Supporting Information

for

Biocatalytic Hydrogen-Transfer To Access
 Enantiomerically Pure Proxyphylline, Xanthinol, and Diprophylline

Paweł Borowiecki, ${ }^{\text {a, } *}$ Aleksandra Rudzka, ${ }^{\text {a }}$
Tamara Reiter ${ }^{\mathrm{b}}$ and Wolfgang Kroutil ${ }^{\text {b }}$

${ }^{\text {a }}$ Laboratory of Biocatalysis and Biotransformation, Department of Drugs Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Koszykowa St. 75, 00-662 Warsaw, Poland.
${ }^{\mathrm{b}}$ Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Heinrichstrasse 28, 8010 Graz, Austria.
*Corresponding author. Dr. Paweł Borowiecki (Email: pawel.borowiecki@pw.edu.pl; www: http://lbb-wut-borowiecki.ch.pw.edu.pl/)

Table of contents

\qquad1. Synthesis of the prochiral starting materials $\mathbf{2 a - b}$S2
2. Synthesis of the sillylated derivatives rac-3a-b for GC analysis S2
3. Table S1. Analytical-scale studies on stereoselective reduction of ketones 2a-b S3
4. Table S1. Analytical separation conditions of studied compounds by GC column S4
5. Table S2. HPLC analytical separation conditions of racemic compounds by Chiralpak AD-
H (Daicel ${ }^{\circledR}$) and Lux i-Cellulose-5 (Phenomenex ${ }^{\circledR}$) columns S5
6. Analytical data (copies of HPLC chromatograms) S6-S23
7. Spectral data (copies of NMR, FTIR and FTMS spectra) S24-S39
8. References S40

1. Synthesis of the Prochiral Starting Materials 2a-b

Prior to developing the bioreduction step, the syntheses of both racemic alcohols rac-1a-b and the corresponding ketones $\mathbf{2 a -} \mathbf{-}$ were performed following the methods already reported in the literature. Firstly, to obtain racemic proxyphylline (rac-1a), the triethylamine-mediated regioselective ring-opening of racemic propylene oxide with commercially available theophylline in methanol was performed furnishing the product in 74% yield [1]. In turn, the synthesis of racemic 7-(3-chloro-2-hydroxypropyl)theophylline (rac-1b) was accomplished in a 2 -step reaction sequence by the $\mathrm{K}_{2} \mathrm{CO}_{3}$-mediated regioselective ring-opening of racemic epichlorohydrin with theophylline dissolved in dimethylformamide, followed by the treatment of the obtained epoxide with $36 \% \mathrm{HCl}$ in chloroform [2]. In this case, the desired chlorohydrin rac-1b was synthesized in 41% total yield after two steps.

The resulting alcohols rac-1a-b were then chemically oxidized using a suspension of pyridinium chlorochromate (PCC) in dichloromethane, thus furnishing prochiral ketones: 2a in 64% yield and $\mathbf{2 b}$ in 33% yield, respectively. In the case of PCC-mediated oxidation of rac-1a, the oxidizing agent was used in 1.5 equiv, and the reaction was stopped after 12 h . In contrast, the oxidation of $\mathrm{rac} \mathbf{- 1 b}$ required 3 equiv of PCC and additional elongation of the reaction time up to 72 h to reach only half of the yield achieved for $\mathbf{2 a}$.

2. Synthesis of the Sillylated Derivatives rac-3a-b for GC analysis

Subsequently, GC analytical methods to separate the corresponding alcohol-ketone pair requested for reliable measurement of the enzymatic reaction conversion values ($\%$ conv.) have been undertaken. However, it turned out that the baseline resolution for the alcohol-ketone mixtures using a semi-polar GC-column could not be reached in both cases. Therefore, silylation of the polar hydroxyl groups in alcohols rac-1a-b using standard derivatization protocol employing N, O-bis(trimethylsilyl)acetamide (BSA) in dichloromethane had to be applied to obtain more volatile compounds characterized by much lower values of the retention times $\left(\mathrm{t}_{R}\right)$ than ketones. As we needed trimethylsilyl ethers rac-3a-b in more significant amounts to proceed with calibration curves for GC analyses, the preparative scale for the silylation reaction was also performed, furnishing both derivatives in the range of $81-94 \%$ yield (after column chromatography), respectively.

Table S1. Analytical-scale studies on stereoselective reduction of ketones $\mathbf{2 a - b}$ (10 mM final conc.) with different biocatalysts.

a: $X=H$
(R)-(+)-1b
$(S)-(-)-1 \mathrm{~b}$

Entry	Biocatalyst/Cofactor ${ }^{a}$	2a		2b	
		Conv. ${ }^{\text {b }}$ [\%]	$\begin{gathered} \mathbf{e e}_{\mathbf{p}}{ }^{[}[\mathbf{\%}] \\ (\text { Config. } . \\ \hline \end{gathered}$	Conv. ${ }^{\text {b }}$ [\%]	$\begin{gathered} \mathbf{e e}_{\mathbf{p}}{ }^{c}[\%] \\ (\text { Config. }) \\ \hline \end{gathered}$
1	Pichia pastoris ATCC 76273/NADH	N.D. ${ }^{e}$	N.A. ${ }^{\text {f }}$	N.D. ${ }^{e}$	N.A. ${ }^{\text {f }}$
2	Pseudomonas sp. DSM 6978 / NADH	N.D. ${ }^{\text {e }}$	N.A. ${ }^{\text {f }}$	N.D. ${ }^{\text {e }}$	N.A. ${ }^{\text {f }}$
3	Arthrobacter sp. DSM 7325/NADH	N.D. ${ }^{\text {e }}$	N.A. ${ }^{\text {f }}$	>998	$98(S)$
4	Actinomyces sp. SRB-AN040 FCC025/NADH	30	99 (S)	$>99{ }^{\text {g }}$	80 (R)
5	Actinomyces sp. SRB-AN053 FCC027/NADH	N.D. ${ }^{e}$	N.A. ${ }^{\text {f }}$	N.D. ${ }^{\text {e }}$	N.A. ${ }^{\text {f }}$
6	Actinomyces sp. ARG-AN024 FCC014/NADH	N.D. ${ }^{e}$	N.A. ${ }^{f}$	23^{8}	85 (S)
7	ARG-AN025 FCC015/NADH	N.D. ${ }^{e}$	N.A. ${ }^{f}$	98	76 (S)
8	USA-AN012 FCC021/NADH	N.D. ${ }^{e}$	N.A. ${ }^{\text {f }}$	16^{8}	59 (S)
9	E. coli/TeSADH/NADH ${ }{ }^{\text {a }}$	N.D. ${ }^{\text {e }}$	N.A. ${ }^{\text {f }}$	N.D. ${ }^{e}$	N.A. ${ }^{\text {f }}$
10	E. coli/TeSADH/NADPH ${ }{ }^{\text {a }}$	-	-	>99	36 (S)
11	E. coli/ADH-T/NADH ${ }{ }^{\text {a }}$	N.D. ${ }^{\text {e }}$	N.A. ${ }^{\text {f }}$	N.D. ${ }^{\text {e }}$	N.A. ${ }^{\text {f }}$
12	E. coli/ADH-T/NADPH ${ }^{n}$	-	-	N.D. ${ }^{e}$	N.A. ${ }^{f, g}$
13	E. coli/ReADH/NADH ${ }^{h}$	N.D. ${ }^{\text {e }}$	N.A. ${ }^{\text {f }}$	N.D. ${ }^{e}$	N.A. ${ }^{\text {f }}$
14	E. coli/ReADH/NADPH ${ }{ }$	-	-	N.D. ${ }^{\text {e }}$	N.A. ${ }^{f, g}$
15	E. coli/RasADH/NADH ${ }^{n}$	18	60 (S)	>99	12 (R)
16	E. coli/RasADH/NADPH ${ }{ }^{\text {a }}$	-	(>99	20 (R)
17	E. coli/SyADH/NADH ${ }{ }^{\text {a }}$	N.D. ${ }^{e}$	N.A. ${ }^{\text {f }}$	N.D. ${ }^{e}$	N.A. ${ }^{\text {fg }}$
18	E. coli/SyADH/NADPH ${ }^{n}$	-	-	>99	94 (R)
19	E. coli/ADH-A/NADH ${ }{ }^{\text {a }}$	>99	>99 (S)	N.D. ${ }^{e}$	N.A. ${ }^{f . g}$
20	E. coli/LB-ADH/NADH ${ }{ }^{\text {a }}$	N.D. ${ }^{e}$	N.A. ${ }^{\text {f }}$	N.D. ${ }^{e}$	N.A. ${ }^{f, g}$
21	E. coli/LB-ADH/NADPH ${ }^{n}$	-	-	>99	61 (S)
22	E. coli/Lk-ADH-Lica/NADH ${ }^{n}$	>99	>99 (R)	>99	99 (S)
23	E. coli/Lk-ADH/NADH ${ }{ }^{\text {a }}$	N.D. ${ }^{\text {e }}$	N.A. ${ }^{\text {f }}$	N.D. ${ }^{\text {e }}$	N.A. ${ }^{f . g}$
24	E. coli/Lk-ADH/NADPH ${ }^{h}$	-	-	>99	61 (S)
25	E. coli/Lk-ADH Prince/NADH ${ }{ }^{\text {a }}$	88	>99 (R)	>99	$98(S)$

${ }^{a}$ Reaction conditions: lyophilized biocatalyst (10 mg), 20 mM glucose (in the case of wild-type microorganisms), $0.5 \mathrm{mM} \mathrm{NAD}(\mathrm{P}) \mathrm{H}, 0.1 \mathrm{M} \mathrm{Tris-} \mathrm{HCl}$ buffer (pH $7.5) / 2-\mathrm{PrOH}(500 \mu \mathrm{~L}, 90: 10, \mathrm{v} / \mathrm{v})$, DMSO $(2.5 \% \mathrm{v} / \mathrm{v}), 48 \mathrm{~h}, 30^{\circ} \mathrm{C}, 250 \mathrm{rpm}$ (laboratory shaker).
${ }^{b}$ Conversion values (\%) (i.e., consumption of substrates $\mathbf{2 a}-\mathbf{b}$) were determined by GC analyses after derivatization of crude mixture with BSA as a silylating reagent.
${ }^{c}$ Determined for non-rac-1a-b by HPLC analyses using a Chiralcel AD-H column with a chiral stationary phase.
${ }^{d}$ Absolute configuration of optically active products (non-rac-1a-b) established by comparing HPLC picks elution order with enantiomeric standards. Major enantiomer is shown in parentheses.
${ }^{e}$ Not detected.
${ }^{f}$ Not applicable because of no detectable conversion.
${ }^{g}$ Complex mixture of byproducts.
${ }^{h}$ Reaction conducted without glucose.

Table S2. Analytical separation conditions of studied compounds by GC column.
(isothermal)

Table S3. HPLC analytical separation conditions of purine derivatives by chiral columns - Chiralpak AD-H (Daicel ${ }^{\circledR}$) or Lux i-Cellulose-5 (Phenomenex ${ }^{\circledR}$). ${ }^{[a]}$

Compound	HPLC Column	Mobile Phase n-Hexane/IPA/DEA $[\mathrm{v} / \mathrm{v} / \mathrm{v}]^{[\mathrm{b}]}$	Flow Rate [mL/min] / Pressure [MPa]	Detection [nm]/ Temperature $\left[{ }^{\circ} \mathrm{C}\right]$	Retention Time [min]
	Chiralpak AD-H	78:22:0 ${ }^{\text {[b] }}$	1.0 / 4.7	273 / 25	$\begin{aligned} & 7.384(S) \\ & \text { and } \\ & 8.541(R) \end{aligned}$
	Chiralpak AD-H	78:22:0 ${ }^{\text {[b] }}$	0.3 / 1.6	273 / 25	$\begin{aligned} & 33.585(R) \\ & \text { and } \\ & 35.954(S) \end{aligned}$
rac-1b	Chiralpak AD-H	78:22:0 ${ }^{\text {[b] }}$	0.3 / 1.6	273 / 25	$\begin{aligned} & 35.903(R) \\ & \text { and } \\ & 39.419(S) \end{aligned}$
Compound	HPLC Column	Mobile Phase n-Hexane/EtOH/DEA $[\mathrm{v} / \mathrm{v} / \mathrm{v}]^{[\mathrm{b}]}$	Flow Rate [mL/min]	$\begin{aligned} & \text { Detection } \\ & \quad[\mathrm{nm}] \end{aligned}$	Retention Time [min]
	Lux i-Cellulose-5	70:30:0.1	1.0 / 7.4	273 / 25	$\begin{gathered} 24.449(S) \\ \text { and } \\ 27.028(R) \end{gathered}$
	Lux i-Cellulose-5	70:30:0	$1.0 / 7.2$	274 / 30	$\begin{aligned} & 17.165(R) \\ & \text { and } \\ & 19.342(S) \end{aligned}$

[^0]

The HPLC analysis of whole microbial cells and ADHs-catalyzed stereoselective reductions of 1,3-dimethyl-7-(2-oxopropyl)-3,7-dihydro-1H-purine-2,6-dione (2a) Screening of the whole-cell biocatalysts
HPLC analysis for the subsequent biocatalytic reaction:

HPLC analysis for the subsequent biocatalytic reaction:

HPLC analysis for the subsequent biocatalytic reaction:

HPLC analysis for the subsequent biocatalytic reaction:

HPLC analysis for the subsequent biocatalytic reaction:

The HPLC analysis of ADHs-catalyzed stereoselective reductions of 1,3-dimethyl-7-(2-oxopropyl)-3,7-dihydro-1H-purine-2,6-dione (2a) - Up-scaling

HPLC analytical separation for enantiomers of rac-1a on Chiralpak AD-H at $25^{\circ} \mathrm{C}$

HPLC conditions: n-hexane-2-PrOH (78:22, v/v); f=1.0 mL/min; $\lambda=273 \mathrm{~nm} ; p=5.7 \mathrm{MPa}$

HPLC analysis for the subsequent biocatalytic reaction:

HPLC analysis for the subsequent biocatalytic reaction:

HPLC analytical separation for enantiomers of rac-1b on Chiralpak AD-H at $25^{\circ} \mathrm{C}$
(a few months later)
HPLC conditions: n-hexane-2-PrOH (78:22, v/v); f=0.3 mL/min; $\lambda=273 \mathrm{~nm} ; p=1.2 \mathrm{MPa}$

The HPLC analysis of whole microbial cells and ADHs-catalyzed bioreductions of 7-(3-chloro-2-oxopropyl)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione (2b) -

Screening of the whole-cell biocatalysts

HPLC analysis for the subsequent biocatalytic reaction:

HPLC analysis for the subsequent biocatalytic reaction:

HPLC analysis for the subsequent biocatalytic reaction:

HPLC analysis for the subsequent biocatalytic reaction:

HPLC analysis for the subsequent biocatalytic reaction:

HPLC analysis for the subsequent biocatalytic reaction:

HPLC analysis for the subsequent biocatalytic reaction:

The HPLC analysis of ADHs-catalyzed bioreductions of
7-(3-chloro-2-oxopropyl)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione (2b) in the presence of NADPH - Screening of the whole-cell biocatalysts

HPLC analysis for the subsequent biocatalytic reaction:

2b
E. coli/TeSADH
0.1 M Tris-HCl buffer (pH 7.5) 0.5 mM NADPH, 2-PrOH ($10 \% \mathrm{v} / \mathrm{v}$),

DMSO ($2.5 \% \mathrm{v} / \mathrm{v}$),
$48 \mathrm{~h}, 30^{\circ} \mathrm{C}, 250 \mathrm{rpm}$

HPLC analysis for the subsequent biocatalytic reaction:

HPLC analysis for the subsequent biocatalytic reaction:

HPLC analysis for the subsequent biocatalytic reaction:

The HPLC analysis of ADHs-catalyzed bioreductions of 7-(3-chloro-2-oxopropyl)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione (2b) - Up-scaling

HPLC analytical separation for enantiomers of rac-1b on Chiralpak AD-H at $25^{\circ} \mathrm{C}$
 HPLC conditions: n-hexane-2-PrOH (78:22, v/v); $\mathrm{f}=0.7 \mathrm{~mL} / \mathrm{min} ; \lambda=273 \mathrm{~nm} ; p=1.2 \mathrm{MPa}$

HPLC analysis for the subsequent biocatalytic reaction:

HPLC analysis for the subsequent biocatalytic reaction:

HPLC analysis for the subsequent biocatalytic reaction:
(

HPLC analysis for the subsequent biocatalytic reaction:

mAU

HPLC analytical separation for both enantiomers of xanthinol (rac-4) on Lux i-Cellulose-5 at $25^{\circ} \mathrm{C}$

HPLC conditions: n-hexane-EtOH-DEA (70:30:0.1, v/v/v); $f=1.0 \mathrm{~mL} / \mathrm{min} ; \lambda=273 \mathrm{~nm}$; $p=7.4 \mathrm{MPa}$
maU

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{rac}-\mathbf{1 a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{rac}-\mathbf{1 a}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

FTMS spectrum of rac-1a (ESI-TOF)

${ }^{1} \mathrm{H}$ NMR spectrum of rac- $\mathbf{1 b}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{rac}-\mathbf{1 b}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

FTMS spectrum of rac-1b (ESI-TOF)

1,3-Dimethyl-7-(2-oxopropyl)-3,7-dihydro-1H-purine-2,6-dione (2a)

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 a}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

FTMS spectrum of 2a (ESI-TOF)

IR spectrum of 2a (Mineral oil, Nujol)

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 b}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
 Cl

FTMS spectrum of 2b (ESI-TOF)

IR spectrum of 2b (Mineral oil, Nujol)

1,3-Dimethyl-7-\{2-[(trimethylsilyl)oxy]propyl\}-2,3,6,7-tetrahydro-1H-purine-2,6-dione (rac3a)
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{rac}-\mathbf{3 a}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{rac}-\mathbf{3 a}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

FTMS spectrum of rac-3a (ESI-TOF)

IR spectrum of rac -3a (Mineral oil, Nujol)

7-\{3-Chloro-2-[(trimethylsilyl)oxy]propyl\}-1,3-dimethyl-2,3,6,7-tetrahydro-1H-purine-2,6dione (rac-3b)
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{rac}-\mathbf{3 b}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{rac}-\mathbf{3 b}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

FTMS spectrum of rac-3b (ESI-TOF)

IR spectrum of rac-3b (Mineral oil, Nujol)

7-\{2-Hydroxy-3-[(2-hydroxyethyl)(methyl)amino]propyl\}-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione (xanthinol, rac-4)
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{rac}-4\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{rac}-4\left(126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$

FTMS spectrum of rac-4 (ESI-TOF)

IR spectrum of rac-4 (Mineral oil, Nujol)

7-(2,3-Dihydroxypropyl)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione (diprophylline, rac5)
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{rac}-5\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{rac}-5\left(126 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

FTMS spectrum of rac-5 (ESI-TOF)

IR spectrum of rac-5 (Mineral oil, Nujol)

References

[1] Borowiecki, P.; Paprocki, D.; Dudzik, A.; Plenkiewicz, J. J. Org. Chem. 2016, 81, 380-395.
[2] Borowiecki, P.; Młynek, M.; Dranka, M. Bioorg. Chem. 2021, 106, 104448.

[^0]: ${ }^{[a]}$ Performed on a Shimadzu Nexera-i (LC-2040C 3D) equipped with a photodiode array detector (PAD).
 ${ }^{[b]}$ IPA states for 2-PrOH (propan-2-ol); EtOH states for ethanol; DEA states for diethylamine.

