Supporting Information

for

Biocatalytic Hydrogen-Transfer To Access Enantiomerically Pure Proxyphylline, Xanthinol, and Diprophylline

Paweł Borowiecki,^{a,*} Aleksandra Rudzka,^a

Tamara Reiter^b and Wolfgang Kroutil^b

- ^a Laboratory of Biocatalysis and Biotransformation, Department of Drugs Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Koszykowa St. 75, 00–662 Warsaw, Poland.
- ^b Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Heinrichstrasse 28, 8010 Graz, Austria.

*Corresponding author. Dr. Paweł Borowiecki (Email: <u>pawel.borowiecki@pw.edu.pl</u>; www: <u>http://lbb-wut-borowiecki.ch.pw.edu.pl/</u>)

Table of contents

1. Synthesis of the prochiral starting materials 2a–b
2. Synthesis of the sillylated derivatives <i>rac</i> - 3a – b for GC analysis
3. Table S1. Analytical-scale studies on stereoselective reduction of ketones 2a–b
4. Table S1. Analytical separation conditions of studied compounds by GC column
5. Table S2. HPLC analytical separation conditions of racemic compounds by Chiralpak AD-
H (Daicel [®]) and Lux i-Cellulose-5 (Phenomenex [®]) columns
6. Analytical data (copies of HPLC chromatograms) S6–S23
7. Spectral data (copies of NMR, FTIR and FTMS spectra) S24–S39
8. References

1. Synthesis of the Prochiral Starting Materials 2a-b

Prior to developing the bioreduction step, the syntheses of both racemic alcohols rac-1a-b and the corresponding ketones 2a-b were performed following the methods already reported in the literature. Firstly, to obtain racemic proxyphylline (rac-1a), the triethylamine-mediated regioselective ring-opening of racemic propylene oxide with commercially available theophylline in methanol was performed furnishing the product in 74% yield [1]. In turn, the synthesis of racemic 7-(3-chloro-2-hydroxypropyl)theophylline (rac-1b) was accomplished in a 2-step reaction sequence by the K₂CO₃-mediated regioselective ring-opening of racemic epichlorohydrin with theophylline dissolved in dimethylformamide, followed by the treatment of the obtained epoxide with 36% HCl in chloroform [2]. In this case, the desired chlorohydrin rac-1b was synthesized in 41% total yield after two steps.

The resulting alcohols rac-1a-b were then chemically oxidized using a suspension of pyridinium chlorochromate (PCC) in dichloromethane, thus furnishing prochiral ketones: 2a in 64% yield and 2b in 33% yield, respectively. In the case of PCC-mediated oxidation of rac-1a, the oxidizing agent was used in 1.5 equiv, and the reaction was stopped after 12 h. In contrast, the oxidation of rac-1b required 3 equiv of PCC and additional elongation of the reaction time up to 72 h to reach only half of the yield achieved for 2a.

2. Synthesis of the Sillylated Derivatives rac-3a-b for GC analysis

Subsequently, GC analytical methods to separate the corresponding alcohol-ketone pair requested for reliable measurement of the enzymatic reaction conversion values (% conv.) have been undertaken. However, it turned out that the baseline resolution for the alcohol-ketone mixtures using a semi-polar GC-column could not be reached in both cases. Therefore, silylation of the polar hydroxyl groups in alcohols *rac*-**1a**–**b** using standard derivatization protocol employing *N*,*O*-bis(trimethylsilyl)acetamide (BSA) in dichloromethane had to be applied to obtain more volatile compounds characterized by much lower values of the retention times (t_R) than ketones. As we needed trimethylsilyl ethers *rac*-**3a**–**b** in more significant amounts to proceed with calibration curves for GC analyses, the preparative scale for the silylation reaction was also performed, furnishing both derivatives in the range of 81–94% yield (after column chromatography), respectively.

Table S1. Analytical-scale studies on stereoselective reduction of ketones 2a-b (10 mM final conc.) with different biocatalysts.

		2a		2b	
Entry	Biocatalyst/Cofactor ^a	Conv. ^b [%]	ee _p ^c [%] (Config. ^d)	Conv. ^b [%]	ee _p ^c [%] (Config. ^d)
1	Pichia pastoris ATCC 76273/NADH	N.D. ^e	N.A. ^f	N.D. ^e	N.A. ^f
2	Pseudomonas sp. DSM 6978 / NADH	N.D. ^e	N.A. ^f	N.D. ^e	N.A. ^f
3	Arthrobacter sp. DSM 7325/NADH	N.D. ^e	N.A. ^f	>99 ^g	98 (S)
4	Actinomyces sp. SRB-AN040 FCC025/NADH	30	99 (<i>S</i>)	>99 ^g	80 (<i>R</i>)
5	Actinomyces sp. SRB-AN053 FCC027/NADH	N.D. ^e	N.A. ^f	N.D. ^e	N.A. ^f
6	Actinomyces sp. ARG-AN024 FCC014/NADH	N.D. ^e	N.A. ^f	23 ^g	85 (<i>S</i>)
7	ARG-AN025 FCC015/NADH	N.D. ^e	N.A. ^f	9 ^g	76 (<i>S</i>)
8	USA-AN012 FCC021/NADH	N.D. ^e	N.A. ^f	16 ^g	59 (S)
9	<i>E. coli/</i> TeSADH/NADH [#]	N.D. ^e	N.A. ^f	N.D. ^e	N.A. ^f
10	E. coli/TeSADH/NADPH [#]	-	-	>99	36 (<i>S</i>)
11	<i>E. coli</i> /ADH-T/NADH [*]	N.D. ^e	N.A. ^f	N.D. ^e	N.A.
12	<i>E. coli</i> /ADH-T/NADPH ^h	-	-	N.D. ^e	N.A. ^{<i>f</i>,<i>g</i>}
13	<i>E. coli</i> /ReADH/NADH ^h	N.D. ^e	N.A. ^f	N.D. ^e	N.A. ^f
14	<i>E. coli</i> /ReADH/NADPH ^h	-	-	N.D. ^e	N.A. ^{f,g}
15	E. coli/RasADH/NADH ^h	18	60 (<i>S</i>)	>99	12 (<i>R</i>)
16	E. coli/RasADH/NADPH ^h	-	-	>99	20(R)
17	<i>E. coli</i> /SyADH/NADH [*]	N.D. ^e	N.A. ^f	N.D. ^e	N.A. ^{f,g}
18	<i>E. coli</i> /SyADH/NADPH [#]	-	-	>99	94 (<i>R</i>)
19	E. coli/ADH-A/NADH ^h	>99	>99 (S)	N.D. ^e	N.A. ^{<i>f</i>,<i>g</i>}
20	<i>E. coli</i> /LB-ADH/NADH ^h	N.D. ^e	N.A. ^f	N.D. ^e	N.A. ^{f,g}
21	<i>E. coli</i> /LB-ADH/NADPH [#]	-	-	>99	61 (<i>S</i>)
22	<i>E. coli</i> /Lk-ADH-Lica/NADH ^h	>99	>99 (R)	>99	99 (S)
23	E. coli/Lk-ADH/NADH ^h	N.D. ^e	N.A.	N.D. ^e	N.A. ^{f,g}
24	<i>E. coli</i> /Lk-ADH/NADPH [#]	-	-	>99	61 (<i>S</i>)
25	E. coli/Lk-ADH Prince/NADH ^h	88	>99 (R)	>99	98 (S)

^a Reaction conditions: lyophilized biocatalyst (10 mg), 20 mM glucose (in the case of wild-type microorganisms), 0.5 mM NAD(P)H, 0.1 M Tris-HCl buffer (pH 7.5)/2-PrOH (500 μL, 90:10, v/v), DMSO (2.5% v/v), 48 h, 30 °C, 250 rpm (laboratory shaker).

^b Conversion values (%) (i.e., consumption of substrates **2a–b**) were determined by GC analyses after derivatization of crude mixture with BSA as a silylating reagent. ^c Determined for *non-rac*-**1a–b** by HPLC analyses using a Chiralcel AD-H column with a chiral stationary phase.

^d Absolute configuration of optically active products (*non-rac-***1a**–**b**) established by comparing HPLC picks elution order with enantiomeric standards. Major enantiomer is shown in parentheses.

^eNot detected.

^f Not applicable because of no detectable conversion.

^g Complex mixture of byproducts.

^h Reaction conducted without glucose.

Compound	Temperature program [°C]	Retention time [min]		
		3.95		
	260 (isothermal)	4.01		
		2.64		
		6.41		
OH N N N N N N N N N N N N N N N N N N N	260 (isothermal)	6.56		
SI O V V V V V V V V V V V V V V V V V V		4.39		

Table S2. Analytical separation conditions of studied compounds by GC column.

Compound	HPLC Column	Mobile Phase	Flow Rate [mL/min]	Detection [nm] /	Retention
Compound		<i>n</i> -Hexane/IPA/DEA [v/v/v] ^[b]	/ Pressure [MPa]	Temperature [°C]	[min]
OH N N N N N N N N N N N N N N N N N N N	Chiralpak AD-H	78:22:0 ^[b]	1.0 / 4.7	273 / 25	7.384 (<i>S</i>) and 8.541 (<i>R</i>)
OH N N CI	Chiralpak AD-H	78:22:0 ^[b]	0.3 / 1.6	273 / 25	33.585 (<i>R</i>) and 35.954 (<i>S</i>)
o∱N [⊥] N <i>rac-</i> 1b	Chiralpak AD-H	78:22:0 ^[b]	0.3 / 1.6	273 / 25	35.903 (<i>R</i>) and 39.419 (<i>S</i>)
Compound	HPLC Column	Mobile Phase	Flow Rate [mL/min]	Detection [nm]	Retention
Compound		n-Hexane/EtOH/DEA [v/v/v] ^[b]			[min]
OH N N N N N N OH OH rac4	Lux i-Cellulose-5	70:30:0.1	1.0 / 7.4	273 / 25	24.449 (<i>S</i>) and 27.028 (<i>R</i>)
	Lux i-Cellulose-5	70:30:0	1.0 / 7.2	274 / 30	17.165 (<i>R</i>) and 19.342 (<i>S</i>)

Table S3. HPLC analytical separation conditions of purine derivatives by chiral columns – Chiralpak AD-H (Daicel[®]) or Lux i-Cellulose-5 (Phenomenex[®]).^[a]

^[a] Performed on a Shimadzu Nexera-*i* (LC-2040C 3D) equipped with a photodiode array detector (PAD).

^[b] IPA states for 2-PrOH (propan-2-ol); EtOH states for ethanol; DEA states for diethylamine.

HPLC of 2a on Chiralpak AD-H at 25 °C

S6

The HPLC analysis of whole microbial cells and ADHs-catalyzed stereoselective reductions of 1,3-dimethyl-7-(2-oxopropyl)-3,7-dihydro-1*H*-purine-2,6-dione (2a) – *Screening of the whole-cell biocatalysts*

The HPLC analysis of ADHs-catalyzed stereoselective reductions of 1,3-dimethyl-7-(2-oxopropyl)-3,7-dihydro-1*H*-purine-2,6-dione (2a) – *Up-scaling*

HPLC of 2b on Chiralpak AD-H at 25 °C

HPLC analytical separation for enantiomers of *rac*-1b on Chiralpak AD-H at 25 °C (a few months later)

The HPLC analysis of whole microbial cells and ADHs-catalyzed bioreductions of 7-(3-chloro-2-oxopropyl)-1,3-dimethyl-3,7-dihydro-1*H*-purine-2,6-dione (2b) – *Screening of the whole-cell biocatalysts*

The HPLC analysis of ADHs-catalyzed bioreductions of 7-(3-chloro-2-oxopropyl)-1,3-dimethyl-3,7-dihydro-1*H*-purine-2,6-dione (2b) in the presence of NADPH – *Screening of the whole-cell biocatalysts*

The HPLC analysis of ADHs-catalyzed bioreductions of 7-(3-chloro-2-oxopropyl)-1,3dimethyl-3,7-dihydro-1*H*-purine-2,6-dione (2b) – *Up-scaling*

HPLC analytical separation for both enantiomers of xanthinol (*rac*-4) on Lux i-Cellulose-5 at 25 °C

HPLC conditions: *n*-hexane-EtOH-DEA (70:30:0.1, v/v/v); f=1.0 mL/min; λ =273 nm;

HPLC analytical separation for both enantiomers of diprophylline (*rac*-5) on Lux i-Cellulose-5 at 30 °C

¹H NMR spectrum of *rac*-1a (500 MHz, CDCl₃)

¹³C NMR spectrum of *rac*-1a (126 MHz, CDCl₃)

FTMS spectrum of rac-1a (ESI-TOF)

¹H NMR spectrum of *rac*-**1b** (500 MHz, CDCl₃)

¹³C NMR spectrum of *rac*-1b (126 MHz, CDCl₃)

FTMS spectrum of *rac-1b* (ESI-TOF)

¹³C NMR spectrum of **2a** (126 MHz, CDCl₃)

FTMS spectrum of 2a (ESI-TOF)

IR spectrum of 2a (Mineral oil, Nujol)

¹³C NMR spectrum of **2b** (126 MHz, CDCl₃)

FTMS spectrum of **2b** (ESI-TOF)

IR spectrum of **2b** (Mineral oil, Nujol)

1,3-Dimethyl-7-{2-[(trimethylsilyl)oxy]propyl}-2,3,6,7-tetrahydro-1H-purine-2,6-dione (rac-3a)

¹H NMR spectrum of *rac*-**3a** (500 MHz, CDCl₃)

¹³C NMR spectrum of *rac*-3a (126 MHz, CDCl₃)

FTMS spectrum of *rac-3a* (ESI-TOF)

IR spectrum of *rac-3a* (Mineral oil, Nujol)

7-{3-Chloro-2-[(trimethylsilyl)oxy]propyl}-1,3-dimethyl-2,3,6,7-tetrahydro-1H-purine-2,6dione (rac-3b)

¹H NMR spectrum of *rac*-**3b** (500 MHz, CDCl₃)

¹³C NMR spectrum of *rac*-**3b** (126 MHz, CDCl₃)

FTMS spectrum of *rac-3b* (ESI-TOF)

IR spectrum of *rac-3b* (Mineral oil, Nujol)

7-{2-Hydroxy-3-[(2-hydroxyethyl)(methyl)amino]propyl}-1,3-dimethyl-3,7-dihydro-1Hpurine-2,6-dione (xanthinol, rac-4) ¹H NMR spectrum of *rac*-4 (500 MHz, D₂O)

¹³C NMR spectrum of *rac*-4 (126 MHz, D₂O)

FTMS spectrum of *rac*-4 (ESI-TOF)

IR spectrum of *rac*-4 (Mineral oil, Nujol)

 $\label{eq:constraint} 7-(2,3-Dihydroxypropyl)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione~(diprophylline,~rac-1)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione~(diprophylline,~rac-1)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione~(diprophylline,~rac-1)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione~(diprophylline,~rac-1)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione~(diprophylline,~rac-1)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione~(diprophylline,~rac-1)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione~(diprophylline,~rac-1)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione~(diprophylline,~rac-1)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione~(diprophylline,~rac-1)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione~(diprophylline,~rac-1)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione~(diprophylline,~rac-1)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione~(diprophylline,~rac-1)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione~(diprophylline,~rac-1)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione~(diprophylline,~rac-1)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione~(diprophylline,~rac-1)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione~(diprophylline,~rac-1)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione~(diprophylline,~rac-1)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione~(diprophylline,~rac-1)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione~(diprophylline,~rac-1)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione~(diprophylline,~rac-1)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione~(diprophylline,~rac-1)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione~(diprophylline,~rac-1)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione~(diprophylline,~rac-1,7-dihydro-1H-purine-2,6-dione~(diprophylline,~rac-1)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione~(diprophylline,~rac-1)-1,3-dimethylline,~rac-1,7-dihydro-1H-purine-2,6-dione~(diprophylline,~rac-1)-1,3-dimethylline,~rac-1,7-dimethylline,~rac-1,7-dimethylline,~rac-1,7-dimethylline,~rac-1,7-dimethylline,~rac-1,7-dimethylline,~rac-1,7-dimethylline,~rac-1,7-dimethylline,~rac-1,7-dimethylline,~rac-1,7-dimethylline,~rac-1,7-dimethylline,$

5)

¹H NMR spectrum of *rac*-**5** (500 MHz, DMSO-*d*₆)

¹³C NMR spectrum of *rac*-**5** (126 MHz, DMSO-*d*₆)

FTMS spectrum of *rac-5* (ESI-TOF)

IR spectrum of rac-5 (Mineral oil, Nujol)

References

- [1] Borowiecki, P.; Paprocki, D.; Dudzik, A.; Plenkiewicz, J. J. Org. Chem. 2016, 81, 380–395.
- [2] Borowiecki, P.; Młynek, M.; Dranka, M. Bioorg. Chem. 2021, 106, 104448.