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Chapter 3
Regulating Mitochondrial Respiration
in Cancer

Teresa L. Serafim and Paulo J. Oliveira

Abstract Mitochondria are a major focus of research in cancer due to their critical1

role in tumor physiology and metabolism. Metabolic remodeling is observed in tumor2

cells, often resulting in increased glycolytic activity, which serves for the generation3

of adenosine triphosphate (ATP), and as hubs for biosynthesis of key metabolites4

essential for cancer cell growth and proliferation. Mitochondria, thus, appear as a5

critical nexus in cancer metabolic alterations. Not only increased overexpression6

of oncogenes leads to altered mitochondrial respiration due to remodeling of mito-7

chondrial gene expression and substrate channeling, but also particular mutations8

in components of the respiratory chain trigger an upstream feedback mechanism9

which also leads to metabolic reshaping in cancer cells. Mitochondrial respiration10

can thus be controlled by intrinsic and extrinsic mechanisms in cancer cells, which11

ultimately translates into different abilities to generate mitochondrial ATP. Altered12

mitochondrial structures and processes can be a target for chemotherapeutics, which13

are increasingly being developed to specifically target mitochondria in tumors. The14

present chapter reviews current knowledge on regulation of mitochondrial respira-15

tion and overall metabolism and how these specific alterations in the cell powerhouse16

can be used to eliminate tumors.17

Keywords Cancer metabolism · Mitochondria · Oxidative phosphorylation ·18

Respiration · Chemotherapy19

3.1 Cancer Metabolism20

3.1.1 Overview21

Under normal conditions, cells have controlled programs for maintaining home-22

ostasis in tissues, relying normally on aerobic respiration, using cytosolic and23

mitochondrial metabolisms to produce adenosine triphosphate (ATP) and for the24
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biosynthesis of cellular building molecules [311]. Any deviation from these pro-25

grams may result in an anomalous situation. Tumors, deviations from normal cell26

homeostasis, contain a mixed cell population, with some showing fast prolifera-27

tion. Together with unregulated cell growth, tumor cells display loss of contact28

inhibition, which is necessary for normal tissue formation. Interestingly, both un-29

controlled growth and loss of contact inhibition appear to be linked with altered30

cellular metabolism [187]. The progressive growth of a tumor greatly increases the31

demand for oxygen and nutrients, resulting in the inability of tumor cells that are32

distant from blood vessels to be steadily supplied [129]. As a consequence, hypoxic33

regions are formed within the tumor. Therefore, one of the main mechanisms for34

the metabolic remodeling observed in cancer cells is an adaptation to a novel en-35

vironment, where oxygen can be limiting [183]. Malignant cells will survive under36

hypoxic conditions due to the activity of distinct oncogenic proteins, which induce37

the expression of specific encoding genes for metabolic proteins and consequently38

modulate their function in cancer cells [137]. The molecular mechanism behind this39

adaptation and energy metabolic adjustment is not completely understood and this40

phenomenon is not general to all cancer cells.41

One important characteristic of tumors is the induction of angiogenesis [311].42

New vessels are formed in the tumor microenvironment providing oxygen, which,43

although not as well distributed as in a normal tissue, favors ATP production through44

oxidative phosphorylation (OXPHOS). Still, most cancer cell types will continue to45

use glycolysis, which not only provides a survival advantage over non-transformed46

cells but also ensures the persistence of the most successful cancer cells [128]. Cancer47

cells manage to adapt from aerobic to anaerobic glycolysis to survive in a new48

microenvironment, upregulating transporter proteins that extrude lactic acid from49

the cell into the surrounding extracellular medium, as well as undergoing many50

other alterations [286]. This phenomenon is widely explored in cancer biology and51

was termed the Warburg effect [309].52

Glycolysis accounts for most of ATP generation in a majority of cancer cell types53

[203]; however, mitochondrial ATP production in other tumors may be entirely simi-54

lar to a non-tumor cell. It has been proposed that this switch may be related to specific55

cell or tissue types, with this metabolic flexibility being important for certain tumors56

to grow and metastasize [45]. Moreover, a large number of mitochondrial alterations57

exist in most cancer cells. In fact, tumor cells that show negative mitochondrial58

alterations are particularly aggressive, showing a rapid growth rate [279]. The down-59

regulation of some mitochondrial proteins in cancer cells, including the OXPHOS60

machinery, is achieved by distinct mechanisms, specifically activated by the pro-61

found hypoxic environment, the loss of tumor-suppressor genes and/or activation of62

oncogenes, and the direct inhibition of mitochondrial complex subunits [112]. Tumor63

microenvironment can also dictate the type of metabolic pathway to be predominantly64

used in cells, which, in turn, gives self-renewal ability to the tumor [20].65

Hanahan and Weinberg reformulated their six hallmark signatures of cancer [150],66

adding the reprogramming of energy metabolism plus the evasion from immune67

destruction as new cancer features. The “Hallmarks of Cancer” appear now as a68

signature of the disease which can help in stratification, diagnosis, prognosis, and69
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treatment: limitless replication potential, sustained angiogenesis, evasion of apop- [AQ1]
70

tosis, self-sufficiency in growth signals, insensitivity to antigrowth signals, tissue71

invasion, metastasis, metabolic remodeling, and evading immune destruction [151].72

In fact, more and more evidence enhances the importance of cancer metabolism73

research. It is our objective to understand the mitochondrial alterations in tumori-74

genesis, namely those altering mitochondrial respiration, and evidence the most75

promising therapies that target these alterations.76

3.1.2 Mitochondrial OXPHOS77

Mitochondria are essential organelles for cell survival and growth and are the main78

producers of cellular ATP via OXPHOS, which provides 15 times more ATP than79

glycolysis [4]. These organelles are also involved in calcium signaling [148], heme80

and steroid synthesis [260], and redox homeostasis [149]. The actual mechanism81

of OXPHOS was mechanistically explained by Peter Mitchell’s chemiosmotic82

hypothesis [217, 218], elucidating the biochemical mechanism of ATP synthesis83

in mitochondria. Under normal conditions, electrons are transferred from carbo-84

hydrates and lipids via nicotinamide adenine dinucleotide (NAD; reduced form)85

to complex I (NADH dehydrogenase), the major entrance point of electrons in the86

respiratory chain (or electron transport chain (ETC)), or from succinate to complex87

II (succinate dehydrogenate), that directly connects the tricarboxylic acid cycle88

(TCA) to the system [104]. Other components involved in electron entry to ETC89

are the electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) [327]90

and glycerol-3-phosphate dehydrogenase (G3PDH) [180]. Coenzyme Q10 accepts91

the electrons from different sources and channels them to complex III (subunit92

for ubiquinol: cytochrome c oxidoreductase) [119]. Electrons then flow through93

complex III to complex IV (cytochrome c oxidase, COX), where oxygen is reduced94

to water. Protons are pumped from the matrix to the intermembrane space, coupled95

to electron transport at complexes I, III, and IV, creating an electrochemical gradient,96

composed of an electric component (��m), being negative inside, and of a pH97

component (�pH), alkaline in the matrix [53]. The proton motive force is then used98

by complex V (ATP synthase) to produce ATP from adenosine diphosphate (ADP)99

and phosphate [171]. The ETC is coupled with the phosphorylation system, in order100

to maximize mitochondrial ATP production and minimize heat production [30].101

All these processes must follow strict regulated conditions, otherwise cell death or102

malignancy can occur. Therefore, under normal conditions, different mechanisms of103

regulation of mitochondrial respiration exist. One crucial factor is not only the mod-104

ulation of complex IV isoforms [43], but also the activation of four mitochondrial105

dehydrogenases, namely flavin adenine dinucleotide (FAD)-glycerol-3-phosphate106

dehydrogenase [152], pyruvate dehydrogenase phosphatase [83], NAD-isocitrate107

dehydrogenase [84], and oxoglutarate dehydrogenase [213] by calcium ions, which108

leads to their stimulation. Mitochondrial respiration regulation depends as well on109

fusion and fission proteins that are responsible for mitochondrial morphology [15].110

Moreover, there are other proteins that are responsible for mitochondrial biogenesis111
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and degradation, which have a role in regulating mitochondrial respiration [40].112

Besides the direct regulation of OXPHOS by proteins, the availability of substrates113

(NADH, H + /NAD + , ADP/ATP, oxygen gradients, glucose, and glutamine) [135],114

as well as the interaction with other cellular organelles [77] or even chemicals and115

drugs, can also impact mitochondrial respiration [16] .116

3.1.3 Cancer Metabolism117

Metabolism is the sum of all chemical reactions that occur in cells or organisms [116].118

In this particular section, energy metabolism in cancer is discussed. The analysis of119

mitochondrial metabolic alterations is important to better approach the regulatory120

adaptations that occur in mitochondrial respiration of cancer cells.121

Cells exposed to low oxygen availability (hypoxia) upregulate glycolysis, re-122

sulting in increased lactic acid production. Cancer cells can preferentially use this123

pathway, once it generates ATP more rapidly than OXPHOS, even if in far lower124

amounts [262]. Glycolytic genes are regulated by the hypoxia-inducible factor-1125

(HIF-1) ([72]; Fig. 3.1). Within any cell type, HIF-1 controls the expression of a very126

large number of genes. In particular, HIF-1 modulates the expression of aldolase,127

phosphoglycerate kinase, phosphofructokinase, lactate dehydrogenase A (LDHA),128

and lactate-extruding enzyme monocarboxylate transporter 4 (MCT4), as well as hex-129

okinases (Hk1 and Hk2) [57]. At the same time, HIF-1 indirectly inhibits pyruvate130

conversion to acetyl-coenzyme A (CoA) by leading to an overexpression of pyruvate131

dehydrogenase kinase 1 (PDK1), which inhibits pyruvate dehydrogenase (PDH) [71].132

In mitochondria, HIF inhibits the respiratory chain by targeting a Bcl-2 family mem-133

ber (BNiP3) and by reducing COX activity by upregulating microRNA-210 [257].134

In several tumors, impairment of the TCA cycle leads to succinate accumulation,135

which acts as a signaling molecule and triggers the reactivation of HIF-1 [269]. Due136

to the lower energy efficacy of aerobic glycolysis, glucose uptake verified in most137

tumors is higher than in normal tissues [304], with increased expression of glucose138

transporters (Glut1, Glut3, and other isoforms) [270]. However, when elevated in-139

tracellular glucose is available, cells redirect pyruvate towards lipid synthesis, which140

is necessary for membrane assembly. While in non-tumor cells pyruvate is mostly141

imported into mitochondria to produce NADH and succinate, which will fuel the142

ETC in two different sites [6], pyruvate can also be converted to lactate by LDH143

in the cytosol and extruded, causing extracellular acidification, which is also ad-144

vantageous to cancer cells as it decreases immune detection and facilitates invasion145

[320]. Contributing to cancer success, the downregulation of oxidative metabolism146

can favor malignant cells to evade apoptosis [159].147

The Warburg effect can be observed even after re-oxygenation of tumors due148

to the formation of new blood vessels. Warburg initially observed that cancer cells149

would rather use glycolysis than OXPHOS to obtain most of their energy [309]. The150

original observation was based on the fact that tumors have elevated levels of glucose151

consumption and lactate production (Pasteur effect) while in the presence of oxygen152

[184]. The Warburg effect was observed in vitro and in vivo and is well documented153
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Fig. 3.1 Cancer metabolism. Proliferating cancer cells show upregulation of glucose transporters
(Glut) in order to import a large amount of glucose to be processed in glycolysis. Glycolysis is
entirely regulated by HIF; however, oncogenes (e.g., Myc and Ras) and suppressor genes (e.g.,
TP53-induced glycolysis and apoptosis regulator (TIGAR)) ultimately control the flux. The ul-
timate product of glycolysis is pyruvate, which is normally converted to lactate in cancer cells.
Pyruvate can also originate from non-essential amino acids or be converted to acetyl-coenzyme
A and enter mitochondria to generate citrate. Due to altered mitochondrial function observed in
cancer cells, citrate will mostly leave these organelles to promote lipid synthesis. Other path-
ways that are altered and important for the survival of cancer cells are the pentose phosphate
pathway, which supplies RNA and DNA, but especially the glutamine pathway which fuels cells
with other amino acids and proteins. MCT4 monocarboxylate transporter; Glucose-6-P Glucose-6-
phosphate; Fructose-6-P Fructose-6-phosphate; Fructose 1,6-BP Fructose 1,6-biphosphate; GA3P
Glyceraldehyde-3-phosphate; DHAP Dihydroxyacetone phosphate; Glycerate 1,3-BP Glycerate
1,3-biphosphate; Glycerate-3-P Glycerate 3-phosphate; Glycerate-2-P Glycerate-2-phosphate;
PEP Phosphoenolpyruvate; 2HG 2-hydroxy-glutarate; HK Hexokinase; PFK1 Phosphofructok-
inase; GAPDH Glyceraldehyde 3-phosphate dehydrogenase; PKM2 pyruvate kinase isoform 2;
LDH Lactate dehydrogenase; IDH1 Isocitrate dehydrogenase isoform 1; IDH2 Isocitrate dehydro-
genase isoform 2; SCO2 synthesis of cytochrome c oxidase deficient homolog 2; PDK pyruvate
dehydrogenase kinase; PDH pyruvate dehydrogenase; SDH Succinate dehydrogenase; FH Fu-
marate hydratase; FAS Fatty acid synthase; HIF Hypoxia inducible factor; ETC Electron transport
chain

for several tumor types, where the overproduction of lactate leads to the acidification154

of the tumor microenvironment, being recognized as a major metabolic hallmark of155

cancer, although many tumors do not have this effect [294]. Therefore, the Warburg156

effect can originate from an increase in glucose consumption and glycolysis activity157

and/or downregulation of mitochondrial metabolism [90].158
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Another phenomenon similar to the Warburg effect but caused by a different event159

is the Crabtree effect [91]. Fast-growing cells, including tumors, display inhibition160

of respiration due to an excessive increase of intracellular glucose. The Crabtree161

effect is considered a short-term and reversible event. The possible advantage of this162

phenomenon would be the adaptation of cancer cell metabolism to the heterogeneous163

microenvironment found in tumors [91].164

Even if both the Warburg and Crabtree effects were common to all cancer cells,165

one must take into account that both metabolic effects, as well as other metabolic166

alterations, are not exclusive to cancer cells, since they can also be observed in167

activated T lymphocytes and some proliferating normal cells [141]. Moreover, each168

type of cancer carries its own mutation load and different tissues of origin differently169

prime tumors to metabolic alterations. In addition, an increase in the glycolytic flux170

may not directly result from increased expression of glycolytic enzymes, but instead171

result from altered proteins that co-regulate glycolysis [227].172

Within the tumor, some cancer cells quickly interchange the metabolism between173

fermentation and oxidative metabolism, according to the presence or absence of174

nutrients and environmental conditions, thus showing a large plasticity [259]. There-175

fore, tumor cells can behave differently depending on many intrinsic and/or extrinsic176

factors, which limits the use of metabolic remodeling per se to distinguish a particular177

type of tumor.178

More research must be performed to identify differences between normal and179

cancer cells and to identify the best therapeutic approaches. In particular, the central180

role of mitochondria, by modulating several key functions in the cell, deserves special181

attention. Mitochondria can serve both as a hub for metabolic alterations and as a182

target for chemotherapeutics.183

3.2 Mitochondrial Metabolism Remodeling in Cancer184

3.2.1 Biosynthesis and Energy Production185

The proliferation of cancer cells is supported not only by altered energy production186

but also by increased biosynthesis and maintenance of specific redox balance [18].187

The remodeling of mitochondrial metabolism is evidenced by the preferential use of188

glycolysis and the increased usage of biosynthetic pathways, such as those of amino189

acids and fatty acids [120].190

As described earlier, ATP production by mitochondria in most tumor types is191

diminished. One possible explanation for the disruption of the normal flux of the192

Krebs cycle may be the channeling of cycle intermediates, including malate and193

citrate, for other biosynthetic pathways. Both molecules can leave mitochondria,194

thus deviating the carbon flux. Malate can be used to provide the cytoplasm with195

NADPH, and citrate is used to support fatty acid and cholesterol synthesis [225].196

Moreover, citrate is a crucial sensor of energy level, exerting a negative feedback on197

the Krebs cycle and glycolysis, slowing or even arresting the two pathways [161].198
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Another observation to support a low mitochondrial activity in cancer is a decrease of199

ADP transport to the mitochondrial matrix, as well as the inhibition of ATP synthase200

[64], decreasing ATP production in mitochondria. In the Krebs cycle, carbon can be201

dissipated as CO2, while carbons originating from glycolysis supply precursors for202

biosynthesis. In truth, there is a waste of carbon by lactate export, although there are203

several advantages in the process, including evasion from the immune system [80].204

Several groups [76, 123, 324] have provided evidence of the importance of amino205

acid metabolism in tumor proliferation, demonstrating that cancer cells have in-206

creased glutamine consumption by glutaminolysis when compared with their normal207

counterparts, although others suggest that this may be an in vitro artifact [223]. Glu-208

tamine is the most abundant amino acid in mammals [185] and a major factor in209

anaplerosis [76]. Oxidation of glutamine was observed to be essential not only for210

cancer systems but also for normal proliferating cells, such as lymphocytes, en-211

terocytes, and fibroblasts [76]. Glutamine metabolism can be roughly divided into212

α-nitrogen (Krebs cycle) and γ-nitrogen (nucleotide and hexosamine synthesis) [57].213

In the latter reactions, glutamine is converted to glutamate by cytoplasmic or mito-214

chondrial glutaminase. From here, glutamate can follow one of two pathways: as a215

source of oxaloacetate (OAA) for the Krebs cycle or via transaminase by consuming216

OAA and generating aspartate, which then leaves mitochondria [223]. OAA is an217

essential substrate because it leads to citrate production when condensed with acetyl-218

CoA. After being exported to the cytosol, citrate can be used by ATP citrate lyase219

(ACL) to produce OAA and acetyl-CoA, essential for cholesterol and fatty acid syn-220

thesis and also for modification of chromatin structure [153, 315]. α-Ketoglutarate221

can also be originated from isocitrate by the action of isocitrate dehydrogenases222

(IDH1 and IDH2). The two enzymes exist in the cytoplasm and mitochondria, respec-223

tively, and, when mutated, convert α-ketoglutarate to 2-hydroxy-glutarate, which is224

recognized as an oncometabolite [252], Scatena [2012]. [AQ2]
225

Glutamine metabolism can also provide precursors for the synthesis of glutathione226

(GSH), which serves as a redox buffer against increased oxidative stress, being227

important for tumors with rapid growth, thus presenting a high production of reactive228

oxygen species (ROS) [109]. Finally, glutamine is required as a nitrogen donor to229

produce purine and pyrimidine nucleotides during cell proliferation [123].230

Interestingly, the serine pathway, another amino acid biosynthetic flux, has an231

important role in most estrogen-negative breast cancers [248]. In fact, some tumors232

showing overexpression of phosphoglycerate dehydrogenase (PHGDH) redirect233

glycolytic intermediates into serine and glycine metabolism [202].234

Besides amino acid metabolism, other metabolic pathways can be altered, includ-235

ing fatty acid β-oxidation. The contribution of β-oxidation to metabolism in cancers236

was suggested as providing an important source of acetyl-CoA, NADH, H +,and237

ATP, to sustain energy production and proliferation. However, there is still a large238

unknown to be investigated [161]. Fatty acid synthesis in normal cells occurs at a low239

rate, since fatty acids can be easily obtained via blood circulation. However, prolifer-240

ation of some tumors was still observed even when mitochondrial catabolism of fatty241

acids originating from the blood stream was not occurring, forcing de novo fatty acid242

synthesis at very high rates [212] or export of citrate from mitochondria to produce243
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acetyl-CoA [275]. To support this hypothesis, citrate transport is increased in tumor244

cells and also associated with glutamine uptake [237]. Moreover, increased lipogene-245

sis in cancer is closely associated with the overexpression and hyperactivity of ACL,246

acetyl-CoA carboxylase (ACC), or fatty acid synthase (FAS) [186]. Among these247

proteins, FAS was the most consistently increased in cancer cells, being expressed at248

low levels in normal cells and tissues [36]. In malignant cells, FAS is involved in lipid249

production for membrane incorporation, as well as synthesis of lipids for cell signal-250

ing, such as phosphatidylinositol-3,4,5-trisphosphate, which activates protein kinase251

B/Akt leading to cell proliferation and survival [323], lysophosphatidic acid, which252

stimulates tumor aggressiveness by signaling a family of G-protein-coupled recep-253

tors [256], and prostaglandins formed by cyclooxygenases, which support migration254

and tumor–host interactions [143]. Moreover, fatty acid synthesis participates in the[AQ3]
255

activation of oncogenic pathways, such as Ras, Src, or Wnt [247]. Lipid metabolism256

also involves important mitochondrial proteins, such as uncoupling protein 2 (UCP2),257

normally expressed in central and peripheral tissues [88]. Uncoupling proteins have258

multiple roles, which are tissue-dependent, including heat generation [303], fatty259

acid derivatives transport [105], and control of oxidative stress [23]. In some tumor260

models, high expression of UCP2 was observed to be associated with malignancy,261

increased aerobic glycolysis, and resistance to apoptosis [265].262

Mitochondria are responsible for a significant part of ROS as well as reactive263

nitrogen species (RNS) generation in cells [38]. Both ROS and RNS act as biological264

mediators by regulating mitogen-activated protein kinases (MAPKs) essential in265

signaling pathways involved in cell survival, proliferation, and differentiation [222].266

ROS are mostly produced by mitochondrial complexes I and III [51]. Complex II267

has also been shown to be another source, possibly at the FAD coenzyme present in268

SDHA [145] or in a mutated SDHC subunit [281].269

In malignant cells, ROS promote mitogenic signaling, cell survival, disruption270

of cell death signaling, epithelial–mesenchymal transition (EMT), metastasis, and271

chemoresistance [54]. In fact, increased uncontrolled mitochondrial ROS produc-272

tion affects HIF-1 by stabilizing HIF-1α, the oxygen-sensitive subunit, allowing the273

dimerization with HIF-1β to form an active molecule [85].274

The transcription factor p53 regulates ROS production and induces cell death275

when damage is extensive [253]. Excessive ROS production can damage proteins,276

lipids, and DNA, leading, in extreme situations, to cell death [299], once ROS pro-277

duction exceeds the capacity of cell antioxidant defenses [54]. In fact, some findings278

suggest that the mitochondrial antioxidant defenses do not provide efficient removal279

of ROS, especially H2O2, in most tumor tissues [48]. Another mitochondrial source280

of ROS, which has been associated with carcinogenesis, is p66Sch. This adaptor281

protein seems to promote increased oxidative stress by inhibiting the mitochondrial282

enzyme manganese superoxide dismutase (SOD2) activity [233]. On the other hand,283

SOD2 is an effective antioxidant enzyme with antitumor activity, since its overex-284

pression results in inhibition of tumor growth [14]. In melanoma and some cancer285

cell types, SOD2 expression was found to be decreased, more likely due to epigenetic286

silencing [158]. However, other studies are contradictory, showing that SOD2 over-287

expression in cancers of the gastrointestinal tract is correlated with an invasive and288
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metastatic profile, resulting in poor prognosis for the patients [169, 250]. Similarly289

to other proteins, SOD2 has heterogenic expression, probably due to cancer type or290

developmental stage.291

Without having an intrinsic antioxidant activity, the overexpression of the292

anti-apoptotic Bcl-2 protects against ROS-induced apoptosis by promoting over-293

expression of antioxidants such as reduced GSH, catalases, and NAD(P)H [194].294

At the same time, other studies showed that Bcl-2 induces increased generation of295

mitochondrial ROS [49]. Even though cancer cells are often shown to have higher296

ROS production, coupled with high expression of cell antioxidants, the opposite297

can occur. For instance, a lower than normal generation of mitochondrial ROS was298

recently correlated to intrinsic chemotherapy resistance of cancer stem cells [92].299

Due to the proximity to ROS sources, mitochondrial DNA (mtDNA) is continu-300

ously at risk for suffering oxidative damage. In fact, a correlation between altered301

mitochondrial gene expression and cellular metabolism alteration has been observed302

in some tumor types. Whereas mtDNA-encoded subunits correspond to catalytic en-303

zymes, nDNA-encoded subunits have functional and structural activities [53]. Thus,304

the coordination of the expression of nDNA-and mtDNA-encoded genes is essential305

for normal mitochondrial physiology [53]. In different systems, loss of mtDNA is306

associated with a decrease in oxygen consumption and increased oxygen tension307

inside cells [62]. In fact, mutations and altered mtDNA copy number were ob-308

served in diverse types of tumors and cancer cell lines (see also Sect. 3.2.3), leading309

to altered mitochondrial protein expression, morphology, and general physiology310

[11, 193, 204]. However, since these mutations result in a large range of tissue-311

dependent phenotypic variation, this complicates the identification of OXPHOS312

alterations as a unique pathogenic factor [216]. Importantly, mtDNA alterations can313

even lead to the activation of oncogenes including Ras and a downstream increase314

in Akt and Erk pathway signaling, besides several metabolic modifications [62].315

3.2.2 Oncogenes Vs. Suppressor Genes and Mitochondria316

Oncogenes such as Myc, Ras, or Src induce the expression of glucose transporters317

(Glut), which are associated with tumor invasiveness and metastasis, but also are318

implicated in the regulation of mitochondrial activity [72]. The Myc gene is es-319

sentially engaged in conserved core target genes, which are involved in ribosomal320

and mitochondrial biogenesis, energy metabolism, and cell cycle regulation [103].321

Under normal conditions, Myc stimulates glucose oxidation and lactate production,322

while under hypoxia, Myc and HIF-1 cooperate to increase pyruvate dehydrogenase323

kinase 1 (PDK1) activity, leading to OXPHOS inhibition [176]. In addition, Myc can324

regulate the alternative splicing of the pyruvate kinase (PK) transcript, in favor of325

isoform M2 (PKM2) [74], which is one of the most regulated enzymes in glycolysis326

[206] . Pyruvate kinase converts phosphoenolpyruvate to pyruvate and produces ATP327

in the final step of glycolysis. Pyruvate kinase isoform M2 is the predominant form328

in many cancer cells [61]. This protein can promote glucose metabolism in can-329

cer cells by increasing lactate production and reducing oxygen consumption [302],330
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also directly binding to HIF-1, promoting its transcriptional activity [205]. Pyruvate331

kinase isoform 2 interacts with a specific cell surface marker in cancer stem cells,332

CD44, whose ablation leads to depletion of GSH and increased generation of intra-333

cellular ROS in glycolytic cancer cells [292]. In fact, PKM2 confers cancer cells334

with resistance to oxidative stress [7]. Regulation of glycolysis by Myc involves335

several other glycolysis-associated target proteins, including hexokinase 2 (HK2),336

phosphofructokinase (PFKM), and enolase1 (ENO1) [177]. Loss of Myc results in337

a profound decrease in the expression of genes involved in metabolism [308], while338

the activation of Myc and consequent upregulation of glycolysis can direct cells to339

use other substrates to fuel mitochondria; this allows cancer cells to easily adapt to340

different environments, including hypoxia and nutrient deprivation [300]. In fact,341

tumors in which Myc is upregulated are particularly sensitive to the amount of glu-342

tamine present, which suggests that Myc is regulated by glutamine metabolism as343

well [301]. Moreover, Myc induces lipogenic genes contributing to lipid membrane344

synthesis for fast-growing cells rather than used for fat storage [70]. Therefore, the345

ability of Myc to induce mitochondrial biogenesis despite glycolysis upregulation346

makes sense, since cells need a constant supply of amino acids and fatty acids to347

proliferate, and these are supplied by mitochondria [68]. Interestingly, inhibition348

of tumorigenesis is obtained after a brief suppression of Myc [164], while in other349

tumors this is not observed [29]. The evidence suggests that tissue specificity or350

even mutagenic or epigenetic alterations influence tumor regression following Myc351

suppression [318, 330].352

Another oncogenic protein is Ras, which is mutated in one quarter of all can-353

cers, leading to increased aggressiveness [255]. Ras is associated with metabolic354

alterations, increased lactic acid accumulation, altered expression of mitochondrial355

genes, increased ROS production, and significantly decreased OXPHOS activity356

[124]. Specifically, mitochondrial dysfunction was associated with mitochondrial357

localization of STAT3, which is regulated by oncogenic Ras, and at the same time358

promotes mitochondrial respiration and an increase in glycolytic activity [139, 254].359

Ras is activated by growth factors to transduce proliferation signals, medi-360

ating important pathways such as PI3K/Akt and MAPK [3, 255]. Similarly to361

Myc, the PI3K/Akt pathway can lead to glycolytic upregulation by diverse ways,362

including by increasing Glut1 expression [13], stimulating phosphofructokinase ac-363

tivity and increasing the association of hexokinase with mitochondria [258]. Both364

PI3K/Akt/mTOR and MAPK pathways were shown to be involved in lipogenesis365

[319]. Increased glycolytic activity is intrinsically associated with the activation of366

Akt for cell survival [107]. This protein can stimulate glycolysis in a dose-dependent367

manner, which is correlated with tumor aggressiveness in vivo [107]. Together with368

a high activity of the PI3K/Akt pathway, the inactivation of phosphatase and tensin369

homolog (PTEN), a negative regulator of PI3K pathway is often also found [108].370

Moreover, the hyperactivity of Akt can also lead to the increase of mammalian target371

of rapamycin (mTOR) activity, which in turn increases nutrient uptake during tumor372

cell proliferation [106]. Furthermore, Akt is important in lipid metabolism, activating373

enzymes involved in cholesterol synthesis, such as 3-hydroxy-3-methylglutaryl-374

coenzyme A (HMG-CoA) synthase and HMG-CoA reductase, and in fatty acids375

biosynthesis, namely FAS and stearoyl-CoA desaturase [246].376
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Low intracellular glucose or glutamine levels often result in lower ATP produc-377

tion and increased AMP levels [215]. AMP-activated protein kinase (AMPK) is an378

ATP sensor that is activated during metabolic stress, promoting cell survival by379

blocking the cell cycle progression or by inducing biosynthetic pathways for prolif-380

eration under harsh conditions. AMPK also participates in the inactivation of mTOR,381

through phosphorylation of tuberous sclerosis complex subunit 2 (TSC2) [69]. In a382

regular cell environment, when nutrients are not limiting, cells accumulate biomass383

and, in some cases, proliferate [333]. Several proteins are involved in this pro-384

cess, including insulin growth factor 1 (IGF-1), epidermal growth factor (EGF), or385

platelet-derived growth factor (PDGF), which are often absent in cancer [311]. In386

fact, some cancer cells can proliferate without external growth stimuli, altering the387

normal function of their downstream targets, Akt and mTOR [311]. Therefore, the388

mTORC1 complex senses the nutritional status of the cell, linking nutrient availabil-389

ity with proliferative activity [60]. On the other hand, mTORC2 activates Akt, which390

in turn promotes glycolytic activity, through phosphorylation of several proteins391

including hexokinase II, and also inhibits apoptosis by activating FoxO3A [114].392

FoxO3A can also be activated downstream of HIF-1 during hypoxia, inhibiting a set393

of nuclear-encoded mitochondrial genes and consequently decreasing mitochondrial394

mass, oxygen consumption, and ROS production and promoting cell survival [167].395

The switch to glycolysis in cancer cells is also associated with the inactiva-396

tion of the tumor suppressor p53 [140], occurring via defective trans-activation of397

TP53-induced glycolysis and apoptosis regulator (TIGAR), which is an isoform of398

6-phosphofructo-2-kinase with the ability to inhibit glycolysis and ROS generation399

[103]. Similarly to TIGAR, the mitochondrial protein SCO2, which promotes mito-400

chondrial respiration by inducing the correct assembly of COX complex, is induced401

by p53, favoring mitochondrial respiration [17]. Moreover, PGC-1α can bind to p53402

and modulate the transactivation of pro-arrest and metabolic genes [271]. Silencing403

or alteration of p53 activity can occur during the development of some types of tu-404

mors, especially during hypoxia, impacting the response of cells to DNA damage405

[274]. Interestingly, a p53-responsive gene, Lpin1, induced following DNA damage406

and glucose deprivation, is involved in the regulation of fatty acid oxidation in mouse407

C2C12 myoblasts [10]. On the other hand, p53 can accelerate the development of408

nearby capillary networks and contribute to minimizing hypoxia, through the con-409

sequent inactivation of thrombospondin (Tsp-1), a potent anti-angiogenic molecule410

[188]. Similarly to Myc, p53 promotes glutamine utilization by upregulating glu-411

taminase 2 [157], but as opposed to the former, it can have an inhibitory effect on412

the expression of Glut1 and Glut4 [267]. Interestingly, the overexpression of Glut1413

was shown to inhibit p53 and Puma activities during growth factor induction [329].414

Some TCA cycle enzymes can act as tumor suppressors, including succinate dehy-415

drogenase (SDH) and fumarate hydratase (FH), which convert succinate to fumarate416

and fumarate to malate, respectively [138]. Interestingly, oncogenic mutations in417

SDH and FH can result in hypoxia-like response and glycolysis activation due to418

substrate accumulation, resulting in the development of paragangliomas (PGLs) as419

well as leiomyomatosis and renal cell carcinoma, respectively [32].420
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Sirtuins, proteins with de-acetylase activity, also modulate metabolism in cancer.421

Sirtuin 1 (Sirt1) was found altered in some cancer types, although the data are422

controversial whether this protein works as a tumor suppressor or as a promoter423

[82]. Sirtuin 1 acts as tumor promoter when inhibiting the activity of p53 through424

deacetylation at the C-terminal K382 residue [305]. Interestingly, Sirt1 and PGC-1α425

can activate HIF2α, and consequently reprogram the metabolism of cancer cells by426

inhibiting the supply of fatty acids and pyruvate to mitochondrial metabolism, besides427

the upregulation of angiogenesis via expression of vascular endothelial growth factor428

(VEGF) [181]. On the other hand, Sirt1 can act as a tumor suppressor by regulating429

c-Myc, decreasing its activity [27]. Interestingly, both Sirt1 and fatty acid oxidation430

can be controlled by β-adrenergic/cAMP signaling [47].431

Other sirtuins were also pointed out as having a role in tumorigenesis, namely432

Sirt3 and Sirt5, mitochondrially located sirtuins. Sirtuin 5 (Sirt5) overexpression was433

identified in pancreatic cancer [231], while a decrease in Sirt3 expression/activity434

leads to increased ROS production, a shift towards glycolysis metabolism, and tu-435

mor growth [117]. Furthermore, a number of studies showed that Sirt3 can control436

mitochondrial ATP production, possibly through regulating complex I activity [132].437

In addition, Sirt3 decreases cyclophilin D (cypD) activity, promoting its dissociation438

from the adenine nucleotide translocator 1 (ANT1). Sirtuin 3 can also promote the439

separation of hexokinase II from the outer membrane voltage-dependent anion chan-440

nel (VDAC), resulting in increased OXPHOS [277]. Sirtuin 3 can prevent oxidative441

stress through IDH2 activation and decrease chromosomal instability caused by ROS442

generation through increasing the activity of SOD2 [295, 322]. Both effects may be443

considered tumor-suppressant activities.444

3.2.3 Mitochondrial OXPHOS in Cancer445

Mitochondrial OXPHOS complexes are organized in large supermolecular structures,446

constituted by a diverse number of subunits. Defects in specific complex subunits can447

alter electron flux through the chain ([208]; Fig. 3.2). Some studies demonstrated the448

relationship between mitochondrial structure and metabolic state when cells were449

forced to use OXPHOS to synthesize ATP. In the absence of glucose, some cancer450

cell lines rapidly show morphological adaptations to the new substrate availability,451

namely by increasing the synthesis of OXPHOS components, cristae content, and452

elongation and ramification of mitochondrial network [261]. When cancer cells are453

made to rely more on glycolysis, the mitochondrial structure appears to become454

more fragmented [147]. Interestingly, a correlation between decreased levels of455

fusion proteins MFN2, MFN1, or OPA1 and inhibition of Krebs cycle, decrease456

of OXPHOS, and stimulation of glycolysis and lactic fermentation was previously457

observed [52].458

One characteristic of some cancer cells is higher ��m when compared with459

normal counterparts [175]. Mechanistically, this can be explained by mitochondrial460

membrane composition alterations, decreased proton influx, or a decreased activity461

of ATP synthase, among other causes [283]. In addition, cells usually regulate their462
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Fig. 3.2 Different cancer types associated with specific mitochondrial respiratory chain complex
alterations. IMS mitochondrial intermembrane space

��m under a certain threshold to avoid the formation of ROS by the respiratory463

chain, while in cancer cells, an incomplete OXPHOS may lead to higher ��m464

and increased ROS production [306]. Moreover, the expression of mitochondrial465

proteins involved in OXPHOS appears to be decreased. Besides the inhibition of466

OXPHOS by intrinsic cellular signaling, mtDNA and/or nuclear gene mutations467

or damaged enzymes can also result in lower respiration [48]. Downregulation of468

mitochondrial proteins leads to general reduction of OXPHOS activity, especially469

complex I, suggesting that at least in some cases, defective mitochondrial activity is470

associated with altered cellular metabolism [126].471

Mitochondrial complex I is a major site of oxygen superoxide anion production,472

being also involved in apoptosis and age-related diseases [235]. Moreover, complex473

I can be regulated by hormones, growth factors, and neurotransmitters [235]. Com-474

plex I subunits have been shown to have more significant mutations than any other475

complex in mitochondria, leading to the development of several diseases, including476

cancer. Mutations in nuclear or mtDNA genes encoding complex I subunits may477

result in deficient complex I activity, with ROS overproduction and, consequently,478

upregulation of nuclear genes such as Mcl-1, HIF-1α, and VEGF [57]. As already479
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described, these three genes regulate alterations in cell metabolism and metastatic480

potential [162]. Loss or reduced expression of GRIM-19 and NDUFS3 complex I481

subunits are present in primary renal cell carcinomas and urogenital tumors [154]482

and in highly invasive breast carcinoma [288]. Mutations in mitochondrial NADH483

dehydrogenase (ND) subunit 1 gene are present in patients with renal adenocarci-484

noma [48], colorectal carcinoma [325], hepatocellular carcinoma [195], and thyroid485

carcinoma, contributing to a decrease in enzymatic activity [25]. Mutations in the486

subunits ND2 and ND4–6 are present in thyroid cancer cell lines and renal oncocy-487

tomas [127], which also show low oxygen consumption, increased ROS production,488

and glucose dependency, besides fast tumor growth [236]. Particularly, the demethy-489

lation of the D-loop regulates ND2 expression in colorectal cancer [113], while490

mutations in ND subunit 4 have been identified not only in acute myeloid leukemia,491

but also in head and neck squamous cell carcinoma [67]. Finally, complex I subunit492

ND6 was described to be decreased in prostate cancer [66].493

Complex I is also a caspase-3 and Calpain 10 substrate. Caspase-3 cleaves the494

largest subunit of the complex (p75), inhibiting its activity leading to mitochondrial495

membrane potential disruption and ROS production [174]. Upon increased calcium496

accumulation, Calpain10 inhibits complex I [9]. Complex I dysfunction can also pro-497

mote fibroblast activation, through increased ROS generation, and melanoma cell498

invasiveness [291]. In extreme situations, where complex I is lost, oxiphilic tumors499

and oncocytomas can be originated, showing upregulation of the other mitochon-500

drial complexes [331]. Mitochondrial complex I is, in fact, considered a sensible501

pacemaker of mitochondrial respiration [235].502

Mutations in nuclear-encoded complex II subunits were associated with the oc-503

currence of specific tumors [156]. Complex II, or SDH, is composed of four distinct504

subunits (SDHA, SDHB, SDHC, and SDHD) and is the only complex totally en-505

coded by nuclear DNA. Loss of function or mutations in SDHB, SDHD, and SDHC506

(although in a lesser degree) can result in head and neck PGLs, extra-adrenal PGLs,507

and pheochromocytomas [35]. Tumors appear to be more aggressive when mu-508

tated SDHB is present, having a poor prognosis and metastatic potential [35]. Many509

mutations in complex II that are associated with cancer development occur in an510

iron–sulfur (Fe–S)-containing subunit. These tumors exhibit high levels of HIF-1α511

expression, promoting the downregulation of SDHB expression [46]. Hypoxia can512

further inhibit complex II activity, promoting an increase in ROS [201]. Mutations in513

SDHC can result in increased superoxide anion production and consequent oxidative514

stress, increased glucose consumption and genomic instability [281]. Interestingly,515

the downregulation of complex II subunits does not promote cell death; however,516

specific inhibition promotes it [197, 198].517

Complex III has also been implicated in carcinogenesis, by being involved in518

generating ROS that is required for HIF hypoxic activation [179]. Complex III mu-519

tations in cytochrome b are found in human breast cancer cells [293] and murine and520

human uroepithelial carcinoma, which have in common increased ROS and lactate521

production, high oxygen consumption and induction of tumor growth, invasiveness,522

and immune system detection escape [73]. Although complex III is present in low523

amounts in oncocytoma [25] and breast cancer [251], UQCRFS1 (encoding RISP524
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protein) and UQCRH (encoding Hinge protein) complex III subunits were found to525

be overexpressed in human breast cancer cell lines and primary tumors [232].526

Complex IV (COX) is the terminal step in the ETC, responsible for the conversion527

of O2 to H2O [160]. In fact, the expression of COX subunits is regulated by oxy-528

gen [121]. Therefore, it was suggested that reduced oxygen levels lead to isoform529

rearrangement, where COXIV-1 is degraded by mitochondrial protease LON and530

COXIV-2 is increased, resulting in optimization of COX activity for the new hypoxic531

condition with minimal ROS production [34, 121]. However, virtually all oxygen is532

consumed and the decrease of hydroxylase activity would result in activation of the533

HIF pathway [297]. Consequently, differential expression of COX subunits, namely534

low expression of COXII and high expression of COXI and COXIII, was detected535

in hepatoma, colon, and prostate cancer [1, 155, 289]. High expression of COXI is536

also associated with gastric tumorigenesis and ex vivo de-differentiation [207], while537

mutations in COXI are associated with prostate cancer [241]. In 40 % of breast and538

ovarian tumors, a decrease in COX subunit II expression was identified [86]. The539

COXVa subunit has a role in migration and invasion of non-small-cell lung carci-540

noma cells [55]. A metastasis-associated mechanism, involving Wnt/Snail signaling,541

suppresses mitochondrial respiration and COX activity, inducing a metabolic switch542

to glycolysis and pyruvate carboxylase expression [196]. Interestingly, expression543

of COX levels varies significantly between tissues, being higher in the liver [115].544

Whether this impact regulates COX activity/role in cancers in the liver versus other545

tissues remains to be known.546

The downregulation of β-F1-ATPase is considered a feature of liver, kidney, colon,547

breast, and many other human carcinomas, where its reduction was correlated with548

increased expression of some glycolytic markers [63, 163]. Specifically, alterations549

of ATP6 subunit were found in prostate cancer [1], as well as in in vitro tumor550

models with decreased respiration rates, high proliferation, and significant resistance551

to apoptosis [276]. The natural inhibitor Factor 1 (IF1) of ATP synthase is also552

overexpressed in human cancer cells [264]. Altogether, overexpression of IF1, the553

limited expression of the catalytic β subunit, and upregulation of glycolytic proteins554

lead to inhibition of ATP synthase activity [96].555

Interestingly, the most aggressive cancers have little or no mtDNA content [211].556

Indeed, although ρ0 cells, which lack mtDNA, have similar mitochondrial mem-557

brane potential to cancer cells [211], the former have increased capacity to invade558

neighboring tissues and promote metastasis [211].559

3.2.4 Tumor Oxygen Gradients and Mitochondrial Respiration560

Evidence suggests that cancer cells and the other microenvironment constituents561

co-evolve during the process of carcinogenesis [245]. The expression of metabolic562

biomarkers is altered according to the distance from the nearest vessels [280]. In fact,563

increased glucose uptake, hypoxia, and acidosis are not always fairly distributed in564

the tumor [56]. The microenvironment of tumors is heterogeneous due to inefficient565

blood supply, creating nutritional as well as metabolic gradients inside the tumor566
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Fig. 3.3 Mitochondrial metabolism and dependence on oxygen and nutrient gradients within the
tumor. The cycles of hypoxia or lack of nutrients can result in different cell metabolism used
for adenosine triphosphate (ATP) production. Cancer cells under higher stress preferentially use
glycolysis instead of oxidative phosphorylation (OXPHOS), while others with mild strain can
maintain their mitochondrial ATP production. Moreover, such mitochondrial metabolic changes
can also influence the maturity of the cell, if it is more or less differentiated. Mitochondria are
represented as round or filamentous green bodies

[287]. Oxygen gradient in tumors can be created from both passive physical diffusion567

and oxygen consumption resulting from cellular activity (Fig. 3.3; [75]). Another568

possible reason for the differences in oxygen distribution and consequent acidosis569

in tumors has to do with malformed vasculature [39]. Peripheral cells present high570

proliferative capacity with full nutritional capacity supplied by blood, while cells with571

low blood supply present a less active mitochondrial metabolism [102]. In fact, the572

most aggressive tumors are those found under hypoxic conditions, where they suffer573

cycles of hypoxia and re-oxygenation [87]. Metabolic demand, vessel morphology,574

hemoglobin oxygen saturation, and blood flow rate can lead to differential hypoxia575

cycling in tumors [280]. An increasing distance from the source of nutrients will576

first promote decreased cell proliferation and later result in its stimulation [119]. The577

hypoxic core is also the site where cancer stem cells are thought to be maintained578

in an undifferentiated state [242], thus restraining their oxidative metabolism, again579

suggesting a close relationship between tumor hypoxic cores and cell immaturity.580

As described previously, HIF-1 is activated and modulates the mitochondrial581

respiratory chain by regulating COX. Therefore, at low oxygen availability, the582

COXIV-2 isoform is more active and more efficient in using oxygen [121]. These583

observations explain mitochondrial activity and ATP production even under hypoxic584

conditions. However, a negative correlation between oxygen gradients and ROS585

generation is often found in the tumor microenvironment. In fact, cells under a high586

ROS-prone environment must upregulate antioxidant defenses in order to modulate587

the malignant phenotype, allowing them at the same time to escape from cell death588

induction [234]. A signaling gradient of declining transforming growth factor beta-589

1 (TGF-β1) concentration, which is important during development, is also often590

deregulated in human tumors. Mitochondrial ATP synthesis can be modulated by591

TGF-β1, stimulated through ANT1 and ANT2 regulation [191, 200], or inhibited592

via cyclooxygenase-2 (COX-2) and prostaglandin (PG) E2 [50]. The latter signal-593

ing pathway is connected with increased inflammation, ROS generation, altered594

cytokine/chemokine expression, and enhanced signaling via nuclear factor kappa B595

(NFkB), which combined results in increased risk factors for carcinogenesis [170].596
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Besides the variability of oxygen tension within the tumor microenvironment,597

cancer-associated fibroblasts (CAFs) are able to mimic hypoxia, expressing HIF-1598

without real oxygen deprivation [298]. Interestingly, TGF-β signaling and conse-599

quent metabolic reprogramming of CAFs are activated due to the loss of caveolin-1600

(Cav-1) [44]. In CAFs, glycolytic enzymes are upregulated, while OXPHOS path-601

way is downregulated leading to overproduction of pyruvate and lactate that will602

fuel the surrounding cancer cells’ metabolism, a phenomenon called “reverse War-603

burg effect” [26]. Moreover, Cav-1 seems to contribute to glucose uptake and ATP604

generation, through HMGA1-mediated Glut3 transcription [146]. Therefore, these605

results can help to explain the existence of cancer cells showing increased aerobic606

glycolysis in oxygenated tumor regions. Indeed, CAFs can even mediate EMT and607

enhance the motility response of cancer cells [131].608

Unfortunately, much needs to be done to confirm the present ideas, especially609

the reverse Warburg effect in vivo. Measuring oxygen gradients in intact tumors610

has also been hard, making the identification of gradients in mitochondrial respira-611

tion difficult. Some techniques to measure oxygen gradients are available, including612

measuring oxygen supply at the microvessel level by using microelectrodes and613

phosphorescent lifetime imaging with pO2-calibrated dyes [280]. Immunohisto-614

chemistry aimed at evaluating hypoxia gradients by detecting hypoxic markers is615

another possible technical approach [263].616

From the previous sections, it is evident that mitochondria and the process of617

carcinogenesis are interconnected. Whether mitochondrial alterations are causally618

linked with cancer or are merely a small component of a larger metabolic remodel-619

ing is still under debate, although it appears that mitochondrial alterations are a piece620

of a more complex puzzle. Whatever the mechanism is, it is clear that mitochondria621

are important targets in cancer therapy. Therefore, the design and synthesis of effec-622

tive pharmaceutical agents that would directly target mitochondrial alterations and623

decrease tumor size can be achieved. In addition, the differential metabolism used624

by normal and cancer cells can provide knowledge to discover new drugs with little625

or no side effects on normal cells.626

3.3 Targeting Tumor Mitochondria—Closing Down the Factory627

Distinct approaches to control cancer are available such as surgery, radiotherapy,628

and hormone and biological therapies. However, in many cases, those methods are629

clearly not fully effective, so chemotherapy is usually another tool to eradicate cancer.630

Unfortunately, the low specificity and the fact that the drugs currently in use have631

uncomfortable side effects drive the search for more effective and selective drugs.632

Guchelaar et al. [142] and Decaudin et al. [78] were the first to point out mitochon-633

dria as a potential target for anticancer drugs, proposing the modulation of extrinsic634

and intrinsic regulators and finding developing chemotherapeutics that would act on635

mitochondria. Later, a new term, mitocan, was coined to refer to all compounds that636

exert their action by targeting mitochondria.637
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The first goal in chemotherapy administration is reached when the drug is selec-638

tively accumulated by the tumor. Furthermore, the drug needs to get in the tumor639

cell and reach mitochondria. The selective accumulation of promising anticancer640

molecules inside mitochondria of tumor cells, thus sparing normal cells, is a key641

point in the design of novel molecules [220]. The design of mitochondrial-directed642

agents, by either chemical conjugation or targeting transporters, has demonstrated643

promising efficacy; however, their specificity is still discussed. New agents specifi-644

cally target cancer cells when fused with peptides that recognize cancer-cell-specific645

surface receptors or internalized through the plasma membrane due to the biological646

activity of the molecule. Furthermore, if the agent contains a lipophilic cationic moi-647

ety, its accumulation by polarized mitochondria, which are negatively charged in the648

matrix, increases several fold [122]. Thus, the extent to which a drug may interact649

or even bind to subcellular components, such as membranes and cell organelles, de-650

pends on the physicochemical properties of the drug. In order to reduce undesirable651

side effects, which may result from the drug being accumulated in wrong tissues or652

in normal cells, or even in wrong organelles, efficient mitochondria-specific delivery653

systems have been proposed.654

To specifically target mitochondria, distinct approaches can be found, including655

delocalized lipophilic cations (DLCs), mitochondrial targeting sequence (MTs)-656

containing polypeptides, synthetic peptides and amino-based transporters, and657

vesicle-based carriers, as reviewed by Weissig and Souza [314]. Unfortunately, many658

of these strategies can fail if the compound does not reach tumor cells. In fact, several659

potent anticancer candidates have been shelved due to low solubility and low mem-660

brane permeability. It is not easy to design a drug that would combine all essential661

properties regarding bioavailability and high pharmacological activity [314]. The662

mechanism by which mitochondrial drugs trigger apoptosis depends on the molecu-663

lar mitochondrial target site. Nowadays, the vast majority of conventional anticancer664

drugs activate death pathways, using multiple activation routes (e.g., p53 or death665

receptors) in order to exert their cytotoxic action [89]. Many of these agents fail666

due to disruption of endogenous apoptosis-inducing pathways in tumor cells. Newer667

and more specific therapies have become more prevalent in the treatment of specific668

cancers as the molecular mechanisms of carcinogenesis become better characterized.669

3.3.1 Targeting Mitochondrial Feeding670

Although not technically mitocans, some compounds will target different steps of671

the glycolytic pathway, preferentially affecting those tumors that rely on glycoly-672

sis. Inhibition of glycolysis can lead to increased tumor susceptibility to common673

anticancer agents with minimal effects on normal cells [136]. For example, ATP674

depletion and consequent death by dephosphorylation of pro-apoptotic BAD pro-675

tein as well as BAX-induced outer mitochondrial membrane permeabilization were676

observed when the energy-depleting agent 3-bromopyruvate (3BrPA) and glucose677

analog 2-deoxy-D-glucose (2DG) were used together [79, 328].678
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3BrPA is a lactic acid analog known for its alkylating activity, selectively targeting679

hepatocellular carcinoma cells in vitro [182]. In vivo,3BrPA suppresses metastatic680

lung tumors with no apparent side effects [130]. This compound suppresses glycoly-681

sis by inhibiting the activity of hexokinase and by interfering withVDAC–hexokinase682

interaction. 3BrPA is believed to enter the cancer cell via lactic acid transporters that683

are overexpressed in these cells [238], and inhibits SDH activity and mitochondrial684

respiration [182]. 3BrPA alone promotes cell death of AS-30D hepatocellular carci-685

noma cells which exhibit the “Warburg effect,” while in combination with other686

chemotherapeutics, such as [Cu(isaepy)2], a DLC-like molecule, inhibits mito-687

chondrial oxygen consumption and produces ROS leading to cell death [118, 237].688

Moreover, an in vivo antitumor effect in hepatic and pancreatic cancer was observed689

in combination with the 90-kDa heat-shock protein (HSP90) inhibitor geldanamycin690

[42]. 2DG, in turn, is a non-metabolizable glucose analog used in human lymphoma691

cells to inhibit glucose metabolism and which, in combination with tumor necro-692

sis factors (TNF), induces apoptosis [134]. 2DG suppresses intracellular ATP and693

potentiates phosphatidylserine exposure induced by Fas [134]. Certain pancreatic694

tumors, with specific Glut-1 expression profiles, were shown to be susceptible to695

2DG, due to greater accumulation of this drug [209]. 2DGwas also used as adjuvant696

in combination with ETC blockers, which were particularly effective against colon697

cancer cells [28].698

Dichloroacetate (DCA), structurally similar to pyruvate, stimulates OXPHOS699

through inhibition of pyruvate dehydrogenase kinase (PDK), hence activating pyru-700

vate dehydrogenase (PDH) and shifting metabolism from glycolysis to glucose701

oxidation. Michelakis et al. [214] observed that DCA leads to mitochondrial depolar-702

ization and increased mitochondrial ROS generation, leading to death of glioblastoma703

multiforme cells, both in vitro and in vivo. The mechanism of action involves target-704

ing PDK II, highly expressed in this type of cancer. When associated with irradiation705

or etoposide, DCA induces apoptosis of glioma cancer stem cells in vitro, inducing706

the overexpression of BH3-only proteins (Bad, Noxa, and Puma), while reducing707

their growth in vivo [226]. Interestingly, DCA has higher activity in cells with de-708

fective mitochondria, presenting an effective synergistic effect with other mitocans709

[285]. Unfortunately, DCA does not have a selective activity, acting on both cancer710

and normal cells, although DCA has also been used to treat mitochondrial diseases711

[285]. Therefore, this compound is not a good solution in cancer cells with func-712

tional mitochondria, suggesting that DCA may benefit only a selected subset of713

patients. Another strategy to control glycolysis is through the suppression of glucose714

transports. Sensitizing tumor cells with phloretin, a glucose transporter inhibitor,715

enhanced the activity of daunorubicin [41].716

Lipid metabolism has been a potential target for antitumor therapy with enzymes717

such as FAS, ACC, or ACL being good targets. Their downregulation was shown718

to decrease the proliferation of tumors [290]. Moreover, statins, the cholesterol-719

lowering agents, were shown to reduce the incidence of some cancers, and also720

to improve chemotherapy efficacy [33]. Palmitoylcarnitine and carnitine can in-721

duce apoptosis in transformed cells by increasing the synthesis of ceramide, a722

pro-apoptotic lipid, as well as by inducing glucose and fatty acid oxidation, leading723

to mitochondrial ROS production [316].724
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Fig. 3.4 Mitochondria-targeting agents. Cancer cells have altered metabolism, conferring benefits
for cell survival and chemotherapy resistance. Several agents are currently under clinical trial
to selectively target mitochondria in tumor cells and alter their physiology. One strategy is by
using the higher mitochondrial membrane potential (��m) normally found in several tumors (e.g.,
Rhodamine 123). Several agents target components of the respiratory chain, the adenine nucleotide
translocator (ANT), or mitochondrial DNA (mtDNA). Disturbance of mitochondrial function in
cancer cells can result in the induction of apoptotic cell death. TCA Tricarboxylic acid cycle,
ATRA All-trans retinoic acid, GSAO glutathione-coupled trivalent arsenical, α-TOS α-Tocopheryl
succinate, IMS mitochondrial intermembrane space

For some cancer types, the inhibition of glycolysis per se is not enough, since725

cancer cells can adapt by remodeling their metabolism with tumor recurrence likely726

to occur . In those cases, targeting different metabolic pathways may be the solution.727

3.3.2 Targeting Mitochondria728

By taking advantage of mitochondrial alterations in several cancer types, specific mi-729

tochondrially targeted agents can be designed (Fig. 3.4). For example, some cancer730

cells present higher ��m when compared with non-tumor counterparts [8]. Thus,731

positively charged lipophilic molecules can be designed to accumulate inside mito-732

chondria, disrupting the organelle and causing cell death. For example, the positively733

charged Rhodamine-123 is preferentially accumulated in mitochondria of cancer734

cells, showing a higher degree of toxicity towards them [221]. Rhodamine-123 and735

analogs are a clear example of using a biophysical characteristic of mitochondria736

in cancer cells (i.e., higher ��m) to undergo selective toxicity and accumulation737

[190]. Once accumulated by mitochondria in cancer cells, ��m is disturbed and738
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Rhodamine-123 inhibits the FoF1-ATPase [219]. Rhodamine-123 has also been used739

in conjugation with other compounds, such as 2DG, in the treatment of human breast740

carcinoma. The two compounds jointly inhibit the growth of cancer cells, whereas741

no toxicity was observed in normal cells [24]. A similar effect was observed during742

in vivo studies, suggesting that the disturbance of OXPHOS and glycolytic pathways743

in tumor cells can be an effective treatment [19]. Cyanine analogs, including MKT-744

077, are also preferentially accumulated in tumors with higher ��m [312]. Although745

tested during phase I clinical trials, further trials with MKT-077 were stopped due746

to renal toxicity in some patients [31, 312].747

Berberine, a phytoalkaloid presenting a positive charge in its structure, is accu-748

mulated in tumor cells at low concentrations [273]. Berberine targets the respiratory749

chain by inhibiting mitochondrial complex I and interferes as well with the mito-750

chondrial phosphorylative system [239], especially with the ANT [240]. Berberine751

also induces apoptosis by increasing ROS production, leading to overexpression of752

p53 and downstream apoptotic proteins [166]. Another phytochemical, sanguinarine,753

disrupts mitochondrial calcium loading capacity and increases p53 expression [272].754

Sanguinarine interferes with the mitochondrial respiratory chain, namely at complex755

II [12], and causes ROS-induced DNA damage [58], GSH depletion, and cleavage756

of poly (ADP-ribose) polymerase and beta-catenin [59]. Dequalinium and F16 are757

other lipophilic cations with mitochondrial disruptive effects [111, 313]. However,758

there are no current clinical trials with any of these molecules.759

Agents that interfere with mitochondrial respiration, including OXPHOS uncou-760

plers cause cell death due to bioenergetic disruption . Numerous inhibitors of the761

mitochondrial respiratory chain are used as tools to better understand mitochon-762

drial respiration; however, in general, these mitochondrial poisons are toxic in vivo,763

due to their nonspecific activity. Classic mitochondrial poisons include rotenone764

(complex I), antimycin A (complex III), cyanide (complex IV), and oligomycin765

(complexV, orATP-synthase), besides protonophores such as carbonylcyanide triflu-766

oromethoxyphenylhydrazone (FCCP) [97]. These and other mitochondrial inhibitors767

decrease the capacity to stimulate ROS production and apoptosis of cancer cells. For768

example, tamoxifen targets complex I [224], fenretinide inhibits complex II [65], and769

complex III is predominantly inhibited by adaphostin [192]. Alternative molecules770

presenting lower toxicity have been developed: α-Tocopheryl succinate (α-TOS) is771

a vitamin E analog capable of preferentially targeting mitochondria in cancer cells,772

inducing proliferation arrest [249]. α-Tocopheryl succinate is tumor-selective due to773

its ester structure, since the hydrolysis of α-TOS to α-tocopherol occurs in normal774

cells but not in tumor cells [168]. Moreover, α-TOS induces cell death by target-775

ing the ubiquinone-binding site at complex II, causing electron leakage, stimulating776

ROS generation and killing malignant cells at nontoxic concentrations for normal777

cells [100, 230]. α-Tocopheryl succinate facilitates the translocation of Bax from the778

cytosol to mitochondria and subsequent cytochrome c release [321]. α-Tocopheryl779

succinate also induces apoptosis in proliferating endothelial cells by causing oxida-780

tive damage and suppressing angiogenesis in vitro and in vivo in different breast781

cancer models [99]. Another compound with a similar activity to α-TOS is mitoVES782

[101].783
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Resveratrol is polyphenolic phytoalexin, found in the skin of red grapes, berries,784

and peanuts, and which presents with chemotherapeutic and chemopreventive prop-785

erties [165]. Resveratrol induces the redistribution of Fas/CD95 and TRAIL receptors786

in lipid rafts in colon carcinoma cells [81]. Resveratrol also decreases ROS produc-787

tion by competing with coenzyme Q and decreasing complex III activity [332].788

Nitric oxide production, caspase activation, and p53 are also necessary for the789

mechanism of action of resveratrol in tumor cells [178]. In normal cells, resveratrol790

increases mitochondrial capacity by activation of peroxisome proliferator-activated791

receptor-γ coactivator 1α (PGC1α), which in turn stimulates sirtuin 1 (SIRT1) [189].792

Nevertheless, structure–activity studies showed that resveratrol can interfere with793

mitochondrial ATP synthesis by binding to F1-ATPase, which may contribute to794

cell death induction [133]. Resveratrol has a low bioavailability [307]; hence, struc-795

tural modifications may increase its clinical usefulness. In fact, a complex between796

triphenylphosphonium and resveratrol leads to mitochondrial accumulation of this797

compound [21]. Resveratrol is currently under clinical evaluation for colon can-798

cer and multiple myeloma treatments [144, 282]. Moreover, resveratrol and other799

polyphenols are claimed to activate Sirt 3 [132]. Upregulation of this mitochondrial800

sirtuin may have a similar effect to that of DCA, which increases mitochondrial801

metabolism and disturbs cancer cell homeostasis.802

Both hormones, insulin and insulin-like growth factor, are associated with a range803

of cancers [244]. Evidence shows that obese and diabetic individuals are a risk group804

for the development of cancer, and also have a worse prognosis in the event of805

the disease. Metformin is an anti-glycemic agent used in type 2 diabetes, thought806

to decrease cancer incidence [296]. Metformin is an AMPK activator and inhibits807

complex I in human breast cancer in situ [317], also increasing tumor cell sensitivity808

to chemotherapy [125]. However, caution is required in patients with diabetes since809

the use of metformin as adjuvant may not be as effective, because these patients may810

already have a long-term prescription [199]. Metformin also compromises the growth811

of breast cancer tumors in mice, by modulating endoribonuclease Dicer (DICER),812

through mir33a upregulation and by targeting c-Myc [22].813

Other drugs can target other mitochondrial structures. Lonidamine is an inhibitor814

of aerobic glucose utilization and can also directly interact with hexokinase [110].815

Arsenic trioxide (As2O3) triggers cancer cell death by inhibiting thioredoxin816

reductase and promoting oxidative stress [93], which has been shown to be effective817

against acute promyelocytic leukemia (APL) [5]. Arsenic trioxide has also been818

used in combination with all-trans retinoic acid (ATRA) showing a synergistic819

effect against APL mouse models [210]. ATRA is a natural derivative of vitamin820

A, which stimulates the expression of retinoic acid receptor-responsive genes [210].821

This compound suppresses mitochondrial respiration, decreases ��m, and triggers822

ANT-dependent MPT and cell death independent from nuclear receptor binding,823

suggesting another potential mechanism of action is involved [228]. The potential824

of As2O3 and ATRA in the treatment of other cancer types is also being explored825

[326]. A GSH-coupled trivalent arsenical compound (GSAO) causes apoptosis826

in angiogenic endothelial cells both in vitro and in vivo, although it was initially827

suggested that proliferating cancer cells would be targeted as well [98]. However,828
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low toxicity towards the latter was observed [98]. GSAO can inhibit ATP/ADP829

transport by cross-linking two of the three matrix-facing cysteine thiols in the ANT.830

This will lead to ATP depletion, ROS generation, and ultimately mitochondrial831

depolarization and apoptosis [98]. Angiogenic cells can often circumvent many832

therapies; however, these cells have a decreased capacity to buffer the arsenical833

moiety by expressing low MRP1/2 [37]. GSAO is currently in clinical trials in834

cancer patients and promising results are anticipated [37, 94] .835

HSP90 is not normally present in mitochondria of normal cells; however, this836

chaperone is upregulated in mitochondria in cancer cells, due to a possible induc-837

tion by Ras and Akt oncogenes [243]. HSP-90 is an ATPase-directed molecular838

chaperone that supervises protein folding during cellular stress responses, with the839

protein complexes involved in cell proliferation and cell survival [243]. The molec-840

ular chaperone Hsp90 provides an attractive target for therapeutic interventions in841

cancer. Shepherdin is a peptidomimetic that is easily accumulated in mitochon-842

dria, and which is an antagonist of the complex between Hsp90 and survivin (cell843

cycle-regulating protein), plus other additional client proteins such as TRAP-1 [278].844

Shepherdin inhibits Hsp90 chaperone activity via an ATP competition mechanism845

and kills cancer cells by inducing the mitochondrial permeability transition (MPT)846

[278]. Shepherdin showed no toxicity for brain and liver mitochondria in several hu-847

man cancers [172, 243]. Gamitrinib was conceived by coupling an HSP90 inhibitor848

to lipophilic cationic moieties. Gamitrinib specifically targets mitochondria in cancer849

cells, and antagonizes the ATPase activity of HSP90. Gamitrinib causes the death of850

cancer cells and suppresses tumor growth in vivo, with no apparent effect on normal851

counterparts [173].852

Some test compounds specifically target mtDNA. A vitamin K sub-type, vitamin853

k3, is a synthetic compound that has been described to inhibit DNA polymerase ϒ ,854

thus disturbing mtDNA replication and promoting ROS generation leading to apopto-855

sis [266]. However, vitamin k3 can interfere with calcium homeostasis and decrease856

GSH levels as well [95]. In vitro studies demonstrated that vitamin k3 displayed anti-857

tumor activity against pancreatic and breast cancer cells [2]. Ditercalinium is another858

agent which is preferentially accumulated in mitochondria, and that targets mtDNA,859

inhibiting replication [229]. After treatment with ditercalinium, ultrastructural stud-860

ies showed a depletion of mtDNA and loss of mitochondrial cristae [268]. Agents861

that disturb mtDNA are predicted to affect mitochondrial respiration by leading to862

loss of OXPHOS subunits encoded by the mitochondrial genome.863

3.4 Concluding Remarks864

The present chapter demonstrates that the profound metabolic remodeling of cancer865

cells, including mitochondrial rearrangement, not only is an indirect response to866

cell survival or proliferation but also can be controlled by specific cell signaling867

[310]. Nevertheless, there are no specific mitochondrial or metabolic alterations868

common to all cancer types, although the activation of different metabolic pathways869

results in similar phenotypes. There are no doubts that mitochondrial deregulation and870
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metabolism remodeling are important hallmarks of cancer cells; however, as pointed871

out, there are other cases where an altered metabolic pattern is not observed. Besides,872

many proteins involved in carcinogenesis have dual and opposite functions even873

inside the same tumor. It is also important to take into account the model that is being874

used to evaluate the protein activity, since many of them vary their behavior between875

in vitro and in vivo situations [334]. The large number of functions mitochondria876

have in cells implies that many of those may be altered during cancer, some of which877

will contribute to carcinogenesis while others will act as tumor suppressors. The878

mitochondrial respiratory chain has an important function not only in the context of879

ATP production, but also in maintaining a determined redox balance. A specific tumor880

signature requires that each one of these functions is altered somehow to respond to881

metabolic and survival cues. In the traditional model, a decrease in mitochondrial882

ATP production, resulting from different factors such as a hypoxic environment or883

low glucose, will drive the generation of malignant mitochondrial ROS production884

and trigger mitochondrial biogenesis [253]. Mitochondrial respiration can then be885

regulated by differential expression of OXPHOS subunits or by upstream signaling886

and/or metabolic pathways. By its turn, inhibition or stimulation of mitochondrial887

respiration can feed back onto other cancer cell pathways or even increase genomic888

instability, thus contributing to higher aggressiveness.889

Targeting mitochondria in tumors based on specific respiratory alterations or com-890

ponents implies a type of knowledge that we may not have at the moment. Even inside891

the same tumor mass, mitochondrial respiration is different according to the oxygen892

gradient. In the absence of oxygen, mitochondria can still maintain ��m by the893

reverse action of ATP synthase [284]. This means that compounds targeting the res-894

piratory chain will not work; instead, the inhibition of the ATP synthase in a selective895

manner in tumor cells is a solution in the future.896
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