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Abstract

In this paper, sufficient conditions are investigated for the existence of positive periodic solution for a
nonlinear neutral delay population system with feedback control. The proof is based on the fixed-point
theorem of strict-set-contraction operators. We also present an example of nonlinear neutral delay population
system with feedback control to show the validity of conditions and efficiency of our results. , , ,
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1. Introduction and Preliminaries

The preliminary mathematical model of the population growth is given by the following logistic equation:

dx

dt
= ρx(t)[1− ax(t)]. (1.1)

In the real problems, conditions for the population of species is more complicate and simple logistic model
(1.1) may be generalized in many ways. For some kinds of population systems, when density of species
depends not only on the population at time , but also on the population unit earlier, equation (1.1) may be
recovered as follows [15]:

dx

dt
= ρx(t)[1− ax(t)− bx(t− τ)]. (1.2)

One can also consider the non-autonomous version of (1.2) [18], i.e.,

dx

dt
= ρ(t)x(t)[1− a(t)x(t)− b(t)x(t− τ)]. (1.3)

∗Corresponding author
Email addresses: nasertayoob@aut.ac.ir (Payam Nasertayoob), vaez@aut.ac.ir (S. Mansour Vaezpour )

Received 2012-3-5



P. Nasertayoob, S. M. Vaezpour, J. Nonlinear Sci. Appl. 6 (2013), 152–161 153

In the more realistic situation, the biological systems or ecosystems are continuously perturbed via unpre-
dictable forces. These perturbations are generally results of the change in the system’s parameters. In the
language of the control theory, these perturbation functions may be regarded as control variables and, con-
sequently, one should ask the question that whether or not an ecosystem can withstand those unpredictable
perturbations which persist for a finite periodic time. In the mathematical biology, the following population
model of systems of differential equations is a famous feedback control model with delays [6],

dx

dt
= ρx(t)[1− ax(t− τ)− bu(t)],

du

dt
= −ηu(t) + gx(t− τ),

where, a, b, g, µ, ρ ∈ (0,∞) and u represent an indirect feedback control mechanism. In recent years, study
of the feedback control models has been further developed and the literature in mathematical biology is rich
with study of such models [6, 10, 16]. Besides, many scholars did works on neutral systems. Some results
can be found in [9, 1] and references therein.

In ref. [14], existence of positive periodic solutions for neutral population model was studied. Subse-
quently, Lu et al. [13] investigated the positive periodic solutions for such a neutral differential system with
feedback control. Besides, several scholars had paid their attention to the nonlinear population dynamics
[3, 4, 5, 11]. It is because such kinds of systems could simulate the real word more accurately. Recently,
the almost periodic solution of the following nonlinear population dynamics with feedback control has been
studied [17],

dx

dt
= x(t)[ρ(x)− a(x)xα(t)−

n∑
i=1

bi(t)x
βi(t− σi)− c(t)u(t)] (1.4)

du

dt
= −η(t)u(t) +

n∑
i=1

g(t)xβi(t− σi).

Investigation of the nonlinear system above is based on the properties of almost periodic systems and
Lyapunov-Razumikhin technique.

In this paper, we consider the following nonlinear neutral non-autonomous delay population model

dx

dt
= x(t)[ρ(x)− a(x)xα(t)−

n∑
i=1

bi(t)x
βi(t− σi)− γ(t)x′(t− τ)− c(t)u(t)] (1.5)

du

dt
= −η(t)u(t) +

n∑
i=1

g(t)xβi(t− σi), (1.6)

that is a generalization of neutral system dynamics in ref. [13], where, a, bi, g, µ, ρ, η, γ are positive
ω-periodic functions and α, βi are belong to (0,∞).
Our investigation in this paper is based on a fixed point theorem of strict-set-contractive operator which
goes back to Cac-Gatica [2] and which was used for similar purpose in [13]
We recall some preliminaries that will be used in the further section.

Definition 1.1. Let X be a Banach space. For the bounded set Ω ⊂ X, Kuratowski measure of noncom-
pactness defines by:

µX(Ω) = inf{d > 0 : there is a finite number of subsets Ωi ⊂ Ω

such that Ω =
⋃
i

Ωi and diamΩi < d}.
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Definition 1.2. (see [7, 8])LetX and Y are Banach spaces. A continuous and bounded map F : E ⊂ X → Y
is called k-set contraction if for any bounded set Ω ⊂ E

µY (F (Ω)) ≤ kµX(Ω).

Operator F is called strict-set-contraction, where 0 ≤ k < 1.

Theorem 1.3. (see [2, 12]) Let Π be a semi-ordered cone in Banach space X and Πr,R = {x ∈ Π : 0 < r ≤
‖x‖ ≤ R}. Let F : Πr,R → Π be strict-set-contraction, satisfying

Fx � x for any x ∈ Πr,R and ‖x‖ = r (1.7)

and

Fx � x for any x ∈ Πr,R and ‖x‖ = R (1.8)

Then, F : Πr,R → Π has at least one fixed point in Πr,R .

One may easily shows that the following function is a solution of the equation 1.6,

(Φx)(t) =

∫ t+ω

t
G(t, s){

n∑
i=1

g(s)xβi(s− σi)}ds, (1.9)

where

G(t, s) =
exp(

∫ s
t η(θ)dθ)

exp(
∫ ω
0 η(θ)dθ)− 1

, s ∈ [t, t+ ω] , t ∈ R.

Therefore, existence of the ω-periodic solution of the system (1.5,1.6) is equivalent to the existence of the
solution of the following equation:

dx

dt
= x(t)[ρ(t)− a(t)xα(t)−

n∑
i=1

bi(t)x
βi(t− σi)− γ(t)x′(t− τ)− c(t)(Φx)(t)]. (1.10)

On the other hand, each ω-periodic solution of the following integral equation

x(t) =

∫ t+ω

t
G̃(t, s)x(s)[a(s)xα(s) +

n∑
i=1

bi(s)x
βi(s− σi) + γ(s)x′(s− τ) + c(s)(Φx)(s)]ds (1.11)

is a solution of equation 1.10, where

G̃(t, s) =
exp(−

∫ s
t ρ(θ)dθ)

1− exp(−
∫ ω
0 ρ(θ)dθ)

, s ∈ [t, t+ ω], , t ∈ R.

Also, in what follows, we employ the following notations:

f = sup
t∈[t,t+ω]

f(t), f = inf
t∈[t,t+ω]

f(t),

λ = exp(−
∫ ω

0
ρ(θ)dθ) < 1, κ = exp(

∫ ω

0
η(θ)dθ) > 1,

Cω = {x ∈ C(R, (0,+∞)), : x(t+ ω) = x(t)},

C1ω = {x ∈ C1(R, (0,+∞)) : x(t+ ω) = x(t)},

A = min{1, α, β1, ..., βn}, B = max{1, α, β1, ..., βn},
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Ψ(t) =

∫ t+ω

t
G(t, s)g(s)ds,

M = sup
t∈[t,t+ω]

[a(t) +

n∑
i=1

bi(t) + γ(t) + nc(t)Ψ(t)],

N =

∫ ω

0
[a(s) +

n∑
i=1

bi(s) + γ(s) + nc(s)Ψ(s)]ds.

Clearly, two spaces (Cω, ‖‖) and (C1ω, ‖‖1) are Banach spaces. Where,

‖x‖ = max
t∈[t,t+ω]

|x(t)|

and
‖x‖1 = max{‖x(t)‖, ‖x′(t)‖}.

We define the following integral operator F : Π 7→ C1ω

(Fx)(t) =

∫ t+ω

t
G̃(t, s)x(s)[a(s)xα(s) +

n∑
i=1

bi(s)x
βi(s− σi) + γ(s)x′(s− τ) + c(s)(Φx)(s)]ds, (1.12)

where, Π = {x ∈ C1ω : x(t) ≥ λ‖x‖1} is a semi-ordered cone in C1ω.

2. Main results

Lemma 2.1. Let R ≤ 1, ρ ≤ 1 and there exist a positive real number Z such that

Z ≤ λBrB−A (2.1)

and

M ≤ (ρ+ 1)
Zλ2

(1− λ)
N (2.2)

and

γ(t) ≤ Z{a(t) +
n∑
i=1

bi(t) + nc(t)Ψ(t)}, (2.3)

then, the integral operator F maps Πr,R into Π.

Proof :
For x ∈ Πr,R with R ≤ 1, we have

Z ≤ λBrB−A ≤ λB‖x‖B−A1 ≤ λξ‖x‖ξ−A1 , for any ξ ∈ {1, α, β1, ..., βn},

therefore,
Z‖x‖A1 ≤ λξ‖x‖

ξ
1 ≤ x

ξ(t), for any ξ ∈ {1, α, β1, ..., βn}. (2.4)

On the other hands, since ‖x‖1 ≤ 1, we obtain

‖x‖ξ1 ≤ ‖x‖
A
1 , for any ξ ∈ {1, α, β1, ..., βn}, (2.5)

thus
nZ‖x‖A1 Ψ(t) ≤ (Φx)(t) ≤ n‖x‖A1 Ψ(t). (2.6)
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Applying (2.6), (2.4) and (2.3), we have

‖x‖A1 γ(t) ≤ Z‖x‖A1 a(t) + Z‖x‖A1
n∑
i=1

bi(t) + nZ‖x‖A1 c(t)Ψ(t).

Thus

±x′(t)γ(t) ≤ ‖x‖1γ(t) ≤ a(t)xα(t) +
n∑
i=1

bi(t)x
βi(t− σi) + c(t)(Φx)(t).

Consequently,

0 ≤ a(t)xα(t) +
n∑
i=1

bi(t)x
βi(t− σi)± x′(t)γ(t) + c(t)(Φx)(t). (2.7)

On the other hand, since ρ is a positive and ω-periodic function we obtains

λ

1− λ
≤ G̃(t, s) ≤ 1

1− λ
. (2.8)

Step 1. We show (Fx)(t) ≥ λ‖Fx‖.
‖Fx‖ = sup

t∈[t,t+ω]
|(Fx)(t)|

= sup
t∈[t,t+ω]

∫ t+ω

t
G̃(t, s)x(s)[a(s)xα(s) +

n∑
i=1

bi(s)x
βi(s− σi)

+γ(s)x′(s− τ) + c(s)(Φx)(s)]ds

≤ 1

1− λ

∫ t+ω

t
x(s)[a(s)xα(s) +

n∑
i=1

bi(s)x
βi(s− σi)

+γ(s)x′(s− τ) + c(s)(Φx)(s)]ds

=
1

λ
{
∫ t+ω

t

λ

1− λ
x(s)[a(s)xα(s) +

n∑
i=1

bi(s)x
βi(s− σi)

+γ(s)x′(s− τ) + c(s)(Φx)(s)]ds}

=
1

λ

∫ t+ω

t
G̃(t, s)x(s)[a(s)xα(s) +

n∑
i=1

bi(s)x
βi(s− σi)

+γ(s)x′(s− τ) + c(s)(Φx)(s)]ds

=
1

λ
(Fx)(t). (2.9)

Step 2. We show (Fx)′(t) ≤ Fx. Based on Leibniz integral rule, relations (2.2) and (2.8), we obtain,

(Fx)′(t) = G̃(t+ ω, t)x(t+ ω)

× [a(t+ ω)xα(t+ ω) +

n∑
i=1

bi(t+ ω)xβi(t+ ω − σi)

+ γ(t+ ω)x′(t+ ω − τ) + c(t+ ω)(Φx)(t+ ω)]

− G̃(t)x(t)[a(t)xα(t) +

n∑
i=1

bi(t)x
βi(t− σi)

+ γ(t)x′(t− τ) + c(t)(Φx)(t)]

= (
λ

1− λ
− 1

1− λ
)x(t)[a(t)xα(t) +

n∑
i=1

bi(t)x
βi(t− σi)

+ γ(t)x′(t− τ) + c(t)(Φx)(t)]− ρ(t)(Fx)(t)

≤ ρ(t)(Fx)(t) ≤ (Fx)(t). (2.10)
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Step 3. We show −(Fx)′(t) ≤ (Fx)(t). Applying (2.2), (2.10), (2.5), (2.8) and (2.4), we obtain

−(Fx)′(t) = x(t)[a(t)xα(t) +

n∑
i=1

bi(t)x
βi(t− σi)

+ γ(t)x′(t− τ) + c(t)(Φx)(t)]− ρ(t)(Fx)(t)

≤ ‖x‖A+1
1 sup

t∈[t,t+ω]
[a(t) +

n∑
i=1

bi(t) + γ(t) + nc(t)Ψ(t)]− ρ(t)(Fx)(t)

≤ ‖x‖A+1
1 M − ρ(Fx)(t)

≤ ‖x‖A+1
1 {ρ+ 1} Zλ2

(1− λ)
N − ρ(Fx)(t)

= {ρ+ 1}
∫ ω

0

λ

1− λ
(λ‖x‖1)[a(s)(Z‖x‖A1 ) +

n∑
i=1

bi(s)(Z‖x‖A1 )

+ γ(s)(Z‖x‖A1 ) + c(s)n(Z‖x‖A1 )Ψ(t)]ds− ρ(Fx)(t)

≤ {ρ+ 1}
∫ t+ω

t
G̃(t, s)x(s)[a(s)xα(s) +

n∑
i=1

bi(s)x
βi(s− σi)

+ γ(s)x′(s− τ) + c(s)(Φx)(s)]ds− ρ(Fx)(t)

= {ρ+ 1}(Fx)(t)− ρ(Fx)(t) = (Fx)(t).

Steps 1, 2 and 3 result that (Fx)(t) ≥ λ‖Fx‖1. Thus, Fx ∈ Π and proof is completed.

Lemma 2.2. Let the relation (2.2) satisfies and Rγ ≤ 1, then F : Πr,R 7→ Π is strict-set-contraction.

Proof : Clearly, one may indicate that F is continuous and bounded operator. Let Ω ⊂ Πr,R be any
bounded set and µC1ω(Ω) = d, then, for any positive real number ε ≤ Rγd there exist a finite family {Ωi}
such that Ω =

⋃
i Ωi and diamΩi ≤ d+ ε. Thus,

‖x− y‖1 ≤ d+ ε for any x, y ∈ Ωi. (2.11)

On the other hands, Ωi is precompact in Cω thus there is finite family of subsets Ωij such that Ωi =
⋃
j Ωij

and
max{‖x− y‖, ‖xα − yα‖, ‖xβ1 − yβ1‖, ..., ‖xβn − yβn‖} ≤ ε for any x, y ∈ Ωij . (2.12)

Also, F (Ω) is precompact in Cω. To see this, note that

|(Fx)(t)| ≤ 1

1− λ
‖x‖A+1

1

∫ ω

0
{a(t) +

n∑
i=1

bi(t) + γ(t) + nc(t)Ψ(t)}dt

≤ N

γA+1(1− λ)
.

This inequality together with (2.6) gives

|(Fx)′(t)| = |x(t)[a(t)xα(t) +
n∑
i=1

bi(t)x
βi(t− σi)

+ γ(t)x′(t− τ) + c(t+ ω)(Φx)(t)]− ρ(t)(Fx)(t)|

≤ ‖x‖A+1
1 |a(t) +

n∑
i=1

bi(t) + γ(t) + nc(t)Ψ(t)|+ 1

λ
|(Fx)(t)|

≤ 1

γA+1
{M +

N

λ(1− λ)
} = %. (2.13)
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Suppose {ξm} is an arbitrary sequences on Ω. Clearly, {ξm}is bounded. Based on definition of integral
operator F in (1.11) the function (Fξm)(t) is differentiable for all m ∈ N and t ∈ [0, ω]. For given ε > 0, if
we consider δ = ε

% , then for all m ∈ N and t, t′ ∈ [0, ω] with |t− t′| < δ implies

|(Fξm)(t)− (Fξm)(t′)| ≤ %|t− t′| ≤ ε

. Thus, {(Fξm)(t)} as a sequence of functions on [0, ω] is equicontinuous. Therefore, Based on Arzela-Ascoli
theorem there exist a subsequent of {(Fξm)(t)} {(Fξmi)(t)}, say, which is uniformly convergence on [0, ω].
Consequently, F is a compact bounded operator and F (Ω) is precompact in Cω. As a result, there exist a
family of subsets Ωijk such that Ωij =

⋃
k Ωijk and

‖Fx− Fy‖ ≤ ε for any x, y ∈ Ωijk. (2.14)

On the other hands, applying (2.10), (2.11), (2.12) and (2.14), for any x, y ∈ Ωijk, we obtain

‖(Fx)′ − (Fy)′‖ = sup
t∈[t,t+ω]

|(Fx)′(t)− (Fy)′(t)|

≤ sup
t∈[t,t+ω]

|ρ(t)(Fx)′(t)− ρ(t)(Fy)′(t)|

+ sup
t∈[t,t+ω]

|x(t)[a(t)xα(t) +

n∑
i=1

bi(t)x
βi(t− σi)

+ γ(t)x′(t− τ) + c(t)(Φx)(t)]− y(t)[a(t)yα(t)

+
n∑
i=1

bi(t)y
βi(t− σi) + γ(t)y′(t− τ) + c(t)(Φy)(t)]|

≤ ‖ρ‖‖(Fx)′ − (Fy)′‖

+ sup
t∈[t,t+ω]

|(x(t)− y(t))[a(t)yα(t) +

n∑
i=1

bi(t)y
βi(t− σi)

+ γ(t)y′(t− τ) + c(t)(Φy)(t)]|

≤ 1

λ
ε+ {aRα +

n∑
i=1

biR
βi + γR+ cg

κ

κ− 1

n∑
i=1

Rβiω}ε

+ R{aε+
n∑
i=1

biε+ γ(d+ ε) + cg
κ

κ− 1
nεω}

≤ Rγd+ Jε, (2.15)

where

J =
1

λ
+ a{Rα +R}+

n∑
i=1

bi{Rβi +R}

+ 2γR+ cg
κ

κ− 1
ω{

n∑
i=1

Rβi +R}.

Therefore, from (2.14) and (2.15) and the condition ε ≤ Rγd, we obtain

‖Fx− Fy‖1 ≤ Rγd+ Jε for any x, y ∈ Ωijk.

Since ε is arbitrary small,
µC1ω(F (Ω)) ≤ RγµC1ω(Ω),

and the proof of lemma is completed.
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Theorem 2.3. Let conditions of the Lemma 2.1 hold, also

r < {1− λ
N
}

1
A (2.16)

and

{1− λ
ZλN

}
1
A < R, (2.17)

then, the integral operator (1.12) has at least on periodic solution in Πr,R.

Proof : step 1. Let x ∈ Πr,R and ‖x‖ = r. If Fx = x, then the operator F has fixed point.
Let Fx > x. This means that Fx − x ∈ Π − {0}, which implies that (Fx)(t) − x(t) ≥ λ‖Fx − x‖1,
consequently,

‖x‖ ≤ ‖Fx‖. (2.18)

Applying (2.8), (2.5) and inequality (2.16), yields

(Fx)(t) =

∫ t+ω

t
G̃(t, s)x(s)[a(s)xα(s) +

n∑
i=1

bi(s)x
βi(s− σi)

+γ(s)x′(s− τ) + c(s)(Φx)(s)]ds

≤ 1

1− λ

∫ t+ω

t
x(s)[a(s)xα(s) +

n∑
i=1

bi(s)x
βi(s− σi)

+γ(s)x′(s− τ) + c(s)(Φx)(s)]ds

≤ 1

1− λ

∫ t+ω

t
‖x‖[a(s)‖x‖α1 +

n∑
i=1

bi(s)‖x‖βi1

+γ(s)‖x‖1 + c(s)

n∑
i=1

‖x‖βi1 Ψ(s)]ds

≤ ‖x‖‖x‖A1
1− λ

∫ ω

0
[a(s) +

n∑
i=1

bi(s) + γ(s) + nc(s)Ψ(s)]ds

=
‖x‖rAN

1− λ
< ‖x‖, (2.19)

therefore,
‖x‖ ≤ ‖Fx‖ < ‖x‖.

which is a contraction. step 2. Let x ∈ Πr,R and ‖x‖ = R. If Fx = x, then the operator F has fixed point.
Let Fx > x. This means that x − Fx ∈ Π − {0}, which implies that x(t) − (Fx)(t) ≥ λ‖Fx − x‖1,
consequently,

(Fx)(t) ≤ x(t), for any t ∈ [0, ω]. (2.20)
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Applying (2.20), (2.8), (2.4) and (2.17), one obtains

x(t) ≥ (Fx)(t)

=

∫ t+ω

t
G̃(t, s)x(s)[a(s)xα(s) +

n∑
i=1

bi(s)x
β
i (s− σi)

+γ(s)x′(s− τ) + c(s)(Φx)(s)]ds

≥ λ‖x‖1
1− λ

∫ t+ω

t
[a(s)xα(s) +

n∑
i=1

bi(s)x
β
i (s− σi)

+γ(s)x′(s− τ) + c(s)(Φx)(s)]ds

≥ λ‖x‖1
1− λ

∫ t+ω

t
[a(s)(λ‖x‖1)α +

n∑
i=1

bi(s)(λ‖x‖1)βi

+γ(s)(λ‖x‖1) + c(s)

n∑
i=1

(λ‖x‖1)βiΨ(s)]ds

≤ Zλ‖x‖1‖x‖A1
1− λ

∫ ω

0
[a(s) +

n∑
i=1

bi(s) + γ(s) + nc(s)Ψ(s)]ds

=
Zλ‖x‖1RA

1− λ
N > ‖x‖1.

That is a contraction. Therefore, (1.7) and (1.8) hold. By Theorem 1.3 we see that integral operator F has
at least one fixed point in Πr,R under appropriate condition.

Remark 2.4. Note that

N =

∫ ω

0
[a(s) +

n∑
i=1

bi(s) + γ(s) + nc(s)Ψ(s)]ds

≤
∫ ω

0
sup

t∈[t,t+ω]
[a(t) +

n∑
i=1

bi(t) + γ(t) + nc(t)Ψ(t)]ds

≤ ωM.

Thus, for any arbitrary positive ω-periodic functions a, bi, γ, c and g the real number ω is bounded below
by N

M .
On the other hand, inequality (2.2) yields

1− λ
λ2Z{ρ+ 1}

≤ N

M
≤ ω. (2.21)

This shows that ω is also bounded below by (1 − λ)(λ2Z{ρ+ 1})−1. However, λ depend on both select of
the function ρ and period number ω. This means that ρ is a ω-periodic function with the following property:

exp(2

∫ ω

0
ρ(θ)dθ)− exp(

∫ ω

0
ρ(θ)dθ) ≤ ωZ(ρ+ 1)

that is valid for ρ(t) = 1+sin(2πt)
32 , ω = 1 and Z = 0.9.

Remark 2.5. According to Lemma 2.2, F : Πr,R 7→ Π is a strict-set-contraction operator so long as Rγ ≤ 1.
Or

γ(t) ≤ 1

R
.
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Thus, with due attention to inequality (2.17), we obtain

γ(t) ≤ {ZλN
1− λ

}
1
A .

On the other hand, inequality (2.16) yields N
1
A < {1− λ}

1
A r−1, consequently,

γ(t) <
{Zλ}

1
A

r
. (2.22)

Thus, γ is bounded above by {Zλ}
1
A r−1.

Remark 2.6. Combining inequalities (2.16) and (2.17), we obtain

1− λ
ZλRA

< N <
1− λ
rA

, (2.23)

that indicate that N is bounded above and below.

Università degli Studi di Palermo, Local University Project R. S. ex 60%.

3. Illustrative Example

Consider the following system of neutral population dynamics with delay and feedback control

dN

dt
= N(t)[1 + sin(2πt)− w(1− cos(2πt))N

31
32 (t)

− w(1 +
1

2
cos(2πt))(N

32
33 (t− σ1) +N

33
34 (t− σ2))

− w(2 + cos(2πt))N ′(t− τ)− w(1 +
10

18
cos(2πt))u(t)]

du

dt
= (−1− cos(2πt))u(t) +

1− sin(2πt)

0.582
(N

32
33 (t− σ1) +N

33
34 (t− σ2)),

which is an example of nonlinear population dynamics system (1.5, 1.6), with

n = 2, ω = 1,

a(t) = w(1− cos(2πt)), c(t) = w(1 +
10

18
cos(2πt)),

g(t) =
1− sin(2πt)

0.582
, ρ(t) =

1 + sin(2πt)

32
,

γ(t) = w(2 + cos(2πt)), η(t) = 1 + cos(2πt),

b1(t) = b2(t) = w(1 +
1

2
cos(2πt)),

α =
31

32
, β1 =

32

33
, β2 =

33

34
,

λ = exp(−
∫ 1

0
ρ(θ)dθ) = exp(−

∫ 1

0
(
1 + sin(2πθ)

32
)dθ) =

1
32
√
e

= 0.9692 < 1,

κ = exp(

∫ 1

0
η(θ)dθ) = exp(

∫ 1

0
1 + cos(2πθ)dθ)) = e > 1,

R = 0.99, Z = 0.9, r = 0.5.
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Taking into consideration aforesaid data, we have

Z = 0.9 < 0.9692× (
1

2
)

1
32 = 0.948 = λBrB−A (3.1)

and
M

N
=

10.31w

5.27w
= 1.97 < (ρ+ 1)

Zλ2

(1− λ)
= 27.44. (3.2)

Besides, appealing to inequality
1

e− 1
≤ G(s, t),

we obtain,

2 + cos(2πt) ≤ 4.5 + cos(2πt)

= 0.9{1− cos(2πt) + 1 +
1

2
cos(2πt) + 1 +

1

2
cos(2πt) + 2(1 +

10

18
cos(2πt))}

= 0.9{1− cos(2πt) + 1 +
1

2
cos(2πt) + 1 +

1

2
cos(2πt)

+ 2(1 +
10

18
cos(2πt))

1

e− 1

∫ 1

0

1− sin(2πt)

0.582
}

≤ 0.9{1− cos(2πt) + 1 +
1

2
cos(2πt) + 1 +

1

2
cos(2πt)

+ 2(1 +
10

18
cos(2πt))

∫ 1

0
G(s, t)

1− sin(2πt)

0.582
}.

(3.3)

These three expressions, (3.1), (3.2) and (3.3) show that conditions (2.1), (2.2) and (2.3) in Lemma 2.1 are
valid for our example.
At the end, for inequality (2.23) we obtain 0.0439 < N < 0.0745, that is valid by proper chose of
w.
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