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Abstract In recent years, there have been considerable advances in the use of
genome-scale metabolic models to provide accurate phenotype simulation methods,
which in turn enabled the development of efficient strain optimization algorithms for
Metabolic Engineering. In this work, we address some of the limitations of previ-
ous studies regarding strain optimization algorithms, mainly its use of Flux Balance
Analysis in the simulation layer. We perform a thorough analysis of previous results
by relying on Flux Variability Analysis and on alternative methods for phenotype
simulation, such as ROOM. This last method is also used in the simulation layer,
as a basis for optimization, and the results obtained are also the target of thorough
analysis and comparison with previous ones.

1 Introduction

The recent advances on genome sequencing techniques have led to the knowledge of
the complete genetic information of a large number of organisms over the last few
years. Together with the development of novel methods in the fields of Bioinfor-
matics and Systems Biology, this data allowed, among many other applications, the
reconstruction of genome-scale metabolic models for some organisms [6], mostly
microbes with an industrial interest in Biotechnology. Within Metabolic Engineer-
ing (ME) [4], one of the applications of these models is to allow the simulation of the
phenotype of these microbes, under different environmental conditions (e.g, nutri-
ents, aerobic/ anaerobic conditions). Also, it is possible to predict the phenotypes of
mutant strains (e.g. gene knockouts). In fact, several distinct constraint-based meth-
ods have been developed that rely only on the information about the metabolic ca-
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pacities of an organism to reach phenotype predictions. Among those, Flux Balance
Analysis (FBA) [2] and Regulatory on-off minimization of metabolic flux changes
(ROOM) [10] have reached a remarkable level of success.

The combination of reliable models with efficient simulation methods has been
the basis for different strain optimization algorithms. Their goal is to find the set
of genetic modifications to apply to a given strain, to achieve an aim, typically re-
lated with the industrial production of a metabolite of interest. Indeed, one of the
major recent trends in industry has been the replacement of traditional industries
(e.g. chemical industry) by Biotechnology, as a way to produce numerous impor-
tant products, but this typically requires to retrofit the original strain. In previous
work, an approach based in the use of metaheuristics, such as Evolutionary Algo-
rithms and Simulated Annealing, has been proposed to solve the optimization task
of reaching an optimal (or near optimal) subset of reaction deletions to optimize an
objective function related with the production of a given compound [9]. The idea is
to force the microbes to synthesize a desired product, while keeping it viable.

While good results have been obtained, there are still some limitations that need
to be addressed. Some of those are related to the fact that all previous work has
relied on the use of FBA to provide the phenotype simulation layer. This brings two
major problems: (i) FBA relies on solving a constraint-based optimization problem
that is formulated using linear programming (LP). However, it considers only one
optimal solution, while the problem can have alternative optimal solutions. Thus,
the phenotype taken as the result is only one of the possible alternatives. This can
have an impact on the optimization results. (ii) Other methods have been proposed
for phenotype simulation, claiming better results when simulating mutant strains
(e.g. ROOM). However, these methods have not yet been used as a basis for strain
optimization, mainly due to their computational burden.

In this work, the aim is to shed a new light over strain optimization, by addressing
two tasks: (i) to re-analyse some previously published results, checking the robust-
ness of the solutions found, under two perspectives: checking the impact of the mul-
tiple optima issue (using Flux Variabilty Analysis) and simulating those solutions
with another method (ROOM); (ii) use ROOM as the mutant phenotype prediction
method within strain optimization and comparing the results with those previously
obtained with FBA. The ultimate goal will be to gain an insight on these approaches
that allows to improve the robustness of the underlying algorithms.

2 Methods

2.1 Flux-balance and flux variability analysis

The Flux Balance Analysis (FBA) [2] approach is based on a steady state approxi-
mation to the concentrations of internal metabolites, which reduces the correspond-
ing mass balances to a set of linear homogeneous equations. For a network of M
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metabolites and N reactions, this is expressed as: ijy:l S;jvj = 0, where S;; is the
stoichiometric coefficient for metabolite 7 in reaction j and v; is the flux over the
reaction j. The maximum/minimum values of the fluxes can be set by additional
constraints in the form o; < v; < f8;, also used to specify nutrient availability.

The set of linear equations obtained usually leads to an under-determined sys-
tem, for which there exists an infinite number of feasible flux distributions that sat-
isfy the constraints. However, if a given linear function over the fluxes is chosen to
be maximized, it is possible to obtain a single solution by applying standard algo-
rithms (e.g. simplex) for LP. The most common flux chosen for maximization is the
biomass, based on the premise that microorganisms have maximized their growth
along natural evolution, a premise that has been validated experimentally [1].

Flux Variability Analysis (FVA) is a technique that also relies on LP, exploring
the space of all possible solutions that comply to a given set of constraints. The idea
is to calculate the limits for a given flux in the model, given the set of constraints as
in FBA. To explore the space of possible values of a flux within the space of optimal
solutions of an FBA instance, the following steps are executed: (i) run the LP as
before, maximizing the biomass flux (FBA); (ii) add a constraint stating biomass is
greater or equal to the value reached in FBA; (iii) run two LP problems maximizing
and minimizing the target flux. In this work, the minimization of the target flux will
be used, since this provides a worst-case scenario for the desired product.

2.2 Regulatory on-off minimization of metabolic flux changes

An alternative to FBA for the phenotype simulation is the Regulatory on-off min-
imization of metabolic flux changes (ROOM) method. ROOM is appropriate only
for the simulation of mutants, since it calculates the solution with minimum number
of significant changes in the value of the fluxes from the mutant strain, relative to the
original wild-type solution (obtained with FBA). The method is implemented based
on a mixed integer linear programming (MILP) formulation. The full details on the
mathematical formulation can be found in the original paper [10]. The authors pro-
vide experimental evidence of the better accuracy of this method for the phenotype
prediction of knock-out mutants.

2.3 Simulated annealing for strain optimization

The problem addressed in this work consists in selecting, from a set of reactions in
a microbe’s genome-scale model, a subset to be deleted to maximize a given ob-
jective function. The encoding of a solution is achieved by a variable size set-based
representation, where each solution consists of a set of integer values representing
the reactions that will be deleted, with a value between 1 and N, where N is the
number of genes in the model. For all reactions deleted, the flux will be constrained
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to 0, therefore disabling it from the metabolic model. The process proceeds with the
simulation of the mutant using the chosen phenotype simulation method (FBA or
ROOM). The output of both methods is the set of fluxes for all reactions, that are
then used to compute the fitness value, given by an appropriate objective function.
The objective function used is the Biomass-Product Coupled Yield (BPCY) [5],
given by: BPCY = %, where P stands for the flux representing the excreted prod-
uct; G for the organism’s growth rate (biomass flux) and S for the substrate intake
flux. Besides optimizing for the production of the desired product, this function also
allows to select for mutants that exhibit high growth rates. To address this task, we
will use Simulated Annealing (SA) as proposed previously in [9], where full details
can be found.

3 Experiments and results

3.1 Case studies and experimental setup

The implementation of the proposed algorithms was performed by the authors in
Java, within the OptFlux open-source ME platform (http://www.optflux.org) [8].

Two case studies were considered, both considering the microorganism Es-
cherichia coli. The aim is to produce succinate and lactate with glucose as the limit-
ing substrate. The lactate is split into aerobic and anaerobic conditions, i.e. allowing
(or not) the uptake of oxygen from the media. Succinate is one of the key intermedi-
ates in cellular metabolism and therefore an important case study for ME [3]. It has
been used to synthesize polymers, as additives and flavouring agents in foods, sup-
plements for pharmaceuticals, or surfactants. Lactate and its derivatives have been
used in a wide range of food-processing and industrial applications like meat preser-
vation, cosmetics, oral and health care products. The genome-scale model used is
given in [7] and includes a total of N = 1075 fluxes and M = 761 metabolites. A
number of pre-processing steps were conducted to simplify the model and reduce
the number of targets for the optimization (see [9] for details) leaving the simplified
model with N = 550 and M = 332; 227 essential reactions are identified, leaving
323 variables to be considered when performing strain optimization.

3.2 Results

3.2.1 Re-analysing solutions from FBA

The first task was to consider a large set of solutions for strain optimization prob-
lems, obtained using FBA as the phenotype simulation method. These solutions
were analysed by running FVA for the target product flux, thus addressing the is-
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sue of their robustness to multiple optima in the LP solutions. The set of solu-
tions analysed came from three sources: experiments run for this study and pre-
vious results obtained by the authors in [9] and [11]. The selected set of so-
lutions was simulated using FVA, minimizing the target flux (succinate or lac-
tate production). This provides the minimum predicted production value that can
be obtained by the mutant. As a measure of robustness, the value of maximum
loss was calculated, taking into account the original FBA value (used in the opti-
mization to evaluate the solution), here denoted as F BAProdValue, and the mini-
mum limit calculated by the FVA for the product flux, denoted as FVAMinValue:
MaxLoss = (FBAProdValue — FVAMinValue) /F BAProdValue

Table 1 Results for the FVA analysis.

Case study Succinate| Lactate | Lactate
(aerobic) |(aerobic)|(anaerobic)
Number solutions 65 77 48
Mean MaxLoss 0.2% 92.0% 92.5%
Mean FBAProdValue 5.82 15.97 17.35
Mean FVAMinValue 5.81 1.20 0.96
FVAMinValue < 25% FBAProdValue| 0% 92% 94%
FVAMinValue > 75% F BAProdValue| 100% 8% 6%

Table 1 summarizes the results obtained for the 3 case studies. The first row
shows the number of solutions analysed, then the mean values for the MaxLoss,
FBAProdValue and FVAMinValue are shown and the last two rows show the per-
centage of solutions where the value is smaller than 25% of the FBA value and
larger than 75%. The results show a huge difference between the two case studies.
In fact, solutions for succinate production optimization seem very robust; indeed,
all solutions have a MaxLoss of less than 5% and more than 95% of the solutions
have a value of zero. This means that, in this case, FBA does not have alternative
optimum solutions that can lower the product value significantly. On the other hand,
in the lactate case studies, the scenario is the reverse. In fact, more than 90% of the
solutions analysed have a drop of 100% or very near, which means that the great
majority of the solutions are not robust, existing alternative solutions where the pro-
duction of the target metabolite is very low (or even non existent in many cases).

The next step was to take each solution (reaction deletion list) and perform
the simulation of the respective mutant using the ROOM algorithm. The aim was
to check if the results obtained were near or if there were significant differences.
For each solution and each method (FBA and ROOM) the values obtained for the
biomass flux and for the target product flux were collected. As a measure of the
deviation between both methods, the relative differences were calculated, by sub-
tracting the two values (FBA and ROOM) and dividing by the original FBA value.
This process was repeated both for the biomass and product fluxes. Table 2 shows
the results of these experiments. These show that the values obtained by FBA and
ROOM are generally in agreement in two of the cases: succinate and lactate (anaer-
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obic), but are very distant in the lactate case study with aerobic conditions. In the
first two, the solutions seem to be robust to the phenotype simulation methods, while
in the latter the results are quite different.

Table 2 Results for the analysis of solutions obtained using FBA in the optimization, simulated
now with ROOM.

Case study Succinate| Lactate | Lactate
(aerobic) [(aerobic)|(anaerobic)
Mean relative diff. biomass | -27.0% | -95.2% | -11.3%
Mean relative diff. product | +0.6% | -93.6% -7.4%
Mean biomass flux (FBA) 0.575 0.195 0.144
Mean biomass flux (ROOM)| 0.427 0.017 0.128
Mean product flux (FBA) 5.82 15.97 17.36
Mean product flux (ROOM) | 5.83 091 15.71

3.2.2 Using ROOM for strain optimization

A natural follow-up of the previous experiments is to use the ROOM algorithm as
the phenotype simulation method within strain optimization algorithms. This task
was addressed here, although with some limitations given the high computational
demands, since MILP problems needed by ROOM are harder to solve than the LP
used in FBA. SA was the optimization algorithm chosen for the job and the configu-
ration proposed in [9] was kept. The termination criteria was based on 50000 fitness
evaluations. For each configuration, the process was repeated for 10 runs, given the
computational constraints. Also, based on the results of the previous section, exper-
iments were only run for two case studies: the succinate and the lactate (anaerobic).
The same set of experiments was also done with FBA as the simulation method to
enrich the comparative analysis.

The main results for the optimization with both methods are provided in Table 3.
From this table, we see that the results are quite comparable being within the same
range of values in most cases. Also, we decided to conduct a robustness analysis for
the ROOM results, similar to the one conducted in the previous section. Therefore,
we re-analysed the solutions using FVA and also simulating with FBA. The metrics
used are similar to the ones defined above (reversing the roles of ROOM and FBA),
and the results are given in Tables 4 and 5, respectively. From those tables, we can
conclude that, unlike the previous section, the results on the lactate case study now
seem much more robust in both FBA and FVA analysis. This shows that the opti-
mization using the ROOM phenotype simulation approach leads the optimization
algorithm to very different solutions in both case studies. Also, it is also clear that it
is not easy to know a priori what is the best optimization algorithm for a given task.

The full results of this study can be checked in two files given as supplementary
material available in the site: http://www.optflux.org/suppmaterial.
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Table 3 Results for the the optimization using with ROOM compared with simulation using FBA.

Simulation Case Number |Mean| Mean | Mean
Method Study Knockouts | BPCY |Biomass|Product
ROOM Succinate 3 0.146 | 0.706 | 2.26
ROOM Succinate 6 0.301| 0.509 | 5.90
ROOM Succinate 12 0.321| 0.527 | 6.09
ROOM |Lactate (anae.) 3 0.153| 0.152 | 10.59
ROOM |Lactate (anae.) 6 0.229| 0.146 | 15.81

FBA Succinate 3 0.059| 0.859 | 0.693
FBA Succinate 6 0.235| 0.689 3.74
FBA Succinate 12 0.340| 0.539 | 6.33
FBA  |Lactate (anae.) 3 0.153| 0.162 | 10.61
FBA  |Lactate (anae.) 6 0.204| 0.153 | 14.16
Table 4 Results for the FVA analysis.
Case study Succinate| Lactate
(aerobic) |(anaerobic)

Mean MaxLoss 63.3% 0.0%

Mean ROOMProdValue 4.75 13.20

Mean FVAMinValue 1.28 13.20

FVAMinValue < 25% ROOMprodValue| 16% 0%
FVAMinValue > 75% ROOMprodValue| 27% 100%

Table 5 Results for the analysis of solutions obtained using ROOM in the optimization, simulated
now with FBA.

Case study Succinate| Lactate
(aerobic) |(anaerobic)
Mean relative diff. biomass 13.1 -10.2%

Mean relative diff. product | -63.3% 21.8%
Mean biomass flux (ROOM)| 0.580 0.149

Mean biomass flux (FBA) | 0.655 0.134
Mean product flux (ROOM)| 4.75 13.2

Mean product flux (FBA) 1.28 13.0

4 Conclusions

In this work, we addressed the issue of robustness in strain optimization algorithms
by re-analysing previous results with alternative simulation methods. The results
show that this is an important question to address, since for many of the previous
results, the solutions do not seem to be robust when other simulation methods are
used. Thus, it is highly recommended that this type of analysis is conducted as a
post-processing step of strain optimization methods. This work lays the basis to
create a workflow for this task, although this still needs the be further refined in
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the future. Also, the first results for strain optimization algorithms using a method
alternative to FBA (in this case, ROOM) were provided, being the first study that
conducts this type of research. The results show that there is no rule stating which is
the best method to use and, in practice, the best alternative is to use more than one
alternative and perform a careful post-processing of the results.

In further work, the development of methods that can incorporate the robustness
of the solutions within the evaluation function of the metaheuristics will be explored.
Although this can increase the computational effort of the algorithms it can be an
alternative worth to be explored.
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