines Anoma-
lieerkennungssystems für diese Systeme analysiert.

Unter Berücksichtigung dieser Merkmale und Anforderungen untersucht diese Arbeit ein
Anomalieerkennungssystem für eingebettete Anwendungen, das auf Basis der Prozessüber-
wachungsmethode zwei unterschiedliche Ansätze kombiniert: das Anwendungs-Whitelisting
und die Analyse der Systemaufrufe unter Einsatz von maschinellem Lernen.
Das Anwendungs-Whitelisting wurde in Form des Linux Security Module Framework imple-
mentiert und funktioniert auf den Endgeräten. Die Systemaufrufanalyse wird hingegen auf
einem Server durchgeführt.

Für die Durchführung dieser Analyse befasst sich diese Arbeit mit den bekanntesten Darstel-
lungsmöglichkeiten der Systemaufrufsequenzen und evaluiert die Performanz der Algorith-
men des maschinellen Lernens auf Basis zweier dieser Darstellungen: der Reihenfolge der
Aufrufe und der Wiederholung der Systemaufrufe. Dementsprechend wurde im Rahmen
dieser Arbeit der Australian-Defence-Force-Academy-Linux-Datensatz (ADFA-LD) verwen-
det, um die nötigen Datendarstellungen zu generieren.

Die im Rahmen dieser Arbeit ermittelten Ergebnisse beweisen, dass die Kombination der
zwei Ansätze (Anwendungs-Whitelisting und Systemaufrufanalyse) eine effiziente Meth-
ode für den Einsatz der Annomalieerkennungssysteme in eingebetteten Anwendungen ist.
Darüber hinaus wird mithilfe dieser Ansatzkombination die Erkennungsgenauigkeit erhöht.

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Objective . 2

1.1.1 Challenges . 2
1.1.2 Taxonomy of IDS . 3
1.1.3 Contribution . 4

1.2 Outline . 5

2 Related work 7
2.1 Detection methods . 7
2.2 Dataset . 13
2.3 Anomaly modeling techniques . 15

2.3.1 Statistical models . 15
2.3.2 Immune system approach . 15
2.3.3 Markov process model . 15
2.3.4 Data mining techniques . 16

2.4 Summary . 16

3 Requirements 17
3.1 Non-functional requirements . 17
3.2 Functional requirements . 20

4 Concept 23
4.1 Watchdog . 23
4.2 Secure Homeland . 26

4.2.1 Data representation . 27
4.2.2 Machine Learning Algorithms . 29

4.3 Outcome . 30

5 Implementation 33
5.1 Watchdog . 33

5.1.1 Environment . 33
5.1.2 Project structure . 33
5.1.3 Important implementation aspects . 34

5.2 Secure Homeland . 35
5.2.1 Environment . 35
5.2.2 Project structure . 35
5.2.3 Important implementation aspects . 37

6 Evaluation 39
6.1 Application whitelisting . 39

6.1.1 Evaluation environment . 39
6.1.2 Evaluation method . 39
6.1.3 Results . 40

6.2 System call trace analysis . 40
6.2.1 Evaluation environment . 40
6.2.2 Evaluation method . 41
6.2.3 Results . 42

7 Conclusion 47
7.1 Summary . 47
7.2 Problems encountered and outlook . 48
7.3 Outlook . 48

List of Acronyms 49

Bibliography 51

Annex A - List of the Kernel hooks 57

Annex B - The performance results of algorithms 59

List of Figures

4.1 Abstract model of LIDS . 23
4.2 LSM hook architecture [1] . 26
4.3 Architecture of learning and testing process in Secure Homeland based on [2] 28

5.1 Project structure . 36
5.2 UML diagram of all packages in Secure Homeland 38

6.1 Generated data sets for supervised and cross-validation modes in this thesis . 41
6.2 Confusion matrix . 42
6.3 Achieved performance results including False Positive Rate and Accuracy on

ADFA-LD data set. (a) FP rate for windows-based with supplied test data
set; (b) Accuracy for windows-based with supplied data set; (c) FP rate for
windows-based in Cross-Validation mode; (d) Accuracy for windows-based in
Cross-Validation mode; (e) FP rate for frequency-based with supplied test data
set; (f) Accuracy for frequency-based with supplied test data set; (g) FP rate
for frequency-based in Cross-Validation mode; (h) Accuracy for frequency-
based in Cross-Validation mode . 46

List of Figures Payam Samimi

xiv Master Thesis, Technische Universität Berlin

List of Tables

2.1 Research works concerning various detection methods 13
2.2 Research works concerning various process monitoring detection methods . . 13
2.3 ADFA data sets in detail [3] . 14
2.4 Attack vectors in ADFA-LD data set [3] . 14

3.1 Non-functional requirements . 21
3.2 Functional requirements . 22

4.1 List of chosen algorithms and their options . 30

6.1 Results of experiment for frequency-based method on ADFA-LD data set with
one-class labels in testing with supplied test data set mode 43

6.2 Results of experiment for frequency-based method on ADFA-LD data set with
one-class labels in cross-validation mode (Fold=10) 43

6.3 Results of experiment for various window-sizes on ADFA-LD data set with
one-class labels with supplied test data set . 44

6.4 Results of experiment for various window-sizes on ADFA-LD data set with
one-class labels in Cross-Validation mode (Fold=10) 45

.1 The performance results of algorithms including FP Rate, Accuracy, Confu-
sion Matrix and the required time for learning and testing in window-based
method (window-size=3) using a supplied test data set. Train data set con-
tains 78406 instances, test data set contains 39845 instances 59

.2 The performance results of algorithms including FP Rate, Accuracy, Confu-
sion Matrix and the required time for learning and testing in window-based
method (window-size=3) in Cross-Validation mode. Train data set contains
90504 instances . 59

.3 The performance results of algorithms including FP Rate, Accuracy, Confu-
sion Matrix and the required time for learning and testing in window-based
method (window-size=5) using supplied test data set. Train data set contains
240135 instances and test data set contains 86085 instances 60

.4 The performance results of algorithms including FP Rate, Accuracy, Confu-
sion Matrix and the required time for learning and testing in window-based
method (window-size=5) in Cross-Validation mode. Train data set contains
279612 instances. 60

.5 The performance results of algorithms including FP Rate, Accuracy, Confu-
sion Matrix and the required time for learning and testing in window-based
method (window-size=10) using supplied test data set. Train data set con-
tains 568527 instances and test data set contains 131380 instances 60

.6 The performance results of algorithms including FP Rate, Accuracy, Confu-
sion Matrix and the required time for learning and testing in window-based
method (window-size=10) in Cross-Validation mode. Train data set contains
668073 instances. 61

.7 The performance results of algorithms including FP Rate, Accuracy, Confu-
sion Matrix and the required time for learning and testing in frequency-based
method using supplied test data set. Train data set contains 3825 instances
and test data set contains 5118 instances . 61

.8 The performance results of algorithms including FP Rate, Accuracy, Confu-
sion Matrix and the required time for learning and testing in frequency-based
method in Cross-Validation mode. Train data set contains 5951 instances. . . 61

1 Introduction

In recent years, embedded systems have become increasingly popular and progressively used
in various domains. Modern cars, equipment in smart homes, cell phones and critical in-
frastructures are instances of domains that have increasingly employed these systems [4].
Dozens of electronic control units are used in modern cars to implement highly-intelligent
driver assistant systems. Smart meters are employed in smart homes for measuring elec-
tricity consumption and provide information for utility servers. Critical domains [5] such as
energy supply, transport and traffic are the sectors that likewise employ embedded systems.
For instance, signals and track vacancy detection systems in German railways observe and
signal whether line sections are clear [6].

Embedded systems enable cost-efficient implementation. They are advised when physical
size and weight, long life-cycle, real-time functionality and reliability have to be consid-
ered thoughtfully during the development process [7]. Notwithstanding their diverse ad-
vantages, protecting these systems against security threats prompts many challenges. Over
recent years, numerous research works have been published that have introduced vulnera-
bilities in many classes of embedded devices [4]. For instance, Peter Shipley and Simson L.
Garfinkel discovered a vulnerable modem line that was connected to a system responsible for
controlling high voltage power transmission lines [8]. According to Koopman [8], owing to
the interactive operation of embedded systems with the real world, security attacks on these
systems can cause physical and (in some cases, like car crashes) irreversible after-effects in-
volving serious harm to persons, or even death. Moreover, employing embedded devices in
internet-based applications has progressively increased, which consequently demands a lot
of effort to secure these systems. He believes that connecting these systems to the internet
reveals embedded applications to intrusions and malware attacks.
Over recent years, there has been an immense range of companies and organizations around
the world that have been targeted by various cyberattacks. One of the first massive cyber-
attacks - called Stuxnet - was in Iran in 2010 against the Iranian nuclear program, which
aimed at industrial control systems operating in the Natanz uranium enrichment plant [9].
Recently, the WannaCry ransomware attack targeted IT infrastructure in hospitals in the
United Kingdom, which caused shutting down work at several hospitals [10], [11]. The
German railroad company Deutsche Bahn AG became the latest high-profile casualty of the
WannaCry attack. Consequently, these cyberattacks demonstrated a huge demand for devel-
oping security solutions for embedded applications. Furthermore, traditional security mech-
anisms considered for desktop computers may not fulfill the requirements of these systems
[8].

Intrusion detection systems (IDS) have been widely adopted in many domains as a coun-
termeasure against security attacks [12]. IDS may be software- and/or hardware-based,
which monitors activities on a host system or in a network. IDS can detect malicious activ-

1 Introduction Payam Samimi

ities by comparing current system behaviour with a model of normal/abnormal behaviour
of the system. Once an anomaly is detected, an alarm will be generated. Considering the
safety-critical environment and operation of embedded systems, developing IDS for these
systems is reasonable [4]. However, building and adapting these detection systems accord-
ing to the characteristics of embedded applications is significantly challenging. In most cases,
the operation of IDS demands high memory capacity and computing power, although, the
majority of embedded devices have constraints on these resources.

1.1 Objective

The goal of this work is to achieve an approach to build an intrusion detection system for
embedded systems that can handle their computing and memory constraints. Furthermore,
this work will study the feasibility of various anomaly detection approaches and their poten-
tial detection accuracy.
This section will specify the basic skeleton structure of the IDS, considering the challenges
and characteristics of embedded applications and IDS.

1.1.1 Challenges

This section focuses on the challenges in building intrusion detection systems for embedded
applications. The challenges discussed in this work are based on [4] and [8]. It should be
noted that the discussed challenges have been collected according to their priority from the
author’s perspective.

• Memory capacity: Limited memory capacity introduces a considerable challenge for
building IDS. The majority of embedded devices are equipped with small memory ca-
pacity and thus most of the memory space is allocated for the system itself. On the
other hand, IDS detects intrusions based on models of the system behavior (normal
and/or anomaly), which are then loaded into the memory at run-time. This requires
additional memory space for IDS. Therefore, finding an approach for intrusion detec-
tion despite the memory constraints is challenging [4].

• Overall system performance: Embedded devices are used in production to control
processes. They interact with the real word. Disabling them or even causing delay
can cause irreversible after-effects like financial loss due to factory downtime or even
injuries [8]. Thus, IDS must not under any circumstances affect the performance of
these systems [4].

• False positives (FP): Issuing False positive alarms is the mostly commonly-known chal-
lenge of IDS. FPs are normal patterns that are erroneously detected as anomalies.
These alarms in an embedded environment are identified as a major challenge. The
reason behind this challenge is that generally embedded devices operate in network-
based applications. If each device in this network generates even a small rate of FPs,
these alarms overload the utility server/s and the network completely [4].

2 Master Thesis, Technische Universität Berlin

Payam Samimi 1.1 Objective

1.1.2 Taxonomy of IDS

Designing an IDS requires thoughtful consideration of IDS characteristics. This section aims
to explain the characteristics of IDS based on its classification according to [13][12][14][15][12].
IDS can be classified relying on five main concepts:

• Audit source location: IDS can be network- or host-based. Host-based intrusion detec-
tion systems (HIDS) analyze the characteristics of one machine to detect suspicious
operations. Network-based intrusion detection systems (NIDS) observe and analyze
the network traffic for detecting malicious activities. In the recent past, NIDSs have
been subject to more research studies than HIDSs. The reason behind this is as follows:
first, traditional HIDS methods (e.g. offline integrity examination, log analysis, etc.)
cause adverse impacts on system performance; second, at present most applications
are designed network-based; and third, the primary strength of NIDSs is their ability
to have a global vision over the network, which enables them to detect distributed
network attacks.
However, researchers believe that this situation will change. They believe that deploy-
ing fast hardware enables researchers and developers to implement more complex
methods in HIDSs. Moreover, HIDSs can issue precise alarms, including all informa-
tion concerning anomalous processes.

• Detection method, anomaly or misuse: IDS may be misuse- or anomaly-based. Misuse-
based detection systems use a database of attack vectors to detect intrusion. These
detection systems compare the system behavior with that database. Once a match is
detected, an alarm will be issued. However, these systems are intrinsically unable to
recognize unknown attack vectors. Furthermore, they could generate a high rate of
false positives (FP) when attack vectors are analogous to both normal and anomalous
patterns. Additionally, in an embedded environment generating and updating attack
vectors on a large number of embedded devices is another challenge.
In contrast to misuse-based IDSs, anomaly-based ones make use of normal behavior of
the system to build the detection model. The current system behavior is then com-
pared with that model. Once deviation from normal behavior is recognized, an alarm
will be issued. Modeling approaches vary from statistical methods to artificial intel-
ligence techniques. The anomaly-based approaches overcome misuse-based methods
in detecting novel attacks. Nevertheless, all changes in the system normal behavior
require updating the model, otherwise changes may cause false alarms.

• Behaviour on Detection: Kruegel [13] classified IDS based on their behaviour on de-
tection into passive and active. Passive IDS generates alarms, in contrast to active IDS,
which takes decisions and responds to attacks; for instance, changing firewall rules.

• Usage frequency: IDS may detect anomalies in real-time or offline. Real-time IDSs are
usually implemented as operating system hooks. These systems provide real-time de-
tection, although implementing these hooks requires proper OS programming knowl-
edge. By contrast, offline IDSs observe the system behavior periodically. While, their

Master Thesis, Technische Universität Berlin 3

1 Introduction Payam Samimi

implementation is considerably simpler than OS hooks, they may affect the overall
system performance during periodical checks. Moreover, determining the time period
that could prevent fast attacks is challenging.

• Architecture: IDS may operate in three modes: stand-alone, distributed or hierarchical.
Bukac et.al [14] published a survey on stand-alone IDSs. Stand-alone IDSs observe
the system behavior locally. These systems do not share alarms or information with
other intrusion detection systems. By contrast, distributed IDSs collaborate on intru-
sion detection. Each IDS is considered as an agent and cooperates with other agents
distributed over the network. While agents share information and alarms between
each other over the network, this may cause a rapid rise in network traffic, and con-
sequently network overloading. A survey on collaborating IDSs has been published
in [16]. The last group is hierarchical IDSes. These systems operate similarly to dis-
tributed IDSs, although the cooperation between agents is layered. In this fashion,
each agent is allowed to cooperate with specified agents in its cluster. Although this
architecture may avoid the network overload, these systems do not have global vision
over the network, and thus they are unable to detect distributed network attacks.

1.1.3 Contribution

In order to overcome the aforementioned challenges and based on IDS taxonomies, this
section characterizes the IDS that will be developed in this work as follows:

• Audit source location - host-based: As previously discussed, host-based IDS are in-
creasingly becoming the target of research studies and the industry. This is due to their
capability in terms of issuing precise alarms and facilitating network attack detection.
Moreover, in many applications such as in-vehicle systems, analyzing the system be-
havior can only be performed on the host. Thereby, this work will focus on a host-based
intrusion detection system (HIDS) for being as part of a current flow of research. This
HIDS will operate on a Linux-based distribution "debian", which has a large market
share in embedded applications. Thus, throughout this work it will be called "Linux
Intrusion Detection System (LIDS)".

• Detection method - anomaly-based: Embedded systems are largely designed to per-
form specific operations that have a static nature. For instance, they accept and process
data packets from determined IP addresses, or they are allowed to run a list of known
processes. Moreover, there is no straight interaction between humans and these sys-
tems; rather, they are part of a network of devices, or they communicate to server(s)
[4]. Considering this static nature of tasks in embedded environments, building the
intrusion detection model based on normal behavior is more reasonable than generat-
ing a database of attack vectors. Thus, this work will propose an anomaly-based IDS.
Host-based IDSs can use various methods or a combination of them for intrusion de-
tection, including monitoring process behavior, an integrity check of system files, mon-
itoring network packets, and log data analysis [14]. The LIDS will focus on monitoring

4 Master Thesis, Technische Universität Berlin

Payam Samimi 1.2 Outline

process behaviour for intrusion detection. Details concerning the advantages and dis-
advantages of these approaches are discussed in Section 2.
Techniques for process observation vary from rather straightforward methods, e.g.
Whitelisting of examined applications, CPU and memory consumption measurements, file
access monitoring, to fully complex approach, e.g. monitoring of system call traces. The
more complex is the method, the greater the computing resources required [14].
For the purpose of achieving a trade-off between method complexity and computing
constraints, LIDS will be divided into two separate sub-components. The first compo-
nent, called Watchdog - which operates on the host embedded device - takes respon-
sibility for process whitelisting.
The second component, called Secure Homeland - which operates on another machine
with significantly high computing power - performs complex analyses of system call
traces. The system call traces are generated by devices and collected by a server pe-
riodically. This collected audit data will then be analyzed by Secure Homeland using
data mining approaches.

• Behaviour on detection - passive: LIDS is classified as a passive host anomaly-based
IDS, given that the majority of embedded devices carry out time-critical tasks. Inter-
rupting these tasks would cause safety-critical impacts on that domain. The alarms
issued by LIDS will be gathered by a utility server.

• Usage frequency - real-time and offline: This work will profit from both observation
modes. Watchdog will observe processes in real-time, while Secure Homeland analyzes
the system call traces periodically.

• Architecture - stand-alone: LIDS can be classified as a stand-alone intrusion detection
system. The both sub-components of the LIDS - Watchdog and Secure Homeland -
will not share the information concerning the monitored devices as well as the issued
alarms.

In conclusion of this chapter, this work will focus on building a passive host-based anomaly
detection system that observes process behavior based on whitelisting and data mining tech-
niques. Moreover, this thesis will evaluate various anomaly detection approaches.

1.2 Outline

This thesis is separated into seven chapters.

Chapter 2 discusses fundamentals and the state of the art regarding traditional detection
methods of host-based intrusion detection systems. Moreover, Australian Defence Force
Academy data sets (ADFA) [17] that are used to evaluate IDS are described in this chap-
ter. Furthermore, anomaly modeling techniques are explained here.

Chapter 3 explains the requirements for building a host-based intrusion detection system for

Master Thesis, Technische Universität Berlin 5

1 Introduction Payam Samimi

embedded devices. This chapter analyzes requirements arising from embedded applications,
intrusion detection systems and software engineering.

Chapter 4 demonstrates a high-level description of the architectural structure of the se-
lected approach. Additionally, the single components of the proposed solution are explained
in this chapter using images and UML diagrams.

Chapter 5 describes the implementation part of this work. In this chapter, important aspects
of implementation including the development environment and software used are explained.
In addition, the most significant parts of code used in the implementation are emphasized.

Chapter 6 illustrates methods used for evaluating the proposed solution. Moreover, this
chapter includes the results of the evaluation process.

Chapter 7 summarizes the thesis and describes the problems that occurred during this work.
Furthermore, it provides an outlook about possible future works.

6 Master Thesis, Technische Universität Berlin

2 Related work

In this chapter, fundamentals and related research works are discussed, including techniques
for host-based intrusion detection, the data set for evaluating IDS and anomaly modeling
techniques. This section considers study works that have been published recently and pro-
posed techniques with high detection rates.

2.1 Detection methods

Traditional host-based intrusion detection systems rely on three main methods: enforcing
the integrity of critical system files, monitoring leaving and entering network packets, and
monitoring the behavior of processes [14]. Integrity checking HIDS makes use of crypto-
graphic hash functions - both in keyed and unkeyed fashion - to calculate hash values of
critical system files. Typical instances of hash functions include message-digest algorithm
5 (MD5), secure hash algorithm (SHA) 0/1/2/3, keyed-hash message authentication code
(HMAC), etc.

Fundamentally, in this approach a list of hash values of the system files is stored in a
database. HIDS uses this database during the control process, in which a new hash value is
generated over a system file and then compared with the anticipated value stored in the list.
If a matching is found, the file is ignored, otherwise HIDS issues an alarm. This control pro-
cess may be performed in real-time or periodically. In real-time mode, HIDS uses so-called
kernel hooks. More precisely, HIDS implements those kernel hooks, which enables HIDS
accessing data structures belonging to the operating system. Accordingly, HIDS can check
the integrity once a system file is requested by a program. In this respect, Patil et al. [18]
introduced a real-time integrity controller - namely I3FS - which checks the integrity of each
file before it is provided for an application. I3FS is a loadable kernel module, which requires
security policies that can be dynamically edited by system administrators. A further real-
time detection system proposed by Kaczmarek and Wrobel [19] is ICAR (Integrity Checking
and Restoring), which is implemented as a loadable kernel module. Once an application
requests a file, the integrity of that file is checked. Under conditions where checking fails,
the file is restored from back-up, and consequently the anomalous event is logged by ICAR.
In contrast to real-time integrity checking, in periodical mode the hash values of system files
are calculated periodically and compared with the expected values stored in the list. Trip-
wire is a periodical integrity checking mechanism that provides detecting of unauthorized
alterations [20]. Tripwire uses the security policy for files and carries out scheduled integrity
controls relying on a checksum analogy. A further periodical checker is Osiris, which moni-
tors the integrity of one or multiple hosts [20]. Osiris issues logs concerning modifications
in the file system, user and group lists, resident kernel modules, etc. These logged events

2 Related work Payam Samimi

can also be sent to the administrator.
Nevertheless, it is believed that both approaches - real-time and periodical - have disadvan-
tages [14]. In a real-time detection approach, accessing the list from a second storage can
affect the overall system performance. This can cause disabling embedded devices of per-
forming time-critical tasks. In addition, implementing the kernel hooks requires high skills
in the operating system programming field. Furthermore, any updates in the kernel version
requires adapting those changes in the implementation of the hooks. On the other hand, the
periodical checking approach suffers from the complication of determining the time period
for checking. For instance, if HIDS controls hash values every five minutes, faster attacks
that occur in a few seconds remain undiscovered, or they can be detected after they have
caused damages [8]. Finally, apart from using the real-time or periodical approach, the main
disadvantage of integrity checking systems is their incapability in detecting network-based
attacks. For instance, during a javascript-based attack the hash value of the browser’s binary
will not change. Thus, implementing HIDS relying on integrity checking requires thoughtful
consideration of various aspects.

HIDS based on network traffic analysis observes entering and leaving packets for clues of
undesired traffic, which is discussed in this work according to Bukac et al. [14]. In compari-
son to NIDS, whereby data encryption affects their capabilities, HIDS is capable of observing
packets on the application layer (having access to decrypted packet contents). This enables
HIDS to carry out more specific detection techniques such as deep packet analysis of the net-
work traffic. In addition, HIDS can facilitate recognizing Botnets by observing the behavior
of the host in the network. Barbhuiya et al. [21] proposed a detection system based on
network traffic analysis, an active probing mechanism that mitigates three ARP-based attack
vectors: the ARP spoofing, malformed ARP packets and the ARP denial-of-service attack
in local networks. For instance, against the ARP spoofing attack, this mechanism verifies
each received ARP request and response through broadcasted validation requests. In case of
already-authenticated IP and MAC addresses, ARP packets are processed. By contrast, for a
simple validation process all hosts are requested and responses are gathered. The spoofed
ARP packets (nonuniform responses) are then detected by comparing ARP responses. A
further detection method based on network traffic have been proposed by Laurens et al.
called DDoSniffer, which aims to detect leaving TCP SYN denial-of-service attacks. In par-
ticular, its detection method relies on parsing the leaving TCP packets. Once a new TCP
connection begins, a new entry is generated in the Newconn and the Conn tables. In case
of fully-established TCP connection (a packet counter of a specific connection is not greater
than four), the appropriate record is erased from the Newconn. DDoSniffer issues an alarm
under two circumstances: first, if the size of the Newconn table is greater than a predeter-
mined threshold; and second, if the number of TCP leaving packets without incoming TCP
acknowledgments exceeds a predefined quota.
Nevertheless, applying this network-based HIDS for embedded applications encounters dis-
advantages. For instance, due to the lack of computation resources in embedded systems,
performing high complex methods for analyzing a huge number of network packets is not
possible.

A further strategy for HIDS is to monitor process behavior. This may involve monitoring

8 Master Thesis, Technische Universität Berlin

Payam Samimi 2.1 Detection methods

one specific process or multiple processes. Monitoring techniques vary from straightfor-
ward methods (e.g. whitelisting, CPU and memory consumption analysis, file access pat-
terns) to rather complicated techniques (e.g., analyzing system call traces) [14]. Generally,
whitelisting of trustworthy applications is advised for systems with constraints on compu-
tation resources. This is due to achieving a balance between method complexity and the
availability of computation resources [14]. Hizver et al. [22] proposed a cloud-based ap-
plication whitelisting system that proves binary files or libraries versus a whitelist, as soon
as a program requests an executable file/library. If checking fails, the execution process is
aborted.
Generally, depending on the observation frequency, detection techniques relying on process
behavior monitoring can be divided into two main categories: real-time or offline mode.
Offline mode analyzes the process behavior in a sandbox environment. By contrast, real-
time monitoring is implemented as kernel hooks, which enables HIDS to detect intrusions as
soon as the process behavior changes. The idea of allowing the kernel to observe itself grew
when Forrest et al. [23] introduced a building detection model relying on normal behavior
in 1996. Indeed, malicious activities are detected when the behavior of process varies from
the expected normal behavior. In this respect, Reeves et al. [24] proposed an IDS called
Autoscopy for resource-constrained embedded control systems in the power grid. It has been
implemented in the form of a loadable kernel module, providing the detection of process
behavior changes. Autoscopy makes use of kprobe (tracing framework) to monitor process
behavior. Probes are placed in specific addresses in the kernel to collect all control-flow in-
formation under normal system operation. This information represents the detection model
based on normal behavior. In the testing phase, current control-flow information is verified
versus the detection model.
In the recent past, applying complex methods such as analyzing system call traces for detect-
ing malicious activities has been targeted by many research studies. Each program according
to its code is characterized with a set of system call traces [23]. These traces are generated
during the execution of programs. Thus, collecting these traces of a running program during
normal operation can be used to represents the model of normal behavior of that program.
Accordingly, any variation of this model or system call order is detected as malicious activ-
ity. Representation methods of these traces can be categorized into two main groups [25]:
sequence-based and pattern frequency-based. Sequence-based techniques consider a short se-
quence of normal system call traces for establishing the detection model. Forrest et al. [23],
[26] introduced a contribution based on artificial immune system, in which normal system
call traces in a running process are divided into shorter sequences with a fixed length, called
windows. Let us consider a trace t, and a fixed-length k, then t is divided into system call
windows as : w0, w1, w2, ... (w denotes a system call window). Consequently, those windows
are gathered in a database, which represents the normal behavior. In the testing phase, each
test trace is also divided into fixed-size windows, which are then compared with the database
of normal windows. Test windows that exceed a predetermined variation threshold are de-
tected as anomalies. Let us consider the following system call trace and the fixed-length
k=3:

open, read, remap, remap, open, getrlimit, remap, close, exit

Master Thesis, Technische Universität Berlin 9

2 Related work Payam Samimi

According to the window-based approach, this trace is divided into windows with a length
of k+1=4 as follows:

w0 = open, read, remap, remap
w1 = read, remap, remap, open

w2 = remap, remap, open, getrlimit
w3 = remap, open, getrlimit, remap
w4 = open, getrlimit, remap, close
w5 = getrlimit, remap, close, exit

Various methods have been proposed for determining an anomaly score of each test win-
dow. This anomaly score is then compared with the determined variation threshold for
detecting a window as an anomaly or normal behavior. For instance, an anomaly score
calculation approach discussed in [27] divides training traces into k-length windows and
preserves the repetitiveness of happening of each unique window in training traces in a dic-
tionary. This dictionary represents the normal behavior of the system. During testing, each
test trace is also divided into k-length sequences. Each test sequence is allocated a proba-
bility grade L(wi), which corresponds with the repetitiveness calculated for each window
in the training phase. In case L(wi) is larger than a predefined threshold λ, the window
is normal (L(wi) > λ), otherwise it is detected as an anomaly (L(wi) < λ). Consequently,
the anomaly grade for the entire trace is calculated in 2.1, where

∑

L(wi) is number of
anomalous windows in the entire trace, and lt is the length of trace:

L(t i) =

∑

L(wi)
lt

(2.1)

The previously-discussed window-based technique has been widely used in various re-
search studies for system call intrusion detection and is called threshold-based Sequence
Time Delay Embedding (t-STIDE) [27] [23] [28] [29]. These studies differ in their anomaly
score calculation.
Beside t-STIDE, statistical learning methods have shown considerable capabilities in han-
dling short sequences [25]. The main goal of these methods is to obtain invisible linkages
behind normal sequences for building a statistical model. Typical instances involve Artificial
Neural Networks (ANN) [30], semantic data mining [31], Support Vector Machine (SVM)
[32], and Hidden Markov Model (HMM) [33]. The significant advantage of statistical meth-
ods is their ability to create a precise model of normal behavior, although the required time
for learning is immense [25].
Parallel to anomaly score techniques, several researchers have used classification-based meth-
ods to label each trace as an anomalous or normal trace. For instance, in semi-supervised
techniques (i.e. training traces cover normal behavior and test sequences contain normal
and anomalous patterns), all training instances are labeled as normal. The classifier is then
built by applying on those normal instances. Subsequently, in the testing phase each test se-
quence is analyzed by the classifier. If the test sequence is covered, it is labeled as a normal
instance, otherwise it is labeled as anomaly. Typical examples of classifier-based techniques
include HMM-based [34], neural networks [35], SVM [36] and rule-based [37].

10 Master Thesis, Technische Universität Berlin

Payam Samimi 2.1 Detection methods

The prime strength of window-based techniques is detecting anomalies localized in short
sequences. However, apart from analyzing statistical or classification-based methods, if
anomalies are distributed over the whole trace they are not discoverable by window-based
techniques [27].
In contrast to window-based techniques, pattern frequency-based techniques have demon-
strated computationally-efficient learning and testing results [27]. It should be noted that
we consider this approach in summary, which is discussed in more details in [27].
Fundamentally, in this approach a pattern α is detected anomalous when its repetition in
the given test trace t varies considerably from its anticipated frequency in a set of normal
traces S. Essentially, this problem can be solved by allocating an anomaly score to the pat-
tern α. Accordingly, the anomaly score for the pattern α is calculated based on the variation
between the frequency of happening of α in the given test trace t, and the average repeti-
tion of occurrence of α in the training set S. More precisely, assuming fS(α) as the average
repetition of occurrence of α in S, and ft(α) as frequency of happening of α in t, then these
frequencies are normalized based on the length of training trace ls, and test trace lt , which
generate the two following quantities 2.2 and 2.3

f̄t(α) =
ft(α)

lt
(2.2)

f̄S(α) =
1
|S|

∑

∀si∈S

fsi(α)
lsi

(2.3)

Finally, the anomaly grade of the pattern α results as 2.4:

A(α) = | f̄t(α)− f̄S(α)| (2.4)

Further to this basic pattern frequency-based technique, several variations of considering
frequency in system call traces have been focused by researchers, such as vector-based meth-
ods. In vector-based methods, system call traces are represented in the form of fixed-length
vectors. The length of vectors depends on the number of system calls in an operating system
(e.g. the Linux distribution Ubuntu has about 342 system calls, then the vector for Ubuntu
should have 342 indexes). Each index in the vector corresponds to the same number of a
system call; for instance, index 23 characterizes the system call 23.
Borisaniya et al. [3] discussed three various vector-based data representation techniques
that are used for building a classifier for labeling test traces: Boolean model, vector space
model, and modified vector space model with n-gram.
A Boolean model is a simple representation of system call traces in the form of Boolean vec-
tor. Let us consider the number of system calls n, a system call trace t, then the vector V for
the given system call trace t is shown as V = {b0, b1, b2,, bn}, where bi(0≤ i ≤ n)may be
1, if the system call i exists in the trace, otherwise 0.
Accordingly, the training system call traces are converted to Boolean vectors for building the
classifier. In the testing phase, the given test trace is first transformed into a Boolean vector
and then labeled by the classifier.
A vector space model is another data representation method for system call traces. It is also

Master Thesis, Technische Universität Berlin 11

2 Related work Payam Samimi

called a bag of words method, in which each word is allocated a weight that determines a rel-
ativity of that word to a document. Considering this technique in system call representation,
similar to a Boolean model a feature vector is issued for each system call trace. Each vector
index corresponds to a system call number. Assuming the number of system calls n, a system
call trace t, then the vector V of the given trace t is represented as V = {m0, m1, m2,, mn},
where mi(1≤ i ≤ n) defines the frequency of occurrence of the system call Si in the trace t.
The training and testing phases are similar to the Boolean Model.
The main weakness of the Boolean model and the vector space model is their incapability
of regarding the order of system calls. In case an intruder is able to mimic the system call
frequency in a malware, inadequacy of information regarding system call order could mean
that the malware remains undetected [38], [39]. For instance, the feature vector for the two
following system call traces are equal.

S1 : open, read, mmap, getrlimit, close, exit
S2 : open, exit, read, mmap, getrlimit, close

In order to handle this issue, Borisaniya et al. [3] proposed the n-gram with a vector space
model to consider both aspects. Accordingly, a short sequence of system calls (with a fix-
length) are assumed as a word. For instance, if the length is three, then each word comprises
three system calls. Let us consider l as the size of the word, and n as the number of uniform
system calls, then this method generates nl amount of available uniform words in a vector.
In order to present the system call traces based on this method, the vector C is assumed as
C = {m1, m2, m3,, mr}, where r = nl , and mi(1 ≤ i ≤ r) defines the times that each
word in the given trace occurs.
The performance of this algorithm is described as O(N ∗ |U l |), which in case of system call
traces is a high value. Borisaniya et al. [3] enhanced this method by eliminating dimensions
of vectors, which are zero (absence of word in a trace).
Frequency-based approaches, which calculate an anomaly score for patterns, suffer from two
main issues [27]. First, computational complexity is an issue given that the time required
to compute anomaly grade for a pattern increases linearly according to the length of trace t
and the length and count of patterns in s. For instance, if an anomaly grade should be calcu-
lated for all neighboring sub-sequences happening in a trace t, the amount of time required
is extremely high. Second, the anomaly grade for pattern is a further issue, given that these
techniques allocate an anomaly score for each pattern, although they do not declare a pat-
tern as an anomaly or normal pattern. In addition, determining a threshold is challenging
in most cases.
A further issue with all frequency-based methods is that they should wait for the full execu-
tion of a program to build their vectors. These methods need the entire trace to compute
frequencies and anomaly score for patterns. Consequently, attacks like buffer-overflow may
be detected after an attack has occurred. Table 2.1 and 2.2 show a list of research works
with their detection methods.

12 Master Thesis, Technische Universität Berlin

Payam Samimi 2.2 Dataset

Table 2.1: Research works concerning various detection methods

Detection Method Research Works

Real-time Integrity Checking I3FS, checking integrity of each file before it is provided for an application [18]

Real-time Integrity Checking ICAR, a loadable kernel module which checks file integrity before an application access it [19]

Periodical Integrity Checking Tripwire, provides integrity checking using the security policy for system file [20].

Periodical Integrity Checking
Osiris, multiple host monitoring tool, capable of logging modifications to file system, user and
group lists, resident kernel modules, and etc.

Network Traffic Analysis detecting ARP Spoofing based on request/response confirmation [21]

Network Traffic Analysis Detecting TCP SYN denial-of-service attack [14]

Table 2.2: Research works concerning various process monitoring detection methods

Detection Method Research Works

Whitelisting Whitelisting of examined applications [22]

Observation of system behavior Observing system behavior using the kernel debugging frameworks

Short sequence of system call traces Forest et al. [26]

Short sequence of system call traces statistical learning method based on t-STIDE [25]

Short sequence of system call traces
Window-based statistical learning method based on t-STIDE [25], ANN [30], semantic
data mining [31], SVM [25], HMM [33]

Short sequence of system call traces Classification-based approaches HMM [40], ANN [35], SVM [36], rule-based [37]

Frequency-based Boolean Model [3]

Frequency-based Vector Space Model Model [3]

Frequency-based Modified Vector Space Model based on n-gram [3]

2.2 Dataset

The evaluation of intrusion detection systems using a dataset is widely used among re-
searchers. The well-known data sets for HIDS include the data set of University of New
Mexico (UNM) and the KDD data set used in the Third International Knowledge Discovery
and Data Mining Tools Competition. These data sets have been commonly used for train-
ing and testing the intrusion detection engines. However, these data sets cover behaviors
of operating systems from decades ago. Over time, various new features have been added
to operating systems, which has radically changed some of their behaviors. For instance,
changing from 32-bit to 64-bit architecture has affected the exploitability of these systems
[17]. In 2013, a new generation of data sets including system call traces called Australian
Defence Force Academy data sets (ADFA) was introduced [17]. ADFA covers two OS: ADFA-
LD (representing Linux Datset) and ADFA-WD (representing Windows Dataset).
The ADFA-LD is collected under completely-patched Ubuntu version 11.04 based on the ker-
nel V2.6.38. A Unix based tool, Auditd [17], is used to collect system call traces for ADFA-LD.
In order to consider different attack vectors, various services were installed including a web
server (Apache V2.2.17 running PHP V5.3.5), FTP server, database server (MySQL V14.14)
and SSH server.
The ADFA-WD dataset includes system calls and DLL requests, which are gathered using the
Procmon [41] program under the Windows XP SP2 operating system. This dataset is col-

Master Thesis, Technische Universität Berlin 13

2 Related work Payam Samimi

lected under circumstances whereby the default firewall was activated and Norton AV 2013
was running. In addition, the following services were enabled: file sharing, printing over
network, web server, database server, FTP server, streaming media server, PDF reader, etc.
The system call traces in both data sets - ADFA-LD and ADFA-WD - are divided into three
groups: training data, validation data and attack data. Training data and validation data
both represent the normal traces. By contrast, attack data contains raw abnormal traces.
Moreover, attack traces are classified based on the attack methods into six classes cover-
ing Hydra-FTP, Adduser, Java-Meterpreter, Meterpreter, and Webshell. Tables 2.3 and 2.4
demonstrate these data sets in detail.

Table 2.3: ADFA data sets in detail [3]

data set ADFA-LD ADFA-WD
Traces System Calls Traces System Calls

Training Data 833 308.077 355 13.504.419
Validation Data 4.372 2.122.085 1.827 117.918.735
Attack Data 746 317.388 5.542 74.202.804
Total 5.951 2.747.550 7.724 25.625.958

Table 2.4: Attack vectors in ADFA-LD data set [3]

Attack Impact Vector Number of traces

Hydra-FTP brute force password FTP by Hydra 162

Hydra-SSH brute force password SSH by Hydra 176

Adduser adds new superuser client side poisoned executable 91

Java-Meterpreter meterpreter with java Tiki Wiki vulnerability exploit 124

Meterpreter Linux meterpreter payload client side poisoned executable 75

Webshell C100 webshell PHP remote file inclusion 118

According to Aghaie [42], many studies to date have employed these data sets for evalu-
ating anomaly- and misuse-based detection systems. Xie et al. [25] applied one-class SVM (
based on a short sequence data representation method) on the ADFA-LD (Linux-based) data
set, which achieved an accuracy of 80% and 15% False Positives. Chang et al. [43] reported
very poor performance of K-Nearest Neighbors and k-Means clustering methods based on a
frequency representation technique. More precisely, they reported 50% detection accuracy
and 20% FP on average among their three studies. Borisaniya et al. [3] applied a modified
vector space model with n-gram to build classifiers using Instance-based learning with pa-
rameter K (IBK), and J48 decision tree. According to the study, they achieved an accuracy
of 92% and 20% FP for multiclass, and 96% and 19% for the binary class. Consequently,
the most of research works showed a poor performance of different data mining methods on
these data set.
The ADFA data sets have introduced a new benchmark in evaluating host-based intrusion de-
tection systems, although from the author’s perspective they suffer from three main issues.
First, system call traces have not been recorded in combination with their issuer program. It
could possibly enhance detection accuracy if the programs together with their traces could

14 Master Thesis, Technische Universität Berlin

Payam Samimi 2.3 Anomaly modeling techniques

have been recorded; Second, no time information concerning traces as well as the period
of time, during which data sets have been gathered, is available. Considering time in many
cases could enhance detection rate. For instance, considering that a specific trace should
not happen during nighttime or the weekend; Third, the system call traces in the ADFA-LD
data set have been gathered using a Unix based tool Auditd [17], although no information
concerning the configuration of this tool has been published.

2.3 Anomaly modeling techniques

This section explains various anomaly modeling techniques. Chen et al. [44] classified
anomaly modeling techniques as follows:

2.3.1 Statistical models

Statistical techniques detect anomalous instances according to probability regions, which are
generated by stochastic models. While anomalies belong to low-probability regions, normal
instances appear in high-probability regions. In particular, a statistical model is built based
on normal behavior. This model is then used in a testing phase, in which a probability for
each test instance is computed. Normal instances mostly have high probability, although
anomalies have low probabilities [45]. Typical instances of statistical methods or pattern
recognition techniques are kNN, Bayesian Classifiers, and SVM [42].

2.3.2 Immune system approach

In host-based intrusion detection systems, an immune system approach models application-
behavior based on system call traces. Forrest et al. [23] proposed analyzing system call paths
during the normal execution of a program as a very consistent resource for building detec-
tion models. This technique is called the STIDE algorithm. This approach divides normal
system call traces into fixed-length short sequences and gathers them in a database, which
represents a normal model. Test traces are first divided into the fix-length short sequences,
then compared with the database. If a short sequence of the test instance is not covered by
this database, the instance is detected as an anomaly. Hofmeyr et al. [46],[47] proposed
variation of this method, which uses the Hamming distance to detect anomalies. Accordingly,
the Hamming distance between two sequences is computed to detect the variation degree.

2.3.3 Markov process model

Markov models are popular to mimicry system behavior based on state transitions. These
techniques consider the state transitions for system calls individually. Anomalies differ from
normal instances based on the probability of events, whereby this probability is determined
relying on preceding state and allocated values in the state transition matrix. Anomalous
instances have low probabilities, whereas normal instances have high probabilities. Chan-
dola et al [27] proposed a survey of studies that applied variants of the basic Makrov model

Master Thesis, Technische Universität Berlin 15

2 Related work Payam Samimi

such as fixed markovian, varaible markovian, sparce markovian, hidden markov model [40],
and etc. Although these techniques have shown high detection accuracy rates, the learning
phase could take days [47].

2.3.4 Data mining techniques

In the recent past, data mining has been widely employed in intrusion detection systems [48].
Data mining techniques help to realize summarizing a large amount of data in a systematic
manner [49]. Classification is one of the most commonly-used data mining methods. The
prime strength of classification-based methods is their fast test phase in comparison to other
data mining methods such as clustering-based approaches [45]. In the training stage, the
labeled training dataset is used to build the classifier. In the testing stage, the classifier
is applied to classify testing instances. Typical examples of classification-based techniques
include neural networks, Bayesian networks, support vector machines (SVM), decision trees
and rule-based methods [45] [49].

2.4 Summary

Throughout this chapter, the fundamentals and state-of-the-art concerning building host-
based intrusion detection have been discussed. We considered detection methods of HIDS
precisely, including integrity checking, network-based HIDS and process behaviour monitor-
ing. Moreover, the recently-generated ADFA data sets have been introduced, which have
been used by many recent research works for testing HIDSs. Finally, we have discussed var-
ious anomaly modeling techniques covering statistical models, immune system approaches,
Markov process models and data mining techniques. Consequently, to the best of our knowl-
edge, no HIDS has been introduced that besides considering characteristics of embedded
systems can observe process behaviors on these devices.

16 Master Thesis, Technische Universität Berlin

3 Requirements

This chapter discusses the fundamental requirements for LIDS. The author strongly believes
that building IDS for embedded applications requires considering a combination of require-
ments coming from software engineering, intrusion detection systems, and embedded sys-
tems.
In the recent past, researchers have divided system requirements into two main classes,
namely non-functional and functional requirements. Non-functional requirements demon-
strate a high-level view of how a system should operate. Functional requirements determine
the processes in a system. According to this classification, this chapter has been divided into
two sections, in which these requirements are discussed separately.

3.1 Non-functional requirements

The aim of this section is to discuss non-functional requirements for LIDS. These require-
ments have been regarded from the standpoint of embedded systems, software engineering
and intrusion detection systems, with the help of several research works [50][51][13][52].
Table 3.1 summarizes these requirements according to their objectives and rationales.

Availability

In the author’s view, in case of embedded systems this requirement has a high priority, given
that availability can be considered from two various angles: first, regarding the availability
of embedded systems; and second, the availability of the LIDS itself.
In most domains, embedded systems have a high ratio of operation time (almost 24 hours),
in which critical tasks should be carried out. Correspondingly, the failure of these systems
could cause significant damages in those domains.
Perceiving this requirement from the standpoint of the availability of LIDS itself, determin-
ing the proportion of time for which LIDS should operate is inevitable. More precisely, it is
needed to consider the number of intrusions and the size of damages when LIDS is down
during the operation time of the system.
Requirement: The LIDS shall under no circumstances cause system failure. Moreover, the
LIDS shall be available 99.99% alongside the embedded device.

Accuracy

Accuracy defines that IDS should not detect normal behavior of the system as malicious ac-
tivity (normal activity classified as an intrusion is called a false positive (FP)) [13]. From

3 Requirements Payam Samimi

the author’s view, regarding this requirement in embedded applications is much more im-
portant than other applications such as desktop computers. The reason behind this is the
network-based architecture of embedded applications. Typically, embedded systems are uti-
lized in distributed applications. In most cases, these systems communicate with the utility
server(s), which collects the information from devices and monitors their operation. Based
on the assumption that HIDS operating on each individual device would generate a small
rate of FPs, this could certainly overload the network or clog up the utility server. Thus, the
aggressiveness of LIDS should be carefully considered.
Requirement: The LIDS shall issue false positive alarms with a probability below 0.01%

Completeness

This determines the capability of IDS in detecting all intrusions occurring in a system (un-
detected malicious activities are called false negative (FN)) [13]. Kruegel et al, [13] believe
that satisfying this requirement is relatively challenging, due to the impossibility of having
knowledge of past, present and future attacks. However, regarding the critical nature of
tasks in embedded applications emphasizes the significance of considering this requirement.
More precisely, uncovered intrusion can cause safety-critical impacts on this system.
Requirement: The LIDS shall detect intrusions with a probability of 99.99%.

Performance

This requirement can be divided into four sub-requirements: time to detect intrusions, stored
knowledge about intrusion/normal behaviour, time to response, and identity trace back analy-
sis [52].
First, time to detect intrusions defines the time between the occurrence of intrusions and
their detection. The detection time mainly varies depending on the observation frequency
of IDS. In offline-based detection systems, the detection time may be approximately days,
weeks or possibly never. By contrast, this time in online-based detection systems is antici-
pated to be about minutes or hours. Consequently, the amount of damages to the system
can be reduced. Accordingly, this requirement has an extremely high priority for LIDS due
to the critical nature of the operation environment in embedded applications.
Requirement: The LIDS shall detect intrusions below one second.
Second, stored knowledge about intrusion/normal behaviour determines the complete-
ness and expandability of IDS knowledge. The incompleteness of IDS knowledge can strongly
affect IDS performance. Anomaly-based IDS requires knowledge including all patterns of
normal behavior. If a detection model does not include entirely normal behavior, uncovered
normal patterns can cause detecting the normal behavior of a system as malicious activity
(FPs). By contrast, misuse-based IDS requires exhaustive knowledge concerning intrusions.
Uncovered attack vectors can mean that intrusions remain undiscovered (FNs).
In addition to completeness, the knowledge of IDS should be updated as soon as changes

18 Master Thesis, Technische Universität Berlin

Payam Samimi 3.1 Non-functional requirements

in normal behaviour occur (anomaly-based), or new attack vectors are detected (misuse-
based). The result of neglected updating of even small changes in normal behavior of the
system or new attack methods is having an incomplete knowledge, which causes issuing FPs
or FNs.
Nevertheless, from the author’s standpoint, in embedded applications in respect with the
completeness and expandability of knowledge, its size and updating frequency should also
be taken into account.
Generally, embedded systems have limited memory capacity, which limits increasing the size
of knowledge. In addition, the updating frequency of the IDS knowledge on thousands of
embedded devices distributed over the network demands careful attention.
Requirement: The stored knowledge of LIDS shall cover all normal processes, as well as its
knowledge shall also be expandable
Third, time to response defines the time between the detection of intrusion and IDS re-
sponse. Similitude to the requirement of "time to detect", this requirement has a high prior-
ity, given that the shorter the response time, the lower the damages that can be caused by
intrusion.
Requirement: The LIDS shall issue an alarm below one second as soon as intrusion is de-
tected.
Forth, identity trace back analysis determines the capabilities of IDS in tracing and iden-
tifying attackers. This varies from rather straightforward methods (e.g. storing intrusions
with time stamping and network addresses) to highly-complex approaches (e.g. using sev-
eral tools to detect source of attacks in real time). The significance of this requirement is
due to the fact that having sophisticated knowledge regarding motivated intruders facilitates
determining the level of efforts and costs that should be invested in securing a system.
Requirement: The LIDS shall generate information concerning malicious processes includ-
ing the owner and the leaving and incoming network packets of the malicious processes.

Security

This identifies the extent to which resources of IDS are defended against security attacks.
The magnitude of this requirement is due to the dependency of detection accuracy on the
unalterability of IDS resources. Based on the assumption that an attacker could adapt IDS
resources to hide his/her malicious activities, intrusion may remain undetected for days,
weeks or perhaps forever.
Requirement: The resources of LIDS shall under no circumstances be altered during its op-
erations, as well as during the development process simply from a defined developer, who
takes the responsibility for it.

Scalability

Considering this requirement plays an important role in specifying an IDS. Scalability is
defined as the capability of IDS in analyzing the worst-number of events, without missing

Master Thesis, Technische Universität Berlin 19

3 Requirements Payam Samimi

intrusions or issuing FPs [13]. Thus, precisely analyzing the operation environment of LIDS
is necessary to determine the worst-number.
Requirement: The LIDS shall be able to analyze worst-number of events that can occur in
the system.

Maintainability

This requirement has its roots in software requirements analysis. It focuses on identifying
the modifiability, adaptability and extensibility of a software [53]. Intrusion detection sys-
tems are largely developed as software projects; therefore, defining this requirement for IDS
is inevitable.
IDS should be developed maintainable given that attack methods vary as time passes. The
adaptability, modifiability and extensibility of IDS enables monitoring new resources or chang-
ing detection approaches to detect novel attack methods.
This requirement is also considerable from the standpoint of embedded applications. Em-
bedded systems are advised for the cost-effective implementation of applications. However,
developing unmaintainable software projects can prompt creating new projects in the future,
which eliminates the cost-effectiveness of embedded systems.
Requirement: The LIDS shall be implemented in such a manner that it will be adaptable,
modifiable and extensible for adding future features. More precisely, the functions shall be
implemented small and perform one task. The name of variables shall be defined descriptive.
Moreover, it shall be considered to write clear and readable code and comment.

3.2 Functional requirements

The intrusion detection process comprises three phases: the phase of data collection, data
analysis and response [54]. Correspondingly, IDS should provide functional modules that
cover these phases. This section discusses functional requirements according to these phases
for both components of the LIDS as follows. Table 3.2 summarizes these requirements ac-
cording to their objectives and rationales.

Collecting

Defining this requirement in the form of questions facilitates a comprehension of its priority.
These questions are as follows: How should IDS collect data? How are events generated
from input data and prepared for analysis? Where should sensors of IDS be placed? Is the
data collection through just one sensor adequate? Is there any feature extraction or data
fusion required?
Considering the answers of these questions enhances the conception of the collecting func-
tional module.
LIDS - Requirement: The LIDS shall have a sensor in the kernel to observe processes. As
soon as a process is created, LIDS shall find the executable file of that process to determine

20 Master Thesis, Technische Universität Berlin

Payam Samimi 3.2 Functional requirements

Table 3.1: Non-functional requirements

Objectives Requirements Rationale

Availability of system LIDS shall not cause system fail-
ure.

in safety-critical domain cause physical after-
effects.

Availability of IDS LIDS shall be available 99.99%
alongside the embedded device.

during down time of LIDS intrusions can harm the
system.

Accuracy LIDS shall issue false positive
alarms with a probability below
0.01%.

defining inaccurate threshold causes either FP, or
missing intrusions.

Completeness LIDS shall detect intrusions with a
probability of 99.99%.

not detected intrusions can cause safety-critical im-
pacts on the system.

Time to detect intrusion LIDS shall detect intrusions as
soon as they occur.

delayed detection of intrusions can cause significant
damages on system.

Knowledge completeness The knowledge of LIDS shall cover
all normal processes.

either FP are issued or intrusion are not detected.

Knowledge expandability The knowledge of LIDS shall be
expandable.

changes in system behavior are detected either as
FP or intrusions are not detected.

Response time LIDS shall issue alarm below one
second as soon as intrusion is de-
tected.

delayed detection of intrusions can cause significant
damages on system.

Identity trace back analyze LIDS shall provide information
concerning malicious processes in-
cluding the owner and the leaving
and incoming network packets of
the malicious processes.

sophisticated knowledge regarding intruder facili-
tates determining the ration of effort to secure the
system.

Security The resources of LIDS shall not be
modifiable during run-time.

intruder can hide malicious activities by altering
IDS resources.

Scalibility LIDS shall be able to analyze
worst-number of events that the
system can process.

IDS misses intrusions, or generates FP.

Maintainability LIDS shall be implemented adapt-
able, expandable and modifiable.

Non-maintainable software projects increase the
likelihood of creating new projects for even small
changes, which cause high costs for companies.

the admissibility of that process. In addition, it shall collect system call traces to observe
process behavior more precisely.

Analysis

Events issued from collecting engines are ready to be analyzed in this module. This require-
ment regards two aspects: first, how to analyze the collected events, which may involve
analyzing using highly-complex machine learning algorithms or a rather simple database
query; and second, it defines where to place the analyze functional module. More precisely,
are IDS sensors allowed to analyze the events themselves locally or do they simply perform
collecting and other entities are responsible for the analysis?
LIDS - Requirement: In this phase, the LIDS shall determine whether an application is al-
lowed to run on the device. Moreover, it shall analyze system call traces generated by the
programs using machine learning algorithms for detecting highly-intelligent attacks.

Master Thesis, Technische Universität Berlin 21

3 Requirements Payam Samimi

Response

Activation of this module depends on the analysis functional module. In case of detecting
an anomalous event, the response module will be activated. This requirement defines the
reaction type of IDS, whether it should issue an alarm concerning an anomalous event or
invoke a decision engine for specific actions.
In addition, it is required to determine in case of distributed IDSs which entity is responsible
for issuing an alarm (e.g. whether each IDS is allowed to issue an alarm, or a central man-
agement takes the decision after collecting alarms from all IDSs).
LIDS Requirement: In case of detecting anomalous programs, LIDS shall issue an alarm
concerning the malicious program including the owner and the network connections of the
malicious process.

Table 3.2: Functional requirements

Objectives Requirements Rationale

Collecting LIDS shall have a sensor in the ker-
nel to observe processes. As soon
as a process is created, LIDS shall
find the executable file of that pro-
cess to determine the admissibil-
ity of that process. In addition,
it shall collect system call traces
to observe process behavior more
precisely.

Inadequate analysis of this requirement may cause
missing intrusions.

Analysis LIDS shall determine whether an
application is allowed to run on
the device. Moreover, it shall
analyze system call traces gener-
ated by the programs for detecting
highly-intelligent attacks.

Analyzing the events in an improper place or based
on an approach which may cause impacts on the
system performance can cause missing intrusions or
affecting the overall system performance.

Response In case of detecting anomalous
programs, LIDS shall issue an
alarm concerning the malicious
program.

In a safety-critical environment such as in-vehicle
systems disturbing the system functionality can
cause irreversible after-effects.

22 Master Thesis, Technische Universität Berlin

4 Concept

This chapter introduces the architectural design of LIDS. Considering the requirements dis-
cussed in the previous chapter and the characteristics of embedded systems, it can be seen
that a simple HIDS that operates on an embedded device is not capable of meeting our
requirements. Therefore, this work introduces a new HIDS concept comprising two sub-
components - namely Watchdog and Secure Homeland - that combines one simple and one
complex approach. Watchdog is responsible to carry out the simple approach of whitelist-
ing, whereas by contrast the second sub-component Secure Homeland performs the complex
technique of analyzing system call traces using machine learning algorithms on another ma-
chine. Fig. 4.1 shows the abstract model of the LIDS.
Based on the focus of this work on evaluating anomaly detection techniques, communication
protocols between embedded devices and the server are not discussed in this work.

Embedded
device

Watchdog

Embedded
device

Watchdog

Embedded
device

Watchdog

Embedded
device

Watchdog

Embedded
device

Watchdog

Embedded
device

Watchdog

Server

Secure Homeland

Figure 4.1: Abstract model of LIDS

4.1 Watchdog

This sub-component is designed to perform application whitelisting (AWL) on an embedded
host. This is due to the following characteristics of embedded systems that propose applica-
tion whitelisting as a good candidate for satisfying requirements discussed in the previous

4 Concept Payam Samimi

section.
First, the majority of embedded systems have restricted computation resources, as well as
bounded memory capacity. Therefore, implementing highly-complex detection techniques
may exceed their computation limitations, and consequently can have adverse impacts on
the performance of these systems. Second, operation environment in embedded applications
is mostly static. More precisely, processes, network protocols, IP addresses for sending and
receiving packets, etc. are clearly predefined. Third, infrequent changes and the restricted
number of applications that operate on embedded devices simplifies building the detection
model based on the system’s normal behavior rather than generating IDS knowledge based
on malicious applications.
Among the detection techniques researched by various studies, AWL conforms to those char-
acteristics and defined requirements (in chapter 3). It performs a simple but sufficiently
powerful detection process with consideration of computation constraints, a static operation
environment and restricted number of applications in embedded systems. Moreover, through
adding AWL as the final step of the development process of software products that should
operate on an embedded host, the requirements "completeness, accuracy and completeness
of stored knowledge" can be satisfied. More precisely, this final step specifies a condition
under which a software has been developed and is ready for operating on an embedded host
(before migrating to the host), whereby it must be added to the whitelist. Without meeting
this condition, no software is allowed to operate on the device. Consequently, the failure to
detect normal behavior as malicious activity (FPs) and the completeness (and expandability)
of Watchdog resources is guaranteed.
Generally, application whitelisting (AWL) comprises three main phases [55]: generating a
whitelist of executable files during the normal operation of system (learning), checking the
checksum of executable files (e.g. hash values) at run-time (testing), and deny or report pro-
cess with a modified executable file. The prime strength of AWL in contrast to "blacklisting"
(i.e. covers malware information in a list) is the absence of a continual updating process
of intrusion knowledge on hosts [55]. Particularly in some domains in which thousands of
devices must be updated concurrently, frequent updating reflects a major challenge. Further-
more, in embedded applications the size of HIDS resources should be carefully considered.
For instance, the size of a whitelist for an embedded device with five applications is much
smaller than a blacklist including a large list of various malwares. Thus, intrusion detection
in an embedded environment based on AWL is more reasonable than blacklisting.
According to AWL, Watchdog operates in three phases: learning, testing and reporting. In
order to separate the learning phase from testing and reporting phases, Watchdog has been
separated into two various concepts. A user-space software has been designed for the learn-
ing phase, and a Linux security module integrated to the Linux kernel has been designed
for the testing and reporting phases. The reason behind this decision will be discussed more
precisely in explaining the design concept of the test software.
The user-space software carries out creating the whitelist of executable files existing in the
system. It takes a given path to a container of executable files as input, and creates a key-
value-based list (whitelist). The key in each element of this list is the name of the executable
file, and the value is the hash value of that file. This software is able to generate hash values

24 Master Thesis, Technische Universität Berlin

Payam Samimi 4.1 Watchdog

using various hash functions such as SHA1 and SHA256. In this respect, it should be noted
that Watchdog does not use the known hash function MD5, which has been recently targeted
by various security research, and in some cases successfully broken such as in [56].
Next, the issued whitelist will be added to the test software manually. The reasons behind
this decision are as follows: first, in most domains, changes in normal behavior of the system
rarely occur and thus frequent changes in the whitelist are not required; second, generally
the number of applications that operate on an embedded device is small and thus a small list
should be moved to the test software; and third, moving the whitelist to the test software
manually guarantees protection of HIDS resources, whereby Watchdog can meet the "secu-
rity" requirements. More accurately, the resource of Watchdog is hardcoded in the kernel
binary file and thus their alteration requires recompiling the kernel on the embedded device
whereby its occurrence has a probability around zero.
The test software of Watchdog has been designed to be integrated into the kernel space, given
that integrating Watchdog into the kernel enables it to meet several requirements (discussed
in chapter 3) including "availability of IDS, time to detect intrusion, and time to response".
Availability of IDS: Being part of the kernel enables Watchdog to run concurrent with the
embedded device. Accordingly, all processes during the run-time of the system will be mon-
itored and it will be guaranteed that the entire system behavior is observed.
Time to detect intrusion and time to response: Due to the integration into the kernel,
Watchdog can monitor processes online, which reduces the time to detect anomalies and the
time to respond.
The Linux kernel provides various methods for integrating extra functions into the kernel
(although without altering the kernel itself). The most commonly-known method is the
Linux dynamically loadable kernel modules, which proposes an appropriate possibility for
extending kernel functions and reduces the development time [57]. Nevertheless, the main
disadvantage of these modules is that users with root privilege (or internal intruders) are
able to remove these modules from the kernel space. This feature of loadable kernel mod-
ules is contrary to the availability requirement.
A further possibility for integrating Watchdog into the kernel space is by using the Linux secu-
rity module framework (LSM). Wright et al. [1] defined the LSM framework as a lightweight
access control framework that enables utilizing various security models on the same kernel
without affecting the kernel performance. Thanks to this framework, security functions are
independent from the kernel and adaptable to various security requirements such as those in
embedded systems. In this framework, security modules have access to the kernel objects us-
ing so-called hooks, whose architecture is shown in Fig. 4.2 [1]. These hooks are categorized
into five main groups: task hooks (controlling process operation), program loading hooks
(checking programs, once executed), IPC hooks (access to IPC object), filesystem hooks (con-
trolling file operation) and network hooks (controlling sockets and network packets). The
most significant set of hooks appropriate for AWL is program-loading hooks, which enables
Watchdog to access the executable file of programs before their execution. Having all of
this in mind, in the author’s view LSM is the most appropriate method to implement AWL in
Watchdog.
The program-loading hooks are designed in the interest of checking specific user-defined

Master Thesis, Technische Universität Berlin 25

4 Concept Payam Samimi

conditions within the kernel before executing a program. Accordingly, once a program is ex-
ecuted, before allocating system resources to the program, one specific hook implemented in
Watchdog will be invoked. The hook implemented by Watchdog can control various features
of that program, such as the page table structure, name, executable file, etc. However, in
case of AWL, only the executable file of the program will be considered.
Watchdog performs AWL using program loading hook in two steps: First, Watchdog searches
the whitelist for the name of the executable file. If the given file cannot be found in the list,
an alarm will be issued. Otherwise, the next step will be performed, in which Watchdog cal-
culates a new hash value of the executable file using the Linux Crypto API and compares it
with the anticipated value stored in the whitelist. If a match is found, the program is ignored;
otherwise, the program is detected as an anomaly and an alarm will be issued immediately.

Figure 4.2: LSM hook architecture [1]

Based on implementing the kernel hooks in Watchdog, the time to detect anomalous pro-
grams is significantly diminished. Furthermore, as soon as a malicious program is detected,
Watchdog will issue alarm, and correspondingly the time to respond to anomalies will also
be diminished.

4.2 Secure Homeland

The second sub-component of LIDS is Secure Homeland, which is designed to analyze process
behaviour much more precise than AWL. This is due to the limitations of AWL [55] including:

• Generally, AWL is able to detect executable file changes. However, vulnerabilities in
network-based applications such as remote authentication dial-in user service (RA-
DIUS) applications can be exploited without any changes in the executable file of the
application. Thus, AWL is inadequate to detect/prevent intrusions issued by whitelisted
applications.

• Any uncovered file by the whitelist - even if it is not a malware - will be flagged as an
anomaly. This could cause issuing FPs, which can increase workload in the system.

26 Master Thesis, Technische Universität Berlin

Payam Samimi 4.2 Secure Homeland

• AWL cannot detect modified executable files that generate the same hash values. Re-
cent studies have presented attack methods that can break hash algorithms such as
MD5 successfully [56].

Keeping all of these considerations in mind, applying more complex anomaly detection
approaches for embedded systems is inevitable. In the recent past, data mining approaches
have been widely employed in anomaly detection systems [48]. These approaches help de-
tection systems to summarize a large amount of data in a systematic manner, as well as
gaining a model of that [49]. Classification is one of the most commonly-used data mining
approaches regarding anomaly detection systems. Classification-based techniques have two
prime phases, namely training and testing [45]. In the training phase, a labeled training data
set is used to build the classifier. Next, this classifier is used in the testing phase for labeling
testing instances. Accordingly, the capabilities of the classifier in detecting anomalies will be
tested.
The prime strength of classification anomaly detection techniques is their fast test phase in
comparison to other data mining approaches such as clustering-based methods [45]. From
the author’s view, this feature nominates classification-based data mining approaches for ap-
plication in anomaly detection systems in embedded applications. Thus, Secure Homeland
has been designed to apply classification-based anomaly detection approaches.
In this respect, it should be noted that in this thesis the anomaly detection will be performed
in supervised mode, in which both training and testing data sets contain labeled instances
including normal and anomalous behavior. Typically, selecting the appropriate anomaly de-
tection mode is based on the extent to which labeled data set is available. The data set used
in this work (ADFA-LD) comprises labeled instances for both normal and anomalous behav-
ior. Therefore, the supervised mode has been selected to test capabilities of the classifier.
According to the supervised mode, the author has divided this data set into two separate
sets, one for training and another for testing. The training data set contains two-thirds of
the ADFA-LD data set including normal and abnormal instances, which have been selected
completely randomly. The testing dataset covers the remaining one-third of the data set
(normal and abnormal instances), which has never been seen by the classifier.
Secure homeland has a feature extraction engine, which uses those two data sets (two-thirds
for training and one-third for testing) to convert them into the attribute-relation file format
(ARFF) [58] format. The conversion mode depends on the data representation method,
which may be sequence-based or frequency-based. Fig. 4.3 shows the abstract model of
engines in Secure Homeland. Further aspects concerning the data representation method
and selected machine learning algorithms are discussed as follows.

4.2.1 Data representation

This work considers two main representation methods of system call traces - sequence- and
frequency-based - which are discussed as follows.

Master Thesis, Technische Universität Berlin 27

4 Concept Payam Samimi

Raw System Call Traces

Frequency VectorShort Sequence

Feature Extraction Engine

Training Testing

Learning Engine

J48 Rule SVM ANN

Classifier

Testing Engine

Alert Engine

Figure 4.3: Architecture of learning and testing process in Secure Homeland based on [2]

Sequence-based

The sequence-based data model in this work is similar to the window-based model discussed
in [23]. Accordingly, each system call trace is divided to fixed-length short sequences. Let
us assume the following system call trace and the fixed length 3 (k=3),

2,0,9,2,2,97,9,3

then this trace is divided into short sequences with length of 3 as follows (it should be noted
that according to this method the first system call in the window is not counted):

• 2,0,9,2

• 0,9,2,2

• 9,2,2,97

• 2,2,97,9

• 2,97,9,3

In addition, for each trace the repeated sequences have been removed from the data set and
before building and testing the classifier the dataset has been randomized. For the sequence-
based method, the author considered three various lengths: 3, 5, and 10. The window-sizes
3 and 5 have been researched in many research works, however the window-size 10 have
been discussed rarely. Therefore, the author selected these sizes. Short sequences of normal
traces are labeled as normal instances, and those from attack traces as anomalies.

28 Master Thesis, Technische Universität Berlin

Payam Samimi 4.2 Secure Homeland

Frequency-based

Frequency-based model in this work is based on the vector space model discussed in [3].
Consequently, instances have been generated in the form of feature vectors, whose index
matches frequency of system call with the same number in that trace. In the ADFA-LD data
set, there are 341 various system call numbers, and thus each feature vector (instance) has
341 attributes. Similar to the sequence-based model, vectors of normal traces have been
labeled as normal, and anomaly traces as anomalies. For instance, consider the following
trace,

2,0,9,2,2,8,9,3

then based on the assumption that OS has ten various system calls, the feature vector based
on the vector space model is as follows:

1,0,3,1,0,0,0,0,1,2,0, normal

4.2.2 Machine Learning Algorithms

One of the targets of this thesis is to study the detection accuracy and feasibility of classification-
based anomaly detection methods. In order to evaluate these techniques, Weka workbench
[58] has been used, which is a set of machine learning algorithms for data mining tasks,
among various classification-based techniques. For this thesis, the author employed the fol-
lowing machine learning algorithms: Bayesian networks, rule-based methods, decision trees,
instance-based knowledge methods and artificial neural networks.
Although this thesis will not focus on analyzing classification-based algorithms but rather
on their application in anomaly detection in embedded applications, the classification tech-
niques are briefly discussed as follows:
The Bayesian network algorithm is one of the most universal and widely-used classification-
based techniques. The base of this algorithm is the Bayes theorem, in which based on the
calculation of conditional probability on each node a Bayesian network is generated. This
network is a directed graph with no occurrence of cycles [59].
Rule-based anomaly detection methods apply a rule learner engine that covers the system’s
normal behavior. Each test instance is then classified depending on whether it is covered by
any such rules (normal) or not (anomaly) [45]. JRip - proposed by William W. Cohen - is
an instance of rule-based methods, which provides a rule learner and repeated incremental
pruning to produce error reduction (RIPPER) for classifying instances efficiently [59].
Decision trees - a further rule learning method - is another widely-used classification tech-
nique in which the classifier is built in the form of decision trees based on the concept of
information entropy [59].
In contrast to rule-based algorithms, the instance-based knowledge (IBK) technique builds
the classifier by employing only specific instances [60]. These algorithms do not consider
abstractions from data such as rules or decision trees; rather, they employ the instances
themselves [59]. More specifically, in the learning phase training instances are memorized.
Next, in testing, each test instance is searched in the memory. If it is found, the instance is

Master Thesis, Technische Universität Berlin 29

4 Concept Payam Samimi

labeled as a normal instance, an otherwise as an anomaly [45].
Similar to other classification-based approaches, neural network-based methods operate in
two various methods, namely learning and testing. In the training phase, the training data
including normal behavior is used to train a neural network. By contrast, in the testing phase
the neural network takes each test instance as input. Refused test instances are declared as
anomalies; otherwise, if the test instance is accepted by the network, it is declared as normal
behavior [45].
In the interest of improving the detection accuracy of basic classification methods and taking
advantage of various classification methods, another classification method called ensemble
learning was proposed [61]. Accordingly, instead of using only one basic classifier, a col-
lection of basic classifiers is used for labeling test instances. Boosting is one of ensemble
learning methods that have been developed recently. It is an approach that covers an iter-
ative training set-generator method, as well as an algorithm that combines basic classifiers
[62]. In this thesis, we also consider stacking and bagging as instances of ensemble learning.
Overall, ten well-known classification-based algorithms - from the author’s view - have been
selected to be evaluated in this work. These algorithms are in different categories in Weka
software, which are demonstrated in Table 6.3.

Table 4.1: List of chosen algorithms and their options

Category Algorithm Options

Bayes Naive Bayes –

Function LibSVM (Support Vector Machine) Radial Basis Function (RBF) Kernel
MultilayerPerceptron –

Lazy IBk (k-nearest neighbors) k=3

Rules JRip(RIPPER) Folds=3

PART
unpruned= true, confidenceFactor= 0.25,
numFolds = 3

Trees J48(C4.5)
minNumObj= 3, confidenceFactor= 0.25,
unpruned= true

Meta Stacking Classifiers = J48, AdaBoostM1, Bagging

Bagging Classifiers = RandomTree

AdaBoostM1 Classifier = DecisionStump

4.3 Outcome

Dividing LIDS into two sub-components enables providing a balance between method com-
plexity and computation constraints. The first sub-component called Watchdog, which op-
erates on embedded host, performs application whitelisting, which is integrated within the
Linux kernel. The second sub-component operates on a server and analyzes system call traces
using data mining techniques for detecting highly-complex attack methods. The combina-
tion of these two sub-components within one concept allows LIDS to meet the requirements
discussed in section 2. To my best knowledge, LIDS is the first intrusion detection system
that combines a Linux kernel-based method with machine learning algorithms for protecting

30 Master Thesis, Technische Universität Berlin

Payam Samimi 4.3 Outcome

embedded systems and is evaluated based on the ADFA dataset.

Master Thesis, Technische Universität Berlin 31

4 Concept Payam Samimi

32 Master Thesis, Technische Universität Berlin

5 Implementation

This chapter describes the implementation of two sub-components, Watchdog and Secure
Homeland. Two different frameworks have been selected for the implementations: a Linux
security module and a Java command-line software. Details concerning the implementation
of the components are discussed in the two following sections.

5.1 Watchdog

In this section, the project structure and development environment of Watchdog are ex-
plained.

5.1.1 Environment

The following software and operating system were used for the implementation of two parts
of Watchdog:

• Test part

– The Linux distribution Debian 8, kernel V4.4.9

– Linux Kernel Programming IDE (LinK+ IDE)

– Required packages for compiling the kernel

• Train part

– Xcode IDE V.8.0[63]

– Mac OS High Sierra

– GCC, the GNU Compiler Collection V.6.4 [64]

5.1.2 Project structure

As previously discussed in chapter 4, Watchdog comprises two separated components, one
for learning and another for testing. A user-space software carries out the learning phase,
which is implemented in c++ programming language. This software is a command-line tool,
which contains one main function, whose input argument is a path, where executable files
are gathered. Through executing this software, the given path is searched for binaries and
for each binary its name and hash value is calculated and stored in the whitelist. When
calculating hash values for all binaries is accomplished, the whitelist is written to a file.
By contrast, the testing phase is implemented based on the Linux security module framework.

5 Implementation Payam Samimi

Accordingly, for compiling Watchdog, the kernel should also be compiled again. The build
process of the Linux kernel includes choosing various numbers of compiling options, which
in some cases could be very complex. However, this step is enhanced by the kernel build
system (kbuild), in a way that in order to be part of the kernel, each entity should have two
main files: kconfig and Makefile. Kconfig declares config symbols and their attributes (e.g.
type, description and dependencies) and makefiles are normal GNU makefiles. In addition,
the contents of these files must follow the syntax of security modules.
The main file in the test part of Watchdog is ids.c, which includes implementation of hooks.
Moreover, common.h contains declaration of helper functions to separate implementation of
hooks from other functions.

5.1.3 Important implementation aspects

Watchdog implements the bprm_check_security hook, which enables accessing executable
file of program. The list of hooks for task and program execution operations are demon-
strated in appendix A (attached). Watchdog makes use of two other Linux kernel facil-
ities, linked lists (declared in the header file /include/linux/list.h) and the Linux kernel
crypto API [65]. Once the Linux boots up, Watchdog as part of the kernel is initialized,
which causes invoking two functions, security_add_hooks (adds implementation of hooks to
the kernel) and ids_init (initializes the whitelist). During running of OS, once a program
is executed, the bprm_check_security hook is invoked, which invokes its implementation
ids_bprm_check_security in Watchdog. This function is given a pointer of struct linux_binprm
*bprm including the address to the executable file of the program. First, the name of the exe-
cutable file will be searched in the whitelist, and if it is not found the responsible function for
issuing alarm will be invoked. Otherwise, the second step involves calculating a new hash
value of the executable file using the Linux crypto API and comparing it with the expected
value stored in the whitelist. If matching is found, the program is ignored; otherwise, an
alarm is generated. Each time the function for alarm issuing is invoked, the further activities
of that program including entering/leaving packets, etc. will be logged for intruder identity
tracing back.

Listing 5.1: Hooks and structures in Watchdog
/∗
∗ Using l i n k e d l i s t implemented in the Linux k e r n e l f o r d e f i n i n g the w h i t e l i s t
∗/

s t ruc t i d s _ d i g e s t _ l i s t {
s t ruc t l i s t _ h e a d l i s t ;
char ∗name ;
char ∗path ;
u8 ∗ d i g e s t [HASH_BYTES_MAX] ;

}

/∗
∗ The w h i t e l i s t
∗/

s t ruc t i d s _ w h i t e l i s t ;

/∗
∗ The f u n c t i o n f o r e s t a b l i s h i n g the w h i t e l i s t d e f i n e d in i d s . c

34 Master Thesis, Technische Universität Berlin

Payam Samimi 5.2 Secure Homeland

∗/
s t a t i c in t i d s _ i n i t (void) ;

/∗
∗ Func t ion o f the Linux Crypto API f o r c a l c u l a t i n g hash v a l u e s
∗/

in t c ryp to_shash_d iges t (s t ruc t shash_desc ∗ desc , const u8 ∗ data , unsigned
in t len , u8 ∗ out) ;

/∗
∗ Thi s s t r u c t u r e i s used to hold the arguments tha t are used when load ing
b i n a r i e s . Watchdog c o n s i d e r s the f i l e p o i n t e r in t h i s s t r u c t u r e .
∗/

s t ruc t l inux_binprm {
char buf [BINPRM_BUF_SIZE] ;
.
.
.
s t ruc t f i l e ∗ f i l e ;
s t ruc t cred ∗ cred ; /∗ new c r e d e n t i a l s ∗/
const char ∗ f i lename ; /∗ Name o f b inary as s een by procp s ∗/
.
.
unsigned long loader , exec ;

} __randomize_layout ;

5.2 Secure Homeland

In this section, the project structure and development environment of Secure Homeland are
explained.

5.2.1 Environment

The following software and operating system were used for the implementation:

• macOS High Sierra Version 10.13.2
• Java Development Kit (JDK) 8
• IntelliJ IDEA [66]
• Data mining software Weka 3.7.12 [58]
• Apache Maven 3.5.2 [67]

5.2.2 Project structure

Secure Homeland has been created as a Maven project that enhances managing the com-
plexity of dependencies. The implementation within the IntelliJ project is separated into
three distinguished packages - train, test and evaluation - as depicted in Fig. 5.1.
The following listing briefly describes the single packages and folders of the project in alpha-
betical order to provide an overview of the implementation:

Config
This folder includes a config file, namely configIDS.properties, which contains configuration

Master Thesis, Technische Universität Berlin 35

5 Implementation Payam Samimi

Figure 5.1: Project structure

properties for the project. The properties of this project includes the path to the training
data set, testing data set, path for reading or storing the model, selected machine learning
algorithm, etc.

Dataset
This folder includes data sets for training and testing, which have been generated by the
feature extraction engine.

Evaluation
This package contains classes responsible for the evaluation of classifiers. Depending on the
test mode (test with supplied test, cross-validation mode and test with saved classifier), the
test method implemented in these classes will be invoked.

36 Master Thesis, Technische Universität Berlin

Payam Samimi 5.2 Secure Homeland

Models
This folder is used to store or read classifier that have already been stored.

Test
This package contains all algorithms for evaluating classifiers. For each training classifier,
there is a test class. All test classes implement an interface called test. Moreover, it is con-
figurable to test classifiers whether with a saved model, with supplied test data set or in
cross-validation mode.

Train
Training algorithms are gathered in the train package. Each training class implements the
train interface and invokes the corresponding train algorithm from Weka [58] for building
classifiers.

5.2.3 Important implementation aspects

During this project, the author favored composition over inheritance, "Hasing-A relationship
over is-A". This design principle enables the modifiability of classes individually. The design
model of this project is mainly based on the "strategy design pattern", in which varying parts
of code are encapsulated in interfaces. In order to provide a better understanding of the
project architecture, its UML diagrams are shown in Fig. 5.2.
This software will be used as a Java command line tool and thus for providing all dependen-
cies for the final Jar file, the Shade Maven-Plugin has been used.

Master Thesis, Technische Universität Berlin 37

5 Implementation Payam Samimi

Figure 5.2: UML diagram of all packages in Secure Homeland

38 Master Thesis, Technische Universität Berlin

6 Evaluation

The following chapter validates the components of LIDS, Watchdog and Secure Homeland
against the requirements discussed in chapter 3. According to the separated architectural
design of LIDS, the evaluation results will be provided in the two following sections individ-
ually.

6.1 Application whitelisting

In this section, the evaluation environment, method and results of evaluating of application
whitelisting - which has been implemented in Watchdog - is discussed.

6.1.1 Evaluation environment

The following hardware and operating system were used for the testing of Watchdog.

• VWware Workstation [68] for creating a virtual machine configured as the Raspberry
Pi Zero W [69].

– CPU : 1GHz, single-core CPU

– RAM : 512MB

– Storage : 6GB

• Linux distribution Debian 8, kernel V4.4.9

6.1.2 Evaluation method

The evaluation of Watchdog includes four main steps. First, precise analysis of all applica-
tions that should operate on the host. In order to avoid FPs, normal behavior of the host
machine should be covered completely. Therefore, a list of all programs that should run on
the system is established. Second, issuing the whitelist by means of the learning software.
Subsequently, this list - which comprises 30 entries - is added to the testing part of Watch-
dog in the LSM module. The last step of the third phase is newly recompiling the kernel.
Fourth, running all legal programs and several illegal programs that are not covered by the
whitelist, or the executable file of legal programs have been altered. Finally, the alarm results
are collected to analyze whether all legal programs detected as normal activity, and illegal
programs detected as anomalies.

6 Evaluation Payam Samimi

6.1.3 Results

Throughout four days testing, Watchdog could achieve 100% detection accuracy and 0% FPs.
All running legal programs are detected as normal behavior. Additionally, illegal executable
files or binary files whose content had been modified were detected as anomalies. Moreover,
required information to trace back the identity of intruder has been audited. The decisive
factor for achieving this detection rate is the precise analysis of normal behavior. The more
complete the list, the lower the FPs rate. The achieved results showed that based on this
concept most defined requirements in chapter 2 for a host-based anomaly detection system
have been met. The integration of Watchdog within the kernel space enables satisfying two
requirements concurrently, namely the availability of the system and availability of IDS. Be-
ing part of the operating system enables Watchdog to be available throughout the operating
time of the host. Furthermore, the design concept relies on monitoring processes using facil-
ities implemented within the kernel without disabling any services. Thus, Watchdog under
no circumstances will affect the system performance or cause system failure. Scalability is a
further requirement fulfilled by this integration. In particular, worst-number of events that
should be analyzed by Watchdog corresponds with the worst-number of events that the host
machine can handle. This concept also satisfies detection and response time requirements.
Anomalous programs or legal programs pointing to altered executable files are detected be-
fore they are allocated resources by the operating system. This results in detecting intrusions
before execution. Correspondingly, the response time is reduced given that alarms concern-
ing anomalous programs are issued before their execution.
This concept also fulfills the security requirement by hard-coding the list within the kernel
space. By this means, the modification of IDS resources (the whitelist) requires manipulat-
ing the kernel itself, which is to some extent a complicated attack method. In addition to
these requirements, this concept satisfies the identity trace back requirement by auditing all
information concerning malicious processes including time-stamp, name, path to executable
file, and incoming and outgoing network packets. However, meeting requirements concern-
ing knowledge completeness and expandability is conditional upon precisely analyzing use
cases and programs running on the host machine.

6.2 System call trace analysis

In this section, evaluation environment, method and results of analyzing of system call traces
implemented in Secure Homeland will be focused.

6.2.1 Evaluation environment

The following hardware and operating system were used for testing Secure Homeland.

• MacBook Pro

– CPU : 2,2 GHz Intel Core i7

– RAM : 16 GB 1600 MHz DDR3

40 Master Thesis, Technische Universität Berlin

Payam Samimi 6.2 System call trace analysis

– Storage : 256 GB SSD

• macOS High Sierra Version 10.13.2

• Terminal tool on macOS

6.2.2 Evaluation method

Evaluation methodology: In the interest of evaluating Secure Homeland, the selected data
set (ADFA-LD) was used to generate two main separate data sets, one for supervised mode
and another for cross-validation mode. Both data sets cover the two representation modes,
sequence- and frequency-based, discussed in chapter 4. The data sets for sequence-based
mode comprise three sub-data sets according to the window size 3, 5, and 10. By contrast,
the data set for frequency-based mode includes only one data set, in which system call traces
were transformed into modified feature vectors.
The author ran experiments in one-class mode, in which one of two labels - normal or
anomaly - were considered for each instance. Correspondingly, each algorithm with the
selected options was ran on data sets first through the supplied test data set, and second
through the cross-validation method. Fig. 6.1 demonstrates the structure of the above de-
scribed data sets generated in this thesis.

Figure 6.1: Generated data sets for supervised and cross-validation modes in this thesis

Evaluation metrics: In order to evaluate the performance of the classifiers and data rep-
resentation modes, the following general evaluation metrics have been used, which are com-
monly used in information retrieval area and discussed in [3].

True Positive (TP): Number of anomalous traces detected as anomalies.

False Positive (FP): Number of normal traces detected as anomalies.

True Negative (TN): Number of normal traces noted as normal traces.

False Negative (FN): Number of anomalies detected as normal traces.

Master Thesis, Technische Universität Berlin 41

6 Evaluation Payam Samimi

Fig. 6.2 demonstrates the confusion matrix used to calculate other quantities as follows:
Precision: It defines the proportion of anomalous traces detected as anomalies among the
total number of traces detected as anomalies.

Figure 6.2: Confusion matrix

Precision=
T P

T P + F P
(6.1)

Recall: It determines the proportion of anomalous traces detected as anomalies among the
total number of truly anomalous traces. It is also called the true positive rate (TRP).

Recal l =
T P

T P + FN
(6.2)

Accuracy: It defines the ratio of correctly-detected traces (normal traces detected as normal
trace, anomalous traces detected as anomaly) among the total number of instances.

Accurac y =
T P + T N

T P + F P + T N + FN
(6.3)

FP rate:It determines the proportion of normal system call traces predicted as anomalous
traces by the classifier.

F Prate =
F P

T N + F P
(6.4)

F-measure: It is a combination of precision and recall into a single quantity (harmonic mean
of precision and recall).

F −measure =
2

1
Precision +

1
Recal l

(6.5)

6.2.3 Results

The performance results including the false positive rate, precision, recall, f-measure and
accuracy are shown in the following tables (detailed results are presented in appendix B.
The achieved results for the windows-based approach are shown in Table 6.3 (for testing
with supplied test data set) and Table 6.4 (for cross-validation mode). Moreover, the results

42 Master Thesis, Technische Universität Berlin

Payam Samimi 6.2 System call trace analysis

for frequency-based approach are presented in Table 6.1 (for testing with supplied test data
set) and Table 6.2 (for cross-validation mode).
In addition to these tables, Figure 6.3 compares performance results of algorithms including
the FP rate and accuracy in the form of a graphical presentation. As shown in Figure 6.3,
there has been a distinct increase in the detection accuracy and a considerable decrease in
the FP rate in the frequency-based approach in comparison to the window-based approach.
In the window-based approach, the results show that raising the window size from 3 to 5
and 10 follows reduces of the FP rate and Accuracy, while increasing the train time. How-
ever, considering the FP rate and Accuracy, among algorithms Naive Bayes and Stacking
achieved good performance with window size 10. In contrast to window-based, most algo-
rithms achieved good performance in the frequency-based method, although Stacking and
AdaBoostM1 had the best rates.

Table 6.1: Results of experiment for frequency-based method on ADFA-LD data set with one-class labels
in testing with supplied test data set mode

Algorithm vector-size FP Rate Precision Recall Accuracy F-Measure

Naive Bayes 342 0,567 0,809 0,970 0,816 0,882

J48 342 0,032 0,995 0,973 0,972 0,984

JRip 342 0,005 0,999 0,963 0,967 0,981

IBK-k3 342 0,051 0,992 0,971 0,969 0,982

Multilayer Perception 342 0,050 0,997 0,891 0,893 0,941

Stacking 342 0,014 0,998 0,987 0,987 0,992

AdaBoostM1 342 0,008 0,999 0,980 0,982 0,990

Bagging 342 0,026 0,996 0,956 0,967 0,981

Table 6.2: Results of experiment for frequency-based method on ADFA-LD data set with one-class labels
in cross-validation mode (Fold=10)

Algorithm vector-size FP Rate Precision Recall Accuracy F-Measure

Naive Bayes 342 0,649 0,764 0,980 0,780 0,859

J48 342 0,141 0,981 0,975 0,961 0,978

JRip 342 0,120 0,985 0,969 0,959 0,977

IBK-k3 342 0,168 0,976 0,977 0,959 0,976

Multilayer Perception 342 0,400 0,999 0,875 0,875 0,933

Stacking 342 0,115 0,983 0,988 0,974 0,985

AdaBoostM1 342 0,101 0,986 0,980 0,970 0,983

Bagging 342 0,103 0,986 0,977 0,968 0,982

Master Thesis, Technische Universität Berlin 43

6 Evaluation Payam Samimi

Table 6.3: Results of experiment for various window-sizes on ADFA-LD data set with one-class labels
with supplied test data set

Algorithm window-size FP Rate Precision Recall Accuracy F-Measure

3 0,368 0,914 0,740 0,723 0,818

Naive Bayes 5 0,299 0,853 0,701 0,701 0,770

10 0,077 0,853 0,627 0,799 0,723

3 0,296 0,961 0,719 0,718 0,822

J48 5 0,176 0,947 0,647 0,701 0,788

10 0,024 0,974 0,454 0,632 0,619

3 0,343 0,965 0,706 0,702 0,815

JRip 5 0,199 0,944 0,662 0,684 0,778

10 0,301 1,000 0,733 0,733 0,846

3 0,315 0,947 0,728 0,723 0,823

IBK-k3 5 0,216 0,945 0,651 0,671 0,771

10 0,039 0,967 0,402 0,548 0,568

3 0,683 0,998 0,681 0,680 0,810

Multilayer Perception 5 0,970 0,585 0,978 0,585 0,734

10 0,035 1,00 0,307 0,307 0,470

3 0,245 0,966 0,726 0,729 0,829

Stacking 5 0,138 0,976 0,637 0,661 0,771

10 0,012 0,984 0,527 0,724 0,686

3 0,322 0,930 0,743 0,733 0,826

AdaBoostM1 5 0,203 1,000 0,586 0,586 0,739

10 0,090 0,989 0,316 0,338 0,478

3 0,229 0,968 0,727 0,732 0,831

Bagging 5 0,199 0,924 0,697 0,720 0,794

10 0,010 0,989 0,468 0,652 0,636

44 Master Thesis, Technische Universität Berlin

Payam Samimi 6.2 System call trace analysis

Table 6.4: Results of experiment for various window-sizes on ADFA-LD data set with one-class labels in
Cross-Validation mode (Fold=10)

Algorithm window-size FP Rate Precision Recall Accuracy F-Measure

3 0,444 0,913 0,821 0,782 0,865

Naive Bayes 5 0,469 0,842 0,856 0,773 0,849

10 0,516 0,693 0,901 0,719 0,783

3 0,349 0,968 0,796 0,786 0,874

J48 5 0,344 0,925 0,839 0,809 0,880

10 0,389 0,860 0,857 0,792 0,858

3 0,345 0,971 0,794 0,785 0,873

JRip 5 0,074 0,999 0,762 0,763 0,864

10 0,301 1,000 0,733 0,733 0,846

3 0,655 0,880 0,783 0,721 0,829

IBK-k3 5 0,525 0,868 0,803 0,749 0,843

10 0,498 0,849 0,800 0,734 0,824

3 0,621 1,000 0,765 0,765 0,867

Multilayer Perception 5 0,460 0,997 0,759 0,758 0,862

10 0,536 0,980 0,739 0,731 0,842

3 0,320 0,974 0,795 0,787 0,875

Stacking 5 0,278 0,951 0,832 0,817 0,887

10 0,322 0,883 0,883 0,828 0,883

3 0,473 0,917 0,811 0,772 0,860

AdaBoostM1 5 0,429 0,891 0,836 0,785 0,863

10 0,383 0,873 0,846 0,790 0,859

3 0,396 0,954 0,801 0,784 0,871

Bagging 5 0,291 0,945 0,835 0,817 0,887

10 0,297 0,907 0,863 0,826 0,885

Master Thesis, Technische Universität Berlin 45

6 Evaluation Payam Samimi

(a)

FP
 R

at
e

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

J4
8

JR
ip

MLP

IBK(k=
3)

Naiv
e B

ay
es

AdaB
oo

stM
1

Bag
gin

g

Stac
kin

g

3 5 10

(b)

Ac
cu

ra
cy

0,00 %
8,00 %

16,00 %
24,00 %
32,00 %
40,00 %
48,00 %
56,00 %
64,00 %
72,00 %
80,00 %

J4
8

JR
ip

MLP

IBK(k=
3)

Naiv
e B

ay
es

AdaB
oo

stM
1

Bag
gin

g

Stac
kin

g

3 5 10

(c)

FP
 R

at
e

0
0,07
0,14
0,21
0,28
0,35
0,42
0,49
0,56
0,63

0,7

J4
8

JR
ip

MLP

IBK(k=
3)

Naiv
e B

ay
es

AdaB
oo

stM
1

Bag
gin

g

Stac
kin

g

3 5 10

(d)

Ac
cu

ra
cy

60,00 %
63,00 %
66,00 %
69,00 %
72,00 %
75,00 %
78,00 %
81,00 %
84,00 %
87,00 %
90,00 %

J4
8

JR
ip

MLP

IBK(k=
3)

Naiv
e B

ay
es

AdaB
oo

stM
1

Bag
gin

g

Stac
kin

g

3 5 10

(e)

FP
 R

at
e

0
0,06
0,12
0,18
0,24
0,3

0,36
0,42
0,48
0,54
0,6

J4
8

JR
ip

MLP

IBK(k=
3)

Naiv
e B

ay
es

AdaB
oo

stM
1

Bag
gin

g

Stac
kin

g

(f)

Ac
cu

ra
cy

0,00 %
10,00 %
20,00 %
30,00 %
40,00 %
50,00 %
60,00 %
70,00 %
80,00 %
90,00 %

100,00 %

J4
8

JR
ip

MLP

IBK(k=
3)

Naiv
e B

ay
es

AdaB
oo

stM
1

Bag
gin

g

Stac
kin

g

(g)

FP
 R

at
e

0
0,07
0,14
0,21
0,28
0,35
0,42
0,49
0,56
0,63
0,7

J4
8

JR
ip

MLP

IBK(k=
3)

Naiv
e B

ay
es

AdaB
oo

stM
1

Bag
gin

g

Stac
kin

g

(h)

Ac
cu

ra
cy

0,00 %
10,00 %
20,00 %
30,00 %
40,00 %
50,00 %
60,00 %
70,00 %
80,00 %
90,00 %

100,00 %

J4
8

JR
ip

MLP

IBK(k=
3)

Naiv
e B

ay
es

AdaB
oo

st

Bag
gin

g

Stac
kin

g

�1

Figure 6.3: Achieved performance results including False Positive Rate and Accuracy on ADFA-LD data set. (a) FP rate for
windows-based with supplied test data set; (b) Accuracy for windows-based with supplied data set; (c) FP rate for
windows-based in Cross-Validation mode; (d) Accuracy for windows-based in Cross-Validation mode; (e) FP rate
for frequency-based with supplied test data set; (f) Accuracy for frequency-based with supplied test data set; (g)
FP rate for frequency-based in Cross-Validation mode; (h) Accuracy for frequency-based in Cross-Validation mode

46 Master Thesis, Technische Universität Berlin

7 Conclusion

7.1 Summary

In chapter 2, fundamentals and state of the art concerning building host-based intrusion
detection systems were discussed. We considered two detection methods of HIDS precisely,
including application whitelisting and observing system call traces. Moreover, the recently-
generated ADFA data sets were introduced, which are used by many recent research works
for testing HIDSs. Finally, we discussed various anomaly modeling techniques covering sta-
tistical models, immune system approaches, Markov process model and data mining tech-
niques.

In chapter 3, functional and non-functional requirements of building host-based intru-
sion detection systems for embedded systems were discussed. We discussed the significance
of each requirement by considering characteristics of embedded systems. Accordingly, we
defined availability, accuracy, completeness, performance, security, scalability and maintain-
ability as non-functional requirements. By contrast, collecting, analysis and response were
defined as functional requirements of a host-based IDS.

In chapter 4, the architectural design of a new approach for building a host-based anomaly
detection system (LIDS) was proposed. It was presented that the proposed concept comprises
two main sub-components that can satisfy the defined requirements in chapter 3. Moreover,
this chapter showed that the LIDS combines a simple approach of application whitelisting
with another approach that analyses system call traces for detecting highly-intelligent at-
tacks.

In chapter 5, information concerning the implementation of the LIDS was discussed. Ac-
cordingly, the project structure, implementation environment and important aspects of im-
plementation of both sub-components were explained. We described the implementation
of application whitelisting in the form of a Linux security module. Furthermore, the imple-
mentation of the second sub-component based on Java programming language with its UML
diagrams was presented.

In chapter 6, the evaluation results of both sub-components were presented. For both
approaches, the evaluation environment, evaluation method and results of tests were dis-
cussed. Accordingly, the first sub-component - which performs application whitelisting -
achieved 100 percent detection accuracy and 0 percent false positives. For evaluating the
second sub-component, various anomaly detection techniques based on two data represen-

7 Conclusion Payam Samimi

tation methods - window- and frequency-based - were tested and the achieved performance
results of various techniques were presented in the form of tables and graphical presenta-
tions.

7.2 Problems encountered and outlook

The most challenging issue with this work was the implementation of application whitelist-
ing in the form of a Linux security module. First, it required deep knowledge of the Linux
kernel programming, as well as how the Linux operating system deals with various kernel
objects. Second, any changes required re-building the kernel, which in some cases was a
time-consuming process. In order to solve this problem, the author used the Jprobe frame-
work (Kernel Debugging Framework). Jprobe is a straightforward approach to probe the
kernel. Fundamentally, it requires the address of a kernel function, which needs to be ana-
lyzed. Using Jprobe, we assigned a handler function that is called each time when the kernel
function is invoked. Consequently, we could prove various control techniques without being
compelled to re-build the kernel repeatedly.

7.3 Outlook

Future work will enhance both sub-components with new features. Watchdog (performs ap-
plication whitelisting) will be enhanced to observe incoming and leaving network packets as
well as monitoring sockets. More precisely, we will analyze which process creates and listens
to which sockets, specify network protocols that are allowed to be used, monitor ports and
control the admissibility of processes in sending and receiving network packets.
The second sub-component - Secure Homeland - will be enhanced to combine the two dis-
cussed data representation modes of window- and frequency-based to consider both se-
quence and frequency simultaneously. It should be noted that in chapter 2 we introduced an
approach called n-gram vector space model [3] that combined both approaches, although
according to our experiences this approach is not appropriate for an embedded environment.
A Further enhancement for LIDS will be operation of Secure Homeland on the embedded
devices. According to the concept that has been introduced in this work, system call traces
of embedded devices are gathered in a server and analyzed by Secure Homeland. How-
ever, providing a secure communication channel between devices and the server prompts
new complex challenges. Thus, from the author’s perspective the design concept of Secure
Homeland must be enhanced to be able for running on embedded devices.

48 Master Thesis, Technische Universität Berlin

List of Acronyms

ANN Artificial Neural Network
AWL Application Whitelisting
ECU Electronic Control Unit
FP False Positives
FN False Negatives
HIDS Host-based Intrusion Detection System
HMM Hidden Markov Model
IDS Intrusion Detection System
LIDS Linux-based Intrusion Detection System
LSM Linux Security Module
NIDS Network-based Intrusion Detection System
OS Operating System
SVM Support Vectore Machine
TP True Positives
TN True Negatives

List of Acronyms Payam Samimi

50 Master Thesis, Technische Universität Berlin

Bibliography

[1] C. Wright, C. Cowan, J. Morris, S. Smalley, and G. Kroah-Hartman, “Linux security
modules: general security support for the linux kernel,” in Foundations of Intrusion Tol-
erant Systems, 2003 [Organically Assured and Survivable Information Systems], pp. 213–
226, 2003.

[2] E. Viegas, A. O. Santin, A. Franca, R. Jasinski, V. A. Pedroni, and L. S. Oliveira, “Towards
an energy-efficient anomaly-based intrusion detection engine for embedded systems,”
IEEE Transactions on Computers, vol. 66, pp. 163–177, Jan 2017.

[3] B. Borisaniya and D. Patel, “Evaluation of modified vector space representation using
adfa-ld and adfa-wd datasets,” vol. 6, p. 250, 07 2015.

[4] F. M. Tabrizi and K. Pattabiraman, “Intrusion detection system for embedded systems,”
in Proceedings of the Doctoral Symposium of the 16th International Middleware Confer-
ence, Middleware Doct Symposium ’15, (New York, NY, USA), pp. 9:1–9:4, ACM, 2015.

[5] “Sektoren und branchen kritischer infrastrukturen.” http://www.kritis.bund.
de/SubSites/Kritis/DE/Einfuehrung/Sektoren/sektoren_node.html. Ac-
cessed: 2017-11-01.

[6] “Track vacancy detection.” http://w3.usa.siemens.com/mobility/us/en/
rail-solutions/rail-automation/track-vacancy-detection/pages/
track-vacancy-detection.aspx. Accessed: 2017-11-01.

[7] P. Koopman, “Embedded system design issues (the rest of the story),” in Computer
Design: VLSI in Computers and Processors, pp. 310–317, IEEE, 1996.

[8] P. Koopman, “Embedded system security,” Computer, vol. 37, pp. 95–97, July 2004.

[9] R. Langner, “Stuxnet: Dissecting a cyberwarfare weapon,” IEEE Security and Privacy,
vol. 9, no. 3, pp. 49–51, 2011.

[10] R. Brandom, “Uk hospitals hit with massive ransomware attack,” The
Verge. Available at https://www.theverge.com/2017/5/12/15630354/
nhs-hospitals-ransomware-hack-wannacry-bitcoin.

[11] S. Mohurle and M. Patil, “A brief study of wannacry threat: Ransomware attack 2017,”
International Journal of Advanced Research in Computer Science, vol. 8, no. 5, pp. 1938–
1940, 2017.

http://www.kritis.bund.de/SubSites/Kritis/DE/Einfuehrung/Sektoren/sektoren_node.html
http://www.kritis.bund.de/SubSites/Kritis/DE/Einfuehrung/Sektoren/sektoren_node.html
http://w3.usa.siemens.com/mobility/us/en/rail-solutions/rail-automation/track-vacancy-detection/pages/track-vacancy-detection.aspx
http://w3.usa.siemens.com/mobility/us/en/rail-solutions/rail-automation/track-vacancy-detection/pages/track-vacancy-detection.aspx
http://w3.usa.siemens.com/mobility/us/en/rail-solutions/rail-automation/track-vacancy-detection/pages/track-vacancy-detection.aspx
https://www.theverge.com/2017/5/12/15630354/nhs-hospitals-ransomware-hack-wannacry-bitcoin
https://www.theverge.com/2017/5/12/15630354/nhs-hospitals-ransomware-hack-wannacry-bitcoin

Bibliography Payam Samimi

[12] M. Erritali and B. E. Quahidi, “A review and classification of vanets intrusion detection
systems,” Security Days (JNS3), 2013 National, April 2013.

[13] C. Kruegel, Intrusion Detection and Correlation: Challenges and Solutions. Santa Clara,
CA, USA: Springer-Verlag TELOS, 2004.

[14] V. Bukac, P. Tucek, and M. Deutsch, Advances and Challenges in Standalone Host-Based
Intrusion Detection Systems, pp. 105–117. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2012.

[15] J. McHugh, “Intrusion and intrusion detection,” International Journal of Information
Security, vol. 1(1), pp. 14–35, August 2001.

[16] C. V. Zhou, C. Leckie, and S. Karunasekera, “A survey of coordinated attacks and col-
laborative intrusion detection,” Computers and Security, vol. 29, no. 1, pp. 124 – 140,
2010.

[17] G. Creech and J. Hu, “Generation of a new ids test dataset: Time to retire the kdd
collection,” in 2013 IEEE Wireless Communications and Networking Conference (WCNC),
pp. 4487–4492, April 2013.

[18] S. Patil, A. Kashyap, G. Sivathanu, and E. Zadok, “Fs: An in-kernel integrity checker
and intrusion detection file system,” in Proceedings of the 18th USENIX Conference on
System Administration, LISA ’04, (Berkeley, CA, USA), pp. 67–78, USENIX Association,
2004.

[19] J. Kaczmarek and M. Wrobel, “Modern approaches to file system integrity checking,”
in 2008 1st International Conference on Information Technology, pp. 1–4, May 2008.

[20] G. Sivathanu, C. P. Wright, and E. Zadok, “Ensuring data integrity in storage: Tech-
niques and applications,” in Proceedings of the 2005 ACM Workshop on Storage Security
and Survivability, StorageSS ’05, (New York, NY, USA), pp. 26–36, ACM, 2005.

[21] F. A. Barbhuiya, S. Roopa, R. Ratti, N. Hubballi, S. Biswas, A. Sur, S. Nandi, and
V. Ramachandran, An Active Host-Based Detection Mechanism for ARP-Related Attacks,
pp. 432–443. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.

[22] J. Hizver and T. c. Chiueh, “Cloud-based application whitelisting,” in 2013 IEEE Sixth
International Conference on Cloud Computing, pp. 636–643, June 2013.

[23] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A sense of self for unix
processes,” in Proceedings of the 1996 IEEE Symposium on Security and Privacy, SP ’96,
(Washington, DC, USA), pp. 120–, IEEE Computer Society, 1996.

[24] J. Reeves, A. Ramaswamy, M. Locasto, S. Bratus, and S. Smith, “Intrusion detection
for resource-constrained embedded control systems in the power grid,” International
Journal of Critical Infrastructure Protection, vol. 5, no. 2, pp. 74 – 83, 2012.

52 Master Thesis, Technische Universität Berlin

Payam Samimi Bibliography

[25] M. Xie, J. Hu, and J. Slay, “Evaluating host-based anomaly detection systems: Applica-
tion of the one-class svm algorithm to adfa-ld,” in 2014 11th International Conference
on Fuzzy Systems and Knowledge Discovery (FSKD), pp. 978–982, Aug 2014.

[26] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection using sequences of
system calls,” J. Comput. Secur., vol. 6, pp. 151–180, Aug. 1998.

[27] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection for discrete sequences: A
survey,” IEEE Transactions on Knowledge and Data Engineering, vol. 24, pp. 823–839,
May 2012.

[28] T. Lane and C. E. Brodley, “Temporal sequence learning and data reduction for anomaly
detection,” ACM Trans. Inf. Syst. Secur., vol. 2, pp. 295–331, Aug. 1999.

[29] T. Lane and C. Brodley, “Sequence matching and learning in anomaly detection for
computer security,” 05 1997.

[30] A. K. Ghosh, J. Wanken, and F. Charron, “Detecting anomalous and unknown intru-
sions against programs,” in Proceedings 14th Annual Computer Security Applications
Conference (Cat. No.98EX217), pp. 259–267, Dec 1998.

[31] G. Creech and J. Hu, “A semantic approach to host-based intrusion detection systems
using contiguousand discontiguous system call patterns,” IEEE Transactions on Com-
puters, vol. 63, pp. 807–819, April 2014.

[32] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo, A Geometric Framework for
Unsupervised Anomaly Detection, pp. 77–101. Boston, MA: Springer US, 2002.

[33] A. P. Kosoresow and S. A. Hofmeyer, “Intrusion detection via system call traces,” IEEE
Software, vol. 14, pp. 35–42, Sep 1997.

[34] B. Gao, H.-Y. Ma, and Y.-H. Yang, “Hmms (hidden markov models) based on anomaly
intrusion detection method,” in Proceedings. International Conference on Machine Learn-
ing and Cybernetics, vol. 1, pp. 381–385 vol.1, 2002.

[35] F. A. González and D. Dasgupta, “Anomaly detection using real-valued negative selec-
tion,” Genetic Programming and Evolvable Machines, vol. 4, pp. 383–403, Dec. 2003.

[36] M. Wang, C. Zhang, and J. Yu, “Native api based windows anomaly intrusion detection
method using svm,” in IEEE International Conference on Sensor Networks, Ubiquitous,
and Trustworthy Computing (SUTC’06), vol. 1, pp. 6 pp.–, June 2006.

[37] X. Li, J. Han, S. Kim, and H. Gonzalez, ROAM: Rule- and Motif-Based Anomaly Detection
in Massive Moving Object Data Sets, pp. 273–284.

[38] D. Wagner and D. Dean, “Intrusion detection via static analysis,” in Proceedings of the
2001 IEEE Symposium on Security and Privacy, SP ’01, (Washington, DC, USA), p. 156,
IEEE Computer Society, 2001.

Master Thesis, Technische Universität Berlin 53

Bibliography Payam Samimi

[39] D. Wagner and P. Soto, “Mimicry attacks on host-based intrusion detection systems,” in
Proceedings of the 9th ACM Conference on Computer and Communications Security, CCS
’02, (New York, NY, USA), pp. 255–264, ACM, 2002.

[40] J. Hu, X. Yu, D. Qiu, and H. H. Chen, “A simple and efficient hidden markov model
scheme for host-based anomaly intrusion detection,” IEEE Network, vol. 23, pp. 42–47,
January 2009.

[41] “Process monitor (procmon).” https://docs.microsoft.com/en-us/
sysinternals/downloads/procmon. Accessed: 2017-11-20.

[42] E. Aghaei, “Machine learning for host-based misuse and anomaly detection in unix
environment,” Master’s thesis, 2017.

[43] M. Xie, J. Hu, X. Yu, and E. Chang, Evaluating Host-Based Anomaly Detection Sys-
tems: Application of the Frequency-Based Algorithms to ADFA-LD, pp. 542–549. Cham:
Springer International Publishing, 2014.

[44] W.-H. Chen, S.-H. Hsu, and H.-P. Shen, “Application of svm and ann for intrusion de-
tection,” Comput. Oper. Res., vol. 32, pp. 2617–2634, Oct. 2005.

[45] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM Computing
Surveys (CSUR), vol. 41(3), July 2009.

[46] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection using sequences of
system calls,” J. Comput. Secur., vol. 6, pp. 151–180, Aug. 1998.

[47] S. S. Murtaza, W. Khreich, A. Hamou-Lhadj, and S. Gagnon, “A trace abstraction ap-
proach for host-based anomaly detection,” in 2015 IEEE Symposium on Computational
Intelligence for Security and Defense Applications (CISDA), pp. 1–8, May 2015.

[48] R. Moskovitch, S. Pluderman, I. Gus, D. Stopel, C. Feher, Y. Parmet, Y. Shahar, and
Y. Elovici, “Host based intrusion detection using machine learning,” in 2007 IEEE Intel-
ligence and Security Informatics, pp. 107–114, May 2007.

[49] P. Kabiri and A. A. Ghorbani, “Research on intrusion detection and response: A survey,”
International Journal of Network Security, vol. 1, pp. 84–102, 2005.

[50] A. Olmsted, “Secure software development through non-functional requirements mod-
eling,” in 2016 International Conference on Information Society (i-Society), pp. 22–27,
Oct 2016.

[51] J. Eckhardt, A. Vogelsang, and D. M. Fernandez, “Are non-functional requirements re-
ally non-functional? an investigation of non-functional requirements in practice,” in
2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE), pp. 832–
842, May 2016.

54 Master Thesis, Technische Universität Berlin

https://docs.microsoft.com/en-us/sysinternals/downloads/procmon
https://docs.microsoft.com/en-us/sysinternals/downloads/procmon

Payam Samimi Bibliography

[52] E. Amoroso and R. Kwapniewski, “A selection criteria for intrusion detection sys-
tems,” in Proceedings 14th Annual Computer Security Applications Conference (Cat.
No.98EX217), pp. 280–288, Dec 1998.

[53] M. Mari and N. Eila, “The impact of maintainability on component-based software
systems,” in 2003 Proceedings 29th Euromicro Conference, pp. 25–32, Sept 2003.

[54] F. L. Gaol, Recent Progress in Data Engineering and Internet Technology. Springer-Verlag
Berlin Heidelberg, 2012.

[55] A. McIntyre, U. Lindqvist, B. Peterson, and Z. Tudor, “Host protection strategies for
industrial control systems,” in 2012 IEEE Conference on Technologies for Homeland Se-
curity (HST), pp. 87–92, Nov 2012.

[56] X. Wang and H. Yu, How to Break MD5 and Other Hash Functions, pp. 19–35. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005.

[57] J. M. D. Goyeneche and E. A. F. D. Sousa, “Loadable kernel modules,” IEEE Software,
vol. 16, pp. 65–71, Jan 1999.

[58] “Weka.” http://www.cs.waikato.ac.nz/ml/weka/. Accessed: 2017-11-20.

[59] H. Chauhan, V. Kumar, S. Pundir, and E. S. Pilli, “A comparative study of classification
techniques for intrusion detection,” in 2013 International Symposium on Computational
and Business Intelligence, pp. 40–43, Aug 2013.

[60] D. W. Aha, D. Kibler, and M. K. Albert, “Instance-based learning algorithms,” Machine
Learning, vol. 6, pp. 37–66, Jan 1991.

[61] V. Singh and S. Puthran, “Intrusion detection system using data mining a review,” in
2016 International Conference on Global Trends in Signal Processing, Information Com-
puting and Communication (ICGTSPICC), pp. 587–592, Dec 2016.

[62] H. Mitchell, Ensemble Learning, pp. 221–240. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2007.

[63] “Xcode.” https://developer.apple.com/xcode/. Accessed: 2017-12-09.

[64] “Gcc.” https://gcc.gnu.org/. Accessed: 2017-12-09.

[65] “Linux crypto api.” https://www.kernel.org/doc/html/v4.12/crypto/
index.html. Accessed: 2017-12-09.

[66] “Intellij.” https://www.jetbrains.com/idea/. Accessed: 2017-12-09.

[67] “Apache maven.” https://maven.apache.org/. Accessed: 2017-12-09.

[68] “Vmware workstation.” https://www.vmware.com/de/products/
workstation-pro.html. Accessed: 2017-12-09.

Master Thesis, Technische Universität Berlin 55

http://www.cs.waikato.ac.nz/ml/weka/
https://developer.apple.com/xcode/
https://gcc.gnu.org/
https://www.kernel.org/doc/html/v4.12/crypto/index.html
https://www.kernel.org/doc/html/v4.12/crypto/index.html
https://www.jetbrains.com/idea/
https://maven.apache.org/
https://www.vmware.com/de/products/workstation-pro.html
https://www.vmware.com/de/products/workstation-pro.html

Bibliography Payam Samimi

[69] “Raspberry pi zero w.” https://www.raspberrypi.org/products/
raspberry-pi-zero-w/. Accessed: 2017-12-09.

56 Master Thesis, Technische Universität Berlin

https://www.raspberrypi.org/products/raspberry-pi-zero-w/
https://www.raspberrypi.org/products/raspberry-pi-zero-w/

Annex A - List of the Kernel hooks

@Security hooks for program execution operations.

int (∗bprm_set_creds)(struct linux_binprm ∗bprm);
int (∗bprm_check_security)(struct linux_binprm ∗bprm);
int (∗bprm_secureexec)(struct linux_binprm ∗bprm);
void (∗bprm_committing_creds)(struct linux_binprm ∗bprm);
void (∗bprm_committed_creds)(struct linux_binprm ∗bprm);

@Security hooks for task operations.

int (∗task_fix_setuid)(struct cred ∗new, const struct cred ∗old,int flags);
int (∗task_setpgid)(struct task_struct ∗p, pid_t pgid);
int (∗task_getpgid)(struct task_struct ∗p);
int (∗task_getsid)(struct task_struct ∗p);
void (∗task_getsecid)(struct task_struct ∗p, u32 ∗secid);
int (∗task_setnice)(struct task_struct ∗p, int nice);
int (∗task_setioprio)(struct task_struct ∗p, int ioprio);
int (∗task_getioprio)(struct task_struct ∗p);
int (∗task_setrlimit)(struct task_struct ∗p, unsigned int resource,

struct rlimit ∗new_rlim);
int (∗task_setscheduler)(struct task_struct ∗p);
int (∗task_getscheduler)(struct task_struct ∗p);
int (∗task_movememory)(struct task_struct ∗p);
int (∗task_kill)(struct task_struct ∗p, struct siginfo ∗info, int sig, u32 secid);
int (∗task_wait)(struct task_struct ∗p);
int (∗task_prctl)(int option, unsigned long arg2, unsigned long arg3,

unsigned long arg4, unsigned long arg5);
void (∗task_to_inode)(struct task_struct ∗p, struct inode ∗inode);

Listing 1: Security hooks for task and program execution operations

Annex A - List of the Kernel hooks Payam Samimi

58 Master Thesis, Technische Universität Berlin

Annex B - The performance results of
algorithms

Table .1: The performance results of algorithms including FP Rate, Accuracy, Confusion Matrix and the required
time for learning and testing in window-based method (window-size=3) using a supplied test data
set. Train data set contains 78406 instances, test data set contains 39845 instances

Algorithm FP Rate Accuracy TP TN FP FN Train Test

J48 0,300 0,721 25926 2791 1197 9931 4 s 60 ms

JRip 0,345 0,706 26006 2122 1117 10600 18 s 60 ms

Multilayer Perception 0,683 0,686 27080 20 43 12702 28 s 0,13 s

IBK-K3 0,315 0,723 25696 3099 1427 9623 0,100 s 2 m

Naive Bayes 0,368 0,723 24786 4014 2337 8708 0,41 s 0,09 s

Stacking 0,203 0,706 26776 1360 347 11362 12 m 13 s

AdaBoostM1 0,322 0,733 25228 3983 1895 8739 37,29 s s 2,6 s

Bagging 0,229 0,732 26264 2884 859 9838 2,43 m 3,45 s

Table .2: The performance results of algorithms including FP Rate, Accuracy, Confusion Matrix and
the required time for learning and testing in window-based method (window-size=3) in
Cross-Validation mode. Train data set contains 90504 instances

Algorithm FP Rate Accuracy TP TN FP FN Train

J48 0,349 0,786 67008 4151 2223 17122 29,8 s

JRip 0,345 0,785 67230 3796 2001 17477 57 s

Multilayer Perception 0,621 0,765 69213 11 18 21262 37 s

IBK-K3 0,655 0,721 60908 4383 8323 16890 2,50 m

Naive Bayes 0,444 0,782 63229 7525 6002 13748 0,2 s

Stacking 0,353 0,787 66860 4337 2371 16936 2 h

AdaBoostM1 0,473 0,772 63465 6436 5766 14837 40 m

Bagging 0,396 0,784 66045 4867 3186 16406 30 m

Annex B - The performance results of algorithms Payam Samimi

Table .3: The performance results of algorithms including FP Rate, Accuracy, Confusion Matrix and the required
time for learning and testing in window-based method (window-size=5) using supplied test data set.
Train data set contains 240135 instances and test data set contains 86085 instances

Algorithm FP Rate Accuracy TP TN FP FN Train Test

J48 0,176 0,701 47706 12651 2695 23033 36,79 s 0,19 s

JRip 0,199 0,684 47577 11347 2824 24337 13,731 m 0,19 s

Multilayer Perception 0,970 0,585 49349 1052 34575 1109 12 m 0,15 s

IBK-K3 0,216 0,671 47607 10131 2794 25553 0,02 s 24,38 m

Naive Bayes 0,299 0,701 43009 17340 7392 18344 2,9 s 0,23 s

Stacking 0,138 0,661 49168 7718 1233 27966 7,9 min 0,65 s

AdaBoostM1 0,199 0,720 46561 15427 3840 20257 7,2 m 0,92 s

Bagging 0,199 0,720 45561 15427 3840 20257 40 s 0,45 s

Table .4: The performance results of algorithms including FP Rate, Accuracy, Confusion Matrix and
the required time for learning and testing in window-based method (window-size=5) in
Cross-Validation mode. Train data set contains 279612 instances.

Algorithm FP Rate Accuracy TP TN FP FN Train

J48 0,344 0,809 195940 30229 15857 37586 68,19 s

JRip 0,074 0,763 211673 1550 124 66265 70 s

Multilayer Perception 0,460 0,758 211250 643 547 67172 1 h

IBK-K3 0,525 0,749 187646 21885 24151 45930 50 m

Naive Bayes 0,469 0,773 178372 37899 33425 29916 40 s

Stacking 0,278 0,817 201352 27174 10445 40641 2 h

AdaBoostM1 0,429 0,785 188701 30779 23096 37036 6,32 m

Bagging 0,291 0,817 200232 28129 11565 39686 4 m

Table .5: The performance results of algorithms including FP Rate, Accuracy, Confusion Matrix and the required
time for learning and testing in window-based method (window-size=10) using supplied test data set.
Train data set contains 568527 instances and test data set contains 131380 instances

Algorithm FP Rate Accuracy TP TN FP FN Train Test

J48 0,024 0,632 39279 43763 1062 47276 10 m 4 s

JRip 0,999 0,307 40341 46 0 90993 9 s 5,7 s

Multilayer Perception 0,035 0,307 40339 55 2 90984 9 m 9,6 s

IBK-K3 0,039 0,548 39002 32936 1339 58103 2 s 2 h

Naive Bayes 0,077 0,799 34419 70564 5922 20475 21 s 6,81 s

Stacking 0,012 0,724 39685 55399 656 35640 50,46 m 1,27 s

AdaBoostM1 0,090 0,338 39893 4513 448 86526 68,46 m 1,22 s

Bagging 0,010 0,652 39878 45761 463 45278 4,16 m 1,25 s

60 Master Thesis, Technische Universität Berlin

Payam Samimi

Table .6: The performance results of algorithms including FP Rate, Accuracy, Confusion Matrix and
the required time for learning and testing in window-based method (window-size=10) in
Cross-Validation mode. Train data set contains 668073 instances.

Algorithm FP Rate Accuracy TP TN FP FN Train

J48 0,389 0,792 420965 108270 68807 70031 3,8 h

JRip 0,301 0,733 489704 158 68 178143 4 m

Multilayer Perception 0,536 0,731 480158 8329 9614 169972 1 h

IBK-K3 0,498 0,734 415988 74276 73784 104025 2h

Naive Bayes 0,516 0,719 339235 141006 150537 37295 4 m

Stacking 0,322 0,828 432380 120972 57392 57329 18 h

AdaBoostM1 0,383 0,790 427436 100292 62336 78009 3 h

Bagging 0,297 0,826 444048 108089 45724 70212 2,5 h

Table .7: The performance results of algorithms including FP Rate, Accuracy, Confusion Matrix and the required
time for learning and testing in frequency-based method using supplied test data set. Train data set
contains 3825 instances and test data set contains 5118 instances

Algorithm FP Rate Accuracy TP TN FP FN Train Test

J48 0,032 0,972 4351 626 21 120 5 s 0,5 s

JRip 0,005 0,967 4369 578 3 168 1,18 s 0,5 s

Multilayer Perception 0,050 0,893 4361 211 11 535 26 m 6,4 s

IBK-K3 0,051 0,969 4339 618 33 128 0,50 s 31,2 s

Naive Bayes 0,567 0,816 3539 635 833 111 0,94 s 1,34 s

Stacking 0,014 0,987 4362 688 10 58 1,5 m 1,4 s

AdaBoostM1 0,008 0,982 4367 659 5 87 30,130 s 0,6 s

Bagging 0,026 0,967 4356 595 16 151 35 s 0,7 s

Table .8: The performance results of algorithms including FP Rate, Accuracy, Confusion Matrix and
the required time for learning and testing in frequency-based method in Cross-Validation
mode. Train data set contains 5951 instances.

Algorithm FP Rate Accuracy TP TN FP FN Train

J48 0,141 0,961 5401 613 101 133 3,8 s

JRip 0,120 0,959 5126 580 79 166 14 s

Multilayer Perception 0,400 0,875 5201 6 4 740 1,23 h

IBK-K3 0,168 0,959 5078 627 127 119 18 s

Naive Bayes 0,649 0,780 3977 665 1228 81 1 s

Stacking 0,115 0,974 5116 682 89 64 31 m

AdaBoostM1 0,101 0,970 5133 640 72 106 9 m

Bagging 0,103 0,968 5133 626 72 120 9m

Master Thesis, Technische Universität Berlin 61

	List of Figures
	List of Tables
	Introduction
	Objective
	Challenges
	Taxonomy of IDS
	Contribution

	Outline

	Related work
	Detection methods
	Dataset
	Anomaly modeling techniques
	Statistical models
	Immune system approach
	Markov process model
	Data mining techniques

	Summary

	Requirements
	Non-functional requirements
	Functional requirements

	Concept
	Watchdog
	Secure Homeland
	Data representation
	Machine Learning Algorithms

	Outcome

	Implementation
	Watchdog
	Environment
	Project structure
	Important implementation aspects

	Secure Homeland
	Environment
	Project structure
	Important implementation aspects

	Evaluation
	Application whitelisting
	Evaluation environment
	Evaluation method
	Results

	System call trace analysis
	Evaluation environment
	Evaluation method
	Results

	Conclusion
	Summary
	Problems encountered and outlook
	Outlook

	List of Acronyms
	Bibliography
	Annex A - List of the Kernel hooks
	Annex B - The performance results of algorithms

