CONTENTS

PREFACE

1 INTRODUCTION TO ADAPTIVE FILTERING

1.1 Introduction 1
1.2 Adaptive Signal Processing 2
1.3 Introduction to Adaptive Algorithms .. 4
1.4 Applications 7
1.5 References 11

2 FUNDAMENTALS OF ADAPTIVE FILTERING

2.1 Introduction 13
2.2 Signal Representation 14
 2.2.1 Deterministic Signals 14
 2.2.2 Random Signals 15
 2.2.3 Ergodicity 21
2.3 The Correlation Matrix 23
2.4 Wiener Filter 34
2.5 Linearly Constrained Wiener Filter ... 39
 2.5.1 The Generalized Sidelobe Canceller 43
2.6 Mean-Square Error Surface 44
2.7 Bias and Consistency 47
2.8 Newton Algorithm 48
2.9 Steepest-Descent Algorithm 49
2.10 Applications Revisited 54
 2.10.1 System Identification 54
 2.10.2 Signal Enhancement 55
 2.10.3 Signal Prediction 56
 2.10.4 Channel Equalization 57
 2.10.5 Digital Communication System ... 65
2.11 Concluding Remarks 67
2.12 References 68
2.13 Problems 70
3 THE LEAST-MEAN-SQUARE (LMS) ALGORITHM

3.1 Introduction 77
3.2 The LMS Algorithm 77
3.3 Some Properties of the LMS Algorithm 79
 3.3.1 Gradient Behavior 79
 3.3.2 Convergence Behavior of the Coefficient Vector 80
 3.3.3 Coefficient-Error-Vector Covariance Matrix 82
 3.3.4 Behavior of the Error Signal 85
 3.3.5 Minimum Mean-Square Error 85
 3.3.6 Excess Mean-Square Error and Misadjustment 87
 3.3.7 Transient Behavior 89
3.4 LMS Algorithm Behavior in Nonstationary Environments 90
3.5 Complex LMS Algorithm 94
3.6 Examples 95
 3.6.1 Analytical Examples 95
 3.6.2 System Identification Simulations 107
 3.6.3 Channel Equalization Simulations 113
 3.6.4 Fast Adaptation Simulations 114
 3.6.5 The Linearly Constrained LMS Algorithm 118
3.7 Concluding Remarks 121
3.8 References 124
3.9 Problems 126

4 LMS-BASED ALGORITHMS

4.1 Introduction 131
4.2 Quantized-Error Algorithms 132
 4.2.1 Sign-Error Algorithm 133
 4.2.2 Dual-Sign Algorithm 140
 4.2.3 Power-of-Two Error Algorithm 141
 4.2.4 Sign-Data Algorithm 141
4.3 The LMS-Newton Algorithm 143
4.4 The Normalized LMS Algorithm 145
4.5 The Transform-Domain LMS Algorithm 147
4.6 The Affine Projection Algorithm 156
 4.6.1 Misadjustment in the Affine Projection Algorithm 161
 4.6.2 Behavior in Nonstationary Environments 169
 4.6.3 Transient Behavior 171
 4.6.4 Complex Affine Projection Algorithm 173
4.7 Simulation Examples
 4.7.1 Signal Enhancement Simulation
 4.7.2 Signal Prediction Simulation
4.8 Concluding Remarks
4.9 References
4.10 Problems

5 CONVENTIONAL RLS ADAPTIVE FILTER
 5.1 Introduction
 5.2 The Recursive Least-Squares Algorithm
 5.3 Properties of the Least-Squares Solution
 5.3.1 Orthogonality Principle
 5.3.2 Relation Between Least-Squares and Wiener Solutions
 5.3.3 Influence of the Deterministic Autocorrelation Initialization
 5.3.4 Steady-State Behavior of the Coefficient Vector
 5.3.5 Coefficient-Error-Vector Covariance Matrix
 5.3.6 Behavior of the Error Signal
 5.3.7 Excess Mean-Square Error and Misadjustment
 5.4 Behavior in Nonstationary Environments
 5.5 Complex RLS Algorithm
 5.6 Simulation Examples
 5.7 Concluding Remarks
 5.8 References
 5.9 Problems

6 DATA-SELECTIVE ADAPTIVE FILTERING
 6.1 Introduction
 6.2 Set-Membership Filtering
 6.3 Set-Membership Normalized LMS Algorithm
 6.4 Set-Membership Affine Projection Algorithm
 6.4.1 A Trivial Choice for Vector $\tilde{\gamma}(k)$
 6.4.2 A Simple Vector $\tilde{\gamma}(k)$
 6.4.3 Reducing the Complexity in the Simplified SM-AP Algorithm
 6.5 Set-Membership Binormalized LMS Algorithms
 6.5.1 SM-BNLMS Algorithm 1
 6.5.2 SM-BNLMS Algorithm 2
 6.6 Computational Complexity
 6.7 Time-Varying $\tilde{\gamma}$
 6.8 Partial-Update Adaptive Filtering
 6.8.1 Set-Membership Partial-Update NLMS Algorithm
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.9 Simulation Examples</td>
<td>260</td>
</tr>
<tr>
<td>6.9.1 Echo Cancellation Environment</td>
<td>264</td>
</tr>
<tr>
<td>6.9.2 Wireless Channel Environment</td>
<td>271</td>
</tr>
<tr>
<td>6.10 Concluding Remarks</td>
<td>280</td>
</tr>
<tr>
<td>6.11 References</td>
<td>281</td>
</tr>
<tr>
<td>6.12 Problems</td>
<td>283</td>
</tr>
<tr>
<td>7 ADAPTIVE LATTICE-BASED RLS ALGORITHMS</td>
<td>289</td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>289</td>
</tr>
<tr>
<td>7.2 Recursive Least-Squares Prediction</td>
<td>290</td>
</tr>
<tr>
<td>7.2.1 Forward Prediction Problem</td>
<td>290</td>
</tr>
<tr>
<td>7.2.2 Backward Prediction Problem</td>
<td>293</td>
</tr>
<tr>
<td>7.3 Order-Updating Equations</td>
<td>295</td>
</tr>
<tr>
<td>7.3.1 A New Parameter $\delta(k, i)$</td>
<td>295</td>
</tr>
<tr>
<td>7.3.2 Order Updating of $\xi_{b_{\min}}^d(k, i)$ and $w_b(k, i)$</td>
<td>297</td>
</tr>
<tr>
<td>7.3.3 Order Updating of $\xi_{f_{\min}}^d(k, i)$ and $w_f(k, i)$</td>
<td>298</td>
</tr>
<tr>
<td>7.3.4 Order Updating of Prediction Errors</td>
<td>298</td>
</tr>
<tr>
<td>7.4 Time-Updating Equations</td>
<td>300</td>
</tr>
<tr>
<td>7.4.1 Time Updating for Prediction Coefficients</td>
<td>300</td>
</tr>
<tr>
<td>7.4.2 Time Updating for $\delta(k, i)$</td>
<td>302</td>
</tr>
<tr>
<td>7.4.3 Order Updating for $\gamma(k, i)$</td>
<td>304</td>
</tr>
<tr>
<td>7.5 Joint-Process Estimation</td>
<td>307</td>
</tr>
<tr>
<td>7.6 Time Recursions of the Least-Squares Error</td>
<td>311</td>
</tr>
<tr>
<td>7.7 Normalized Lattice RLS Algorithm</td>
<td>313</td>
</tr>
<tr>
<td>7.7.1 Basic Order Recursions</td>
<td>313</td>
</tr>
<tr>
<td>7.7.2 Feedforward Filtering</td>
<td>315</td>
</tr>
<tr>
<td>7.8 Error-Feedback Lattice RLS Algorithm</td>
<td>318</td>
</tr>
<tr>
<td>7.8.1 Recursive Formulas for the Reflection Coefficients</td>
<td>318</td>
</tr>
<tr>
<td>7.9 Lattice RLS Algorithm Based on A Prior Errors</td>
<td>319</td>
</tr>
<tr>
<td>7.10 Quantization Effects</td>
<td>321</td>
</tr>
<tr>
<td>7.11 Concluding Remarks</td>
<td>327</td>
</tr>
<tr>
<td>7.12 References</td>
<td>328</td>
</tr>
<tr>
<td>7.13 Problems</td>
<td>329</td>
</tr>
<tr>
<td>8 FAST TRANSVERSAL RLS ALGORITHMS</td>
<td>333</td>
</tr>
<tr>
<td>8.1 Introduction</td>
<td>333</td>
</tr>
<tr>
<td>8.2 Recursive Least-Squares Prediction</td>
<td>334</td>
</tr>
<tr>
<td>8.2.1 Forward Prediction Relations</td>
<td>334</td>
</tr>
<tr>
<td>8.2.2 Backward Prediction Relations</td>
<td>335</td>
</tr>
<tr>
<td>8.3 Joint-Process Estimation</td>
<td>337</td>
</tr>
</tbody>
</table>
8.4 Stabilized Fast Transversal RLS Algorithm 339
8.5 Concluding Remarks 345
8.6 References 346
8.7 Problems 347

9 QR-DECOMPOSITION-BASED RLS FILTERS 351
9.1 Introduction 351
9.2 Triangularization Using QR-Decomposition 351
 9.2.1 Initialization Process 353
 9.2.2 Input Data Matrix Triangularization 353
 9.2.3 QR-Decomposition RLS Algorithm 360
9.3 Systolic Array Implementation 365
9.4 Some Implementation Issues 372
9.5 Fast QR-RLS Algorithm 373
 9.5.1 Backward Prediction Problem 376
 9.5.2 Forward Prediction Problem 378
9.6 Conclusions and Further Reading 384
9.7 References 387
9.8 Problems 389

10 ADAPTIVE IIR FILTERS 395
10.1 Introduction 395
10.2 Output-Error IIR Filters 396
10.3 General Derivative Implementation 400
10.4 Adaptive Algorithms 402
 10.4.1 Recursive Least-Squares Algorithm 402
 10.4.2 The Gauss-Newton Algorithm 404
 10.4.3 Gradient-Based Algorithm 407
10.5 Alternative Adaptive Filter Structures 407
 10.5.1 Cascade Form 407
 10.5.2 Lattice Structure 409
 10.5.3 Parallel Form 416
 10.5.4 Frequency-Domain Parallel Structure 417
10.6 Mean-Square Error Surface 426
10.7 Influence of the Filter Structure on the MSE Surface 433
10.8 Alternative Error Formulations 435
 10.8.1 Equation Error Formulation 435
 10.8.2 The Steiglitz-McBride Method 439
10.9 Conclusion 442
10.10 References 443
10.11 Problems 446
11 NONLINEAR ADAPTIVE FILTERING 451
 11.1 Introduction 451
 11.2 The Volterra Series Algorithm 452
 11.2.1 LMS Volterra Filter 454
 11.2.2 RLS Volterra Filter 457
 11.3 Adaptive Bilinear Filters 464
 11.4 Multilayer Perceptron Algorithm 469
 11.5 Radial Basis Function Algorithm 473
 11.6 Conclusion 480
 11.7 References 482
 11.8 Problems 484

12 SUBBAND ADAPTIVE FILTERS 485
 12.1 Introduction 485
 12.2 Multirate Systems 486
 12.2.1 Decimation and Interpolation 486
 12.3 Filter Banks 488
 12.3.1 Two-Band Perfect Reconstruction Filter Banks 493
 12.3.2 Analysis of Two-Band Filter Banks 494
 12.3.3 Analysis of M-Band Filter Banks 494
 12.3.4 Hierarchical M-Band Filter Banks 495
 12.3.5 Cosine-Modulated Filter Banks 495
 12.3.6 Block Representation 497
 12.4 Subband Adaptive Filters 497
 12.4.1 Subband Identification 501
 12.4.2 Two-Band Identification 502
 12.4.3 Closed-Loop Structure 502
 12.5 Cross-Filters Elimination 508
 12.5.1 Fractional Delays 510
 12.6 Delayless Subband Adaptive Filtering 515
 12.6.1 Computational Complexity 517
 12.7 Frequency-Domain Adaptive Filtering 521
 12.8 Conclusion 530
 12.9 References 531
 12.10 Problems 533

13 BLIND ADAPTIVE FILTERING 537
 13.1 Introduction 537
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.2</td>
<td>Constant-Modulus Algorithm</td>
<td>538</td>
</tr>
<tr>
<td>13.2.1</td>
<td>Godard Algorithm</td>
<td>539</td>
</tr>
<tr>
<td>13.2.2</td>
<td>Constant-Modulus Algorithm</td>
<td>540</td>
</tr>
<tr>
<td>13.2.3</td>
<td>Sato Algorithm</td>
<td>540</td>
</tr>
<tr>
<td>13.2.4</td>
<td>Error Surface of CMA</td>
<td>542</td>
</tr>
<tr>
<td>13.3</td>
<td>Affine Projection CM Algorithm</td>
<td>549</td>
</tr>
<tr>
<td>13.4</td>
<td>Blind SIMO Equalizers</td>
<td>555</td>
</tr>
<tr>
<td>13.4.1</td>
<td>Identification Conditions</td>
<td>557</td>
</tr>
<tr>
<td>13.5</td>
<td>SIMO-CMA Equalizer</td>
<td>558</td>
</tr>
<tr>
<td>13.6</td>
<td>Concluding Remarks</td>
<td>564</td>
</tr>
<tr>
<td>13.7</td>
<td>References</td>
<td>565</td>
</tr>
<tr>
<td>13.8</td>
<td>Problems</td>
<td>567</td>
</tr>
</tbody>
</table>

A COMPLEX DIFFERENTIATION 571
A.1 Introduction 571
A.2 The Complex Wiener Solution 571
A.3 Derivation of the Complex LMS Algorithm 574
A.4 Useful Results 575

B QUANTIZATION EFFECTS IN THE LMS ALGORITHM 577
B.1 Introduction 577
B.2 Error Description 577
B.3 Error Models for Fixed-Point Arithmetic 579
B.4 Coefficient-Error-Vector Covariance Matrix 580
B.5 Algorithm Stop 582
B.6 Mean-Square Error 582
B.7 Floating-Point Arithmetic Implementation 584
B.8 Floating-Point Quantization Errors in LMS Algorithm 585

C QUANTIZATION EFFECTS IN THE RLS ALGORITHM 589
C.1 Introduction 589
C.2 Error Description 589
C.3 Error Models for Fixed-Point Arithmetic 591
C.4 Coefficient-Error-Vector Covariance Matrix 592
C.5 Algorithm Stop 595
C.6 Mean-Square Error 596
C.7 Fixed-Point Implementation Issues 597
C.8 Floating-Point Arithmetic Implementation 597
C.9 Floating-Point Quantization errors in RLS Algorithm 600
D KALMAN FILTERS

D.1 Introduction 605
D.2 State-Space Model 605
 D.2.1 Simple Example 606
D.3 Kalman Filtering 608
D.4 Kalman Filter and RLS 614
D.5 References 615

INDEX 617