Pavel Banás

Pavel Banás
Palacký University Olomouc · Department of Physical Chemistry

About

56
Publications
6,824
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,852
Citations
Citations since 2016
36 Research Items
1717 Citations
20162017201820192020202120220100200300
20162017201820192020202120220100200300
20162017201820192020202120220100200300
20162017201820192020202120220100200300

Publications

Publications (56)
Article
Utilization of nucleic acids (NAs) in nanotechnologies and nanotechnology-related applications is a growing field with broad application potential, ranging from biosensing up to targeted cell delivery. Computer simulations are useful techniques that can aid design and speed up development in this field. This review focuses on computer simulations o...
Article
Full-text available
The capability of current force fields to reproduce RNA structural dynamics is limited. Several methods have been developed to take advantage of experimental data in order to enforce agreement with experiments. Here, we extend an existing framework which allows arbitrarily chosen force-field correction terms to be fitted by quantification of the di...
Preprint
Full-text available
The capability of current force fields to reproduce RNA structural dynamics is limited. Several methods have been developed to take advantage of experimental data in order to enforce agreement with experiments. We herein extend an existing framework, which allows arbitrarily chosen force-field correction terms to be fitted by quantification of the...
Preprint
Atomistic molecular dynamics (MD) simulations represent established technique for investigation of RNA structural dynamics. Despite continuous development, contemporary RNA simulations still suffer from suboptimal accuracy of empirical potentials (force fields, ffs) and sampling limitations. Development of efficient enhanced sampling techniques is...
Article
Guanine radical cation (G⁺) is a key intermediate in many oxidative processes occurring in nucleic acids. Here, by combining mixed Quantum Mechanical/Molecular Mechanics calculations and Molecular Dynamics (MD) simulations, we study how the structural behaviour of a tract GGG(TTAGGG)3 (hereafter Tel21) of the human telomeric sequence, folded in an...
Article
Exposed surfaces of two-dimensional (2D) materials are susceptible to the adsorption of various molecules including airborne contaminants, which can affect their performance in real applications. Hexagonal boron nitride (hBN) is structurally the closest relative to graphite and its single layer form to graphene. The adsorption of organic molecules...
Article
Explicit solvent atomistic molecular dynamics (MD) simulations represent an established technique to study structural dynamics of RNA molecules and an important complement for diverse experimental methods. However, performance of molecular mechanical (MM) force fields (ff's) remains far from satisfactory even after decades of development, as appare...
Preprint
Representation of electrostatic interactions by a Coulombic pair-wise potential between atom-centered partial charges is a fundamental and crucial part of empirical force fields used in classical molecular dynamics simulations. The broad success of the AMBER force field family originates mainly from the restrained electrostatic potential (RESP) cha...
Preprint
Full-text available
Explicit solvent atomistic molecular dynamics (MD) simulations represent an established technique to study structural dynamics of RNA molecules and an important complement for diverse experimental methods. However, performance of molecular mechanical (MM) force fields (ffs) remains far from satisfactory even after decades of development, as apparen...
Article
Determination of RNA structural-dynamic properties is challenging for experimental methods. Thus atomistic molecular dynamics (MD) simulations represent a helpful technique complementary to experiments. However, contemporary MD methods still suffer from limitations of force fields (ffs), including imbalances in the non-bonded ff terms. We have rece...
Preprint
Determination of RNA structural-dynamic properties is challenging for experimental methods. Thus atomistic molecular dynamics (MD) simulations represent a helpful technique complementary to experiments. However, contemporary MD methods still suffer from limitations of force fields (ffs), including imbalances in the non-bonded ff terms. We have rece...
Article
Fluorinated graphenes (FGs) are key precursors for the synthesis of many graphene derivatives that significantly expand the application potential of graphene-based materials. The reactivity of FGs is rather surprising because the C-F bond is considered one of the strongest single covalent bonds in organic chemistry. However, its strength in FGs var...
Article
Full-text available
The widespread Mn2+-sensing yybP-ykoY riboswitch controls the expression of bacterial Mn2+ homeostasis genes. Here, we first determine the crystal structure of the ligand-bound yybP-ykoY riboswitch aptamer from Xanthomonas oryzae at 2.96 Å resolution, revealing two conformations with docked four-way junction (4WJ) and incompletely coordinated metal...
Article
Full-text available
Guanine quadruplexes (G4s) are non-canonical nucleic acids structures common in important genomic regions. Parallel-stranded G4 folds are the most abundant, but their folding mechanism is not fully understood. Recent research highlighted that G4 DNA molecules fold via kinetic partitioning mechanism dominated by competition amongst diverse long-livi...
Article
Empirical force fields for biomolecular systems are usually derived from quantum chemistry calculations and validated against experimental data. We here show how it is possible to refine the full dihedral-angle potential of the Amber RNA force field by using solution NMR data as well as stability of known structural motifs. The procedure can be use...
Article
The interfacial behavior of graphene is involved in a number of technological processes and applications, ranging from energy storage to sensing and nanofluidics. The organization of ions and structuring of water molecules close to a graphene interface, which represents an atomically thin surface, substantially affect the interfacial physicochemica...
Article
Molecular dynamics (MD) simulations became a leading tool for investigation of structural dynamics of nucleic acids. Despite recent efforts to improve the empirical potentials (force fields, ffs), RNA ffs have persisting deficiencies, which hamper their utilization in quantitatively accurate simulations. Previous studies have shown that at least tw...
Preprint
Full-text available
The widespread manganese-ion sensing yybP-ykoY riboswitch controls the expression of bacterial Mn ²⁺ homeostasis genes. Here, we first determine the crystal structure of the ligand-bound yybP-ykoY riboswitch from Xanthomonas oryzae at 2.85 Å resolution, revealing two conformations with docked four-way junction (4WJ) and incompletely coordinated met...
Article
The stacking energies of ten unique B-DNA base-pair steps were calculated with highly-accurate quantum chemistry and used as reference values in a thorough benchmark of (dispersion-corrected) DFT, wavefunction methods, tight-binding methods, and different force fields, including charge-variants thereof. The reference values were computed using a fo...
Preprint
Molecular dynamics (MD) simulations became a leading tool for investigation of structural dynamics of nucleic acids. Despite recent efforts to improve the empirical potentials (force fields, ffs), RNA ffs have persisting deficiencies, which hamper their utilization in quantitatively accurate simulations. Previous studies have shown that at least tw...
Article
Full-text available
We have carried out an extended set of standard and enhanced-sampling MD simulations (for a cumulative simulation time of 620 μs) with the aim to study folding landscapes of the rGGGUUAGGG and rGGGAGGG parallel G-hairpins (PH) with propeller loop. We identify folding and unfolding pathways of the PH, which is bridged with the unfolded state via an...
Article
Full-text available
Graphene-based materials enable the sensing of diverse biomolecules using experimental approaches based on electrochemistry, spectroscopy, or other methods. Although basic sensing was achieved, it had until now not been possible to understand and control biomolecules' structural and morphological organization on graphene surfaces (i.e. their stacki...
Article
Full-text available
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigate...
Article
Ribozymes utilize diverse catalytic strategies. We report systematic quantum chemical calculations mapping the catalytic space of RNA cleavage by comparing all chemically feasible reaction mechanisms of RNA self-cleavage, using appropriate model systems including those chemical groups that may directly participate in ribozyme catalysis. We calculat...
Article
Full-text available
We have carried out a series of extended unbiased molecular dynamics (MD) simulations (up to 10 µs long, ~162 µs in total) complemented by Replica-exchange with the collective variable tempering (RECT) approach for several human telomeric DNA G-quadruplex (GQ) topologies with TTA propeller loops. We used different AMBER DNA force-field variants and...
Article
The sugar-phosphate backbone of RNA can exist in diverse rotameric substates, giving RNA molecules enormous conformational variability. The most frequent noncanonical backbone conformation in RNA is α/γ = t/t, which is derived from the canonical backbone by a crankshaft motion and largely preserves the standard geometry of the RNA duplex. A similar...
Article
Background: Guanine quadruplexes (GQs) play vital roles in many cellular processes and are of much interest as drug targets. In contrast to the availability of many structural studies, there is still limited knowledge on GQ folding. Scope of review: We review recent molecular dynamics (MD) simulation studies of the folding of GQs, with an emphas...
Article
We provide a critical assessment of explicit‐solvent atomistic molecular dynamics (MD) simulations of RNA and protein/RNA complexes, written primarily for non‐specialists with an emphasis to explain the limitations of MD. MD simulations can be likened to hypothetical single‐molecule experiments starting from single atomistic conformations and inves...
Article
We report the folding thermodynamics of ccUUCGgg and ccGAGAgg RNA tetraloops using atomistic molecular dynamics simulations. We obtain a previously unreported estimation of the folding free energy using parallel tempering in combination with well-tempered metadynamics. A key ingredient is the use of a recently developed metric distance, eRMSD, as a...
Article
Molecular docking is a powerful tool for theoretical prediction of the preferred conformation and orientation of small molecules within protein active sites. The obtained poses can be used for estimation of binding energies, which indicate the inhibition effect of designed inhibitors, and therefore might be used for in silico drug design. However,...
Article
We report over 30 μs of unrestrained molecular dynamics simulations of six protein-RNA complexes in explicit solvent. We utilize the AMBER ff99bsc0χOL3 RNA force field combined with the ff99SB protein force field and its more recent ff12SB version with reparametrized side-chain dihedrals. The simulations show variable behavior, ranging from systems...
Article
Full-text available
DNA sugar-phosphate backbone has substantial influence on the DNA structural dynamics. Structural biology and bioinformatics studies revealed that the DNA backbone in experimental structures samples a wide range of distinct conformational substates, known as rotameric DNA backbone conformational families. Their correct description is essential for...
Article
Full-text available
Biomolecular channels play important roles in many biological systems, e.g. enzymes, ribosomes and ion channels. This article introduces a web-based interactive MOLEonline 2.0 application for the analysis of access/egress paths to interior molecular voids. MOLEonline 2.0 enables platform-independent, easy-to-use and interactive analyses of (bio)mac...
Article
Full-text available
The RNA hairpin loops represent important RNA topologies with indispensable biological functions in RNA folding and tertiary interactions. 5′-UNCG-3′ and 5′-GNRA-3′ RNA tetraloops are the most important classes of RNA hairpin loops. Both tetraloops are highly structured with characteristic signature three-dimensional features and are recurrently se...
Article
The glmS catalytic riboswitch is part of the 5'-untranslated region of mRNAs encoding glucosamine-6-phosphate (GlcN6P) synthetase (glmS) in numerous gram-positive bacteria. Binding of the cofactor GlcN6P induces site-specific self-cleavage of the RNA. However, the detailed reaction mechanism as well as the protonation state of the glmS reactive for...
Article
The hairpin ribozyme is a prominent member of the group of small catalytic RNAs (RNA enzymes or ribozymes) because it does not require metal ions to achieve catalysis. Biochemical and structural data have implicated guanine 8 (G8) and adenine 38 (A38) as catalytic participants in cleavage and ligation catalyzed by the hairpin ribozyme, yet their ex...
Article
Recent experimental studies on the Watson-Crick type base pairing of triazine and aminopyrimidine derivatives suggest that acid/base properties of the constituent bases might be related to the duplex stabilities measured in solution. Herein we use high-level quantum chemical calculations and molecular dynamics simulations to evaluate the base pairi...
Article
Full-text available
Engineering enzymes to degrade anthropogenic compounds efficiently is challenging. We obtained Rhodococcus rhodochrous haloalkane dehalogenase mutants with up to 32-fold higher activity than wild type toward the toxic, recalcitrant anthropogenic compound 1,2,3-trichloropropane (TCP) using a new strategy. We identified key residues in access tunnels...
Article
Hybrid QM/MM methods combine the rigor of quantum mechanical (QM) calculations with the low computational cost of empirical molecular mechanical (MM) treatment allowing to capture dynamic properties to probe critical atomistic details of enzyme reactions. Catalysis by RNA enzymes (ribozymes) has only recently begun to be addressed with QM/MM approa...
Article
The hepatitis delta virus (HDV) ribozyme is an RNA motif embedded in human pathogenic HDV RNA. Previous experimental studies have established that the active-site nucleotide C75 is essential for self-cleavage of the ribozyme, although its exact catalytic role in the process remains debated. Structural data from X-ray crystallography generally indic...
Article
Full-text available
Ankyrin repeat proteins (ARPs) appear to be abundant in organisms from all phyla, and play critical regulatory roles, mediating specific interactions with target biomolecules and thus ordering the sequence of events in diverse cellular processes. ARPs possess a non-globular scaffold consisting of repeating motifs named ankyrin (ANK) repeats, which...
Article
Mechanistic studies on the hydrolytic dehalogenation catalyzed by haloalkane dehalogenases are of importance for environmental and industrial applications. Here, Car-Parrinello (CP) and ONIOM hybrid quantum-mechanical/molecular mechanics (QM/MM) are used investigate the second reaction step of the catalytic cycle, which comprises a general base-cat...
Article
The knowledge of the access paths connecting interior of molecular systems with surrounding environment is important for the understanding of structurefunction relationships and engineering of molecules for biotechnological applications. CAVER is a computer program developed for calculations of tunnels, channels or pores in the biomolecules, inorga...
Article
Full-text available
1,2,3-Trichloropropane (TCP) is a highly toxic, recalcitrant byproduct of epichlorohydrin manufacture. Haloalkane dehalogenase (DhaA) from Rhodococcus sp. hydrolyses the carbon–halogen bond in various halogenated compounds including TCP, but with low efficiency (k cat/K m = 36 s-1 M-1). A Cys176Tyr-DhaA mutant with a threefold higher catalytic effi...
Article
Full-text available
The main aim of this study was to develop and implement an algorithm for the rapid, accurate and automated identification of paths leading from buried protein clefts, pockets and cavities in dynamic and static protein structures to the outside solvent. The algorithm to perform a skeleton search was based on a reciprocal distance function grid that...

Network

Cited By