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Sterile apple juice inoculated with S. cerevisiae ATCC 9763 (103 CFU/mL) was 

processed in a bubble column with gaseous ozone of flow rate of 0.12 L/min and 

concentration of 33-40 µg/mL for 8 min. The growth kinetics of S. cerevisiae as an 

indicator of juice spoilage was monitored at 4, 8, 12 and 16 ºC for up to 30 days. The 

kinetics were quantitatively described by the primary model of Baranyi and Robert’s and 

the maximum specific growth rate was further modeled as a function of temperature by 

the Ratkowsky type model. The developed model was successfully validated for the 

microbial growth of control and ozonated samples during dynamic storage temperature of 

periodic changes from 4 to 16 °C. Two more characteristic parameters were also 

evaluated, the time of spoilage of the product under static temperature conditions and the 

temperature quotient, Q10. At lower static storage temperature (4 ºC) no spoilage occurred 

either for unprocessed or ozone processed apple juice. In the case of ozone processed 

apple juice, the shelf life was increased when compared with the controls and the Q10 was 

found to be 7.17, which appear much higher than that of the controls, indicating the 

effectiveness of ozonation for the extension of shelf-life of apple juice.  

Keywords: yeast, ozone, apple juice, shelf-life, dynamic modeling 
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Acidic products such as fruit juices contain substantial amounts of fermentable sugars. 

Spoilage of fruit and vegetable juices is primarily due to the proliferation of its natural 

acid tolerant and osmophilic micro flora [1]. Yeasts, lactic acid bacteria and moulds may 

account for the fermented taste, production of the carbon dioxide and the buttermilk off-

flavour production, as well as the spoilage of juices [2]. Yeasts predominate in spoilage 

of acid food products as they have the ability to grow at low pH, high sugar concentration 

and low water activity conditions and resist inactivation by heat processing which enables 

them to survive or grow in fruit or fruit products [3, 4]. Fruit juices are generally rich in 

simple carbohydrates and complex nitrogen sources, and hence are ideal substrates for 

yeasts.  More than 110 species of yeasts have been listed as associated with food and food 

products, of which large proportions occur on fruits, and more than 40 are associated with 

soft drinks [5]. The contamination of fruit juices with yeasts is normally indicative of 

highly contaminated raw materials, failure in fruit juice pasteurization, in sanitation 

practices or the presence of preservative resistant yeasts [6]. 

Saccharomyces cerevisiae is one of the most important yeasts causing spoilage of fruit 

juices and soft drinks [5, 7-9] and can be considered as shelf-life indicator [10, 11]. 

Several authors reported that fruit juice concentrates, fruit pulps, packaged fruit juices 

and soft drinks are particularly prone to fermentative spoilage with S. cerevisiae, S. 

bayanus and to a lesser extent S. pastoranious [4, 12-18]. Therefore, numerous heat 

inactivation studies have been conducted with S. cerevisiae because of its significance in 

the spoilage of heat pasteurized fruit juices and carbonated beverages [8, 17, 19]. 

Fermentation of sugars such as glucose, fructose, and sucrose is the principal spoilage 
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reaction of Saccharomyces species. Growth of yeasts is usually accompanied by 

formation of carbon dioxide and alcohol. Carbon dioxide gives the product a gassy, 

frothy appearance and causes a packaged product to swell and explode. In addition, the 

products develop a distinctive alcoholic, fermentative smell and taste [20]. Spoilage of 

fruit juice makes it unacceptable for human consumption.  
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Heat treatment is the most widely used method for preservation of fruit and vegetable 

juices due to its effectiveness in microbial inactivation [21] although it has certain 

disadvantages for nutritional and organoleptic values [22, 23]. There is consumer demand 

for a wider range of less heavily processed foods of improved quality with longer shelf-

life and negligible changes in the organoleptic and nutritional values. This has enhanced 

interest in non-thermal technologies which could be effective on the inactivation of the 

undesired microorganisms [24]. 

Alternatives to thermal pasteurization such as ozone treatment are under investigation for 

potential application in fruit juice preservation. Apple juice (or apple cider in North 

America) is one of these products which is consumed by people of all ages for its sensory 

and nutritional qualities. The FDA’s approval of ozone as a direct additive to food in 

2001 triggered interest in ozone applications development, and industry guidelines for 

apple juice and cider were published by the USFDA in 2004, which also highlighted gaps 

in the scientific knowledge [25]. 

Ozone is a powerful antimicrobial agent due to its potential oxidizing capacity and it 

appears to be active against bacteria, fungi, viruses, protozoa, as well as bacterial and 

fungal spores [26, 27]. Ozone destroys microorganisms by progressive oxidation of vital 

cellular components. Oxidation reactions are caused by either dissolved molecular ozone 
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or free radical species formed during auto-decomposition of ozone [28]. Activated 

oxygen species resulting from ozone decomposition include singlet oxygen, hydroxyl 

radical, superoxide anion (perhydroxyl radical at low pH) and hydrogen peroxide which 

elicit potent cidal activity against a broad-spectrum of microorganisms [29]. 

The objective of this study was to investigate the effect of ozone as a non-thermal 

treatment to extend the shelf life of an apple juice system. Modeling approaches that 

describe the growth dynamics of S. cerevisiae in previously inoculated ozone processed 

apple juice under static (isothermal) and dynamic storage temperature conditions are also 

developed in order to quantitatively assess the effect of ozonation on the shelf life of the 

product. 

2 Materials and Methods 

2.1 Yeast strain and growth conditions 

S. cerevisiae ATCC 9763 was obtained from microbiology stock culture of the School of 

Food Science and Environmental Health of the Dublin Institute of Technology, Dublin, 

Ireland. This strain was maintained as frozen stock at -70 ºC in the form of protective 

beads, which were plated onto potato dextrose agar (PDA, Scharlau Chemie) and 

incubated at 30 ºC for 48 h to obtain single colonies before storage at 4 ºC. Working 

cultures were prepared by inoculating a single colony into malt extract broth (MEB, 

Scharlau Chemie) and incubating at 30 ºC for 24 h.  

2.2 Apple juice inoculation 

S. cerevisiae cells grown for 24 h were harvested by centrifugation (SIGMA 2K15, 

Bench Top Refrigerated Ultracentrifuge, AGB scientific LTD) at 10,000 rpm for 10min 

at 4 ºC. The cell pellet was suspended in sterile phosphate buffered saline (PBS, Oxoid 
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LTD, UK) re-centrifuged twice as described above. Finally, after two washes with PBS, 

the cell pellet was re-suspended in PBS and the yeast density was determined by 

measuring absorbance at 550 nm using McFarland standard (BioMérieux, Marcy -

l'Etoile, France).  

Sterile, commercially prepared apple juice was obtained from a local retailer. This juice 

was chosen as a food system that could serve for performing controlled microbial 

experiments (e.g., [10, 30, 31]). The inoculum was then diluted in the juice to obtain 

approximately 106 CFU/mL. For each investigation, the cell concentration was further 

diluted in apple juice to yield a final working concentration of 103 CFU/mL. The 

inoculated apple juice with S. cerevisiae sample was then processed with ozone. 

Soluble solids content of untreated apple juice was measured using a hand held 

refractometer (Bellingham and Stanley Ltd., UK). One drop of the juice was placed on 

the refractometer glass prism and soluble solid content was obtained as Brix. The 

measured °Brix was 11 ± 0.001. The pH of untreated product was measured using a pH 

meter with a glass electrode (Orion Model, England) and was 3.23 ± 0.015. Titratable 

acidity was determined by titrating 20 mL of the untreated apple juice sample diluted in 

80 mL distilled water with 0.1N NaOH using phenolphthalein as an indicator. The 

volume of NaOH was converted to g malic acid per 100 mL of juice. The measured 

titratable acidity was 0.45 ± 0.009. 

2.3 Ozone treatment 

Ozone gas was generated using an ozone generator (Model OL80, Ozone services, 

Canada, Fig. 1). Ozone was produced by a corona discharge generator. Pure oxygen was 

supplied via an oxygen cylinder (Air Products Ltd., Dublin, Ireland) and the flow rate 
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was controlled using an oxygen flow regulator. Apple juice samples (90 mL) inoculated 

with S. cerevisiae (103 CFU/mL) were processed in a 100 mL ozone bubble column with 

a diameter of approximately 3.7 cm and height of around 21.7 cm. A previously 

determined optimum flow rate of 0.12 L/min [32] with an ozone concentration of 33-40 

µg/mL was applied for each treatment for 8 min at ambient temperature (15-18ºC) [33]. 

In that study quality (color, phenolic content) and microbial parameters (E. coli strains 

ATCC 25922 and NCTC 12900) during ozone processing were assessed [33]. The ozone 

concentration was recorded using an ozone analyzer. Excess ozone was destroyed by an 

ozone destroyer unit. It should be mentioned that the apple juice contains large amount of 

organic matter which does not permit measurement of dissolved ozone in the liquid phase 

but also there was not any residual ozone effects as all ozone not targeting on the 

microbial cells is consumed by the organic matter. All experiments were carried out in 

duplicate. 

2.4 Storage study 

Storage studies were performed for the following three types of samples. Apple juice 

inoculated with 103 CFU/mL served as an unprocessed control 1. The second sample was 

the ozonated apple juice. Subsequently an unprocessed control 2 was prepared by 

inoculating S. cerevisiae cells with an inoculum level of 101 CFU/mL in order to start 

with a similar inoculum level that was attained after 8 min of ozone treatment. 

2.4.1 Static storage temperature study (SST) 

Unprocessed control samples of apple juice and ozone processed apple juice samples (45 

mL each) were stored at constant temperatures of 4, 8, 12, and 16 °C respectively in 

incubators (LMS cooled incubators, Lennox Laboratory Supplies, Dublin, Ireland) for a 
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period up to 30 days. Aliquots of unprocessed and processed samples were taken daily for 

analysis.  

2.4.2 Dynamic storage temperature study (DST) 

For the DST study, unprocessed and processed apple juice samples were stored in an 

incubator where the lowest and the highest temperatures were set to 4 and 16 °C. The 

temperature was programmed to fluctuate according to a profile consisting of 4 °C for 12 

h, followed by an increase of temperature from 4 to 16 °C and maintained at 16 °C for a 

further 12 h. The actual temperature profiles were recorded every 10 min using a 

temperature sensor connected to a data logger (Grant 1000 series Squirrel meter/data 

logger, UK). This specific profile was chosen in order to create a scenario of temperature 

abuse enhancing the microbial growth on which the developed modeling approaches 

could be validated.  

2.5 Microbiological analysis 

Yeast populations were determined by plating onto PDA. Aliquots (1mL) were 

withdrawn every day from ozone processed and unprocessed juice stored at each different 

temperature, serially diluted in MRD and 0.1mL of appropriate dilutions were surface 

plated on PDA in duplicate. Plates were incubated at 30 ºC for 48 h and colony forming 

units were counted. Results were reported as Log10CFU/mL. 

2.6 Microbial modeling 

2.6.1 Parameter identification under static conditions   

S. cerevisiae growth data in ozone processed apple juice stored under SST conditions 

were fitted to the explicit version of the Baranyi, and Roberts [34] model (Eq.1-3). 
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Regression was performed by using the DMFit Excel add-in software, version 

2.1(

188 

www.ifr.ac.uk/safety/DMFit). The model reads as follows 189 
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The kinetic parameters of maximum specific growth rate (µmax) (1/days), lag phase (λ) 

(days), initial microbial population (N(0)) (Log10CFU/mL) and maximum population 

density (Nmax) (Log10CFU/ml) have then been estimated. q(0) (-) denotes the 

concentration of substance critical to the microbial growth and is related to the 

physiological state of the cells. 

The maximum specific growth rates estimated under SST conditions were further 

modeled as a function of storage temperature by using the Square root model [35, 36]: 

 
( )2

max minb T Tμ = −                                            (4) 

where b is a constant, T is the storage temperature (ºC), Tmin is the theoretical minimum 

temperature for the growth of the organism. Eq. (4) has been used without the commonly 

applied square root transformation of the μmax value. This required the performance of a 

non-linear regression which is available from the DMFit software. A (geometric) mean 
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value for max0 *μλ=h for each of the experimental set-ups (Control 1, Control 2, 

Ozonated) was estimated from the individual growth curves, considering that the 

parameter is constant, independent of the storage temperature [34, 37, 38] and the fact 

that the resulting ho was derived from the 3 levels of temperatures (refer to results). q(0) 

is related to the parameter by the following equation [34]: 

208 

209 

210 

211 

212 

213 

0h

 

( )
0

0

10
h

h

eq
e

−

−

−
=                                                (5) 214 

215 

216 

217 

218 

219 

220 

221 

2.6.2 Model validation under dynamic storage temperature (DST) conditions  

The validation of the yeast growth model was performed under DST conditions based on 

the time temperature profile of apple juice samples during storage (control and ozone 

processed), in conjunction with the square root model Eq. (4). The predictions were 

performed with the differential equation of Baranyi and Roberts model (Eq. (6), (7)) in 

which the Runge-Kutta method (ode23s, Matlab, The Mathworks) was applied for the 

approximation of solutions of these ordinary differential equations: 

( )( )( )2
min

max

( ) ( ) ( )1
( ) 1

dN t q t N tb T t T N t
dt q t N

⎛ ⎞⎛ ⎞
= − −⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠

( )222                                                (6) 

( )( )( )2
min

( ) ( )dq t b T t T q t
dt

= −                                               (7) 223 

224 

225 

226 

The root mean squared error (Eq. 8) [39] was used for evaluating the model fitting while 

the accuracy and the bias factors presented by Baranyi et al. [40](Eq. 9, 10) were 

considered in order to assess the prediction capability of the developed model. 

RMSE = 
( )

∑
= −

−tn

i pt

prei

nn
yy

1

2
exp                                    (8) 227 
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Where yexpi are experimental observations, ypre are model predictions, nt are number of 

data points and np are number of estimated model parameters. 
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Where log10 is the predicted microbial load and n is the number of the experimental 

measurements. 

iN
∧

2.6.3 Calculation of the Q10 value 

The temperature quotient (Q10) was also calculated from the information obtained in 

Section 2.6.1 (parameter identification under static conditions). Q10 shows the effect of 

temperature on the shelf-life and it is given as follows [41, 42]: 

 
0

10 0

shelf life at C
shelf life at ( 10 C)

TQ
T

=
+

                                                      (11) 239 

240 

241 

242 

243 

244 

245 

246 

247 

248 

 

Observe that this parameter was developed for a zero order reaction when the influence  

of temperature on the reaction rate is described by using the Arrhenius relationship [43]. 

Nevertheless this approach is proposed and applied for the current microbial kinetic study

 as an alternative method to assess the efficacy of the ozonated juice. 

This Q10 value can be easily calculated by performing a regression between the ln shelf 

life (days) versus the temperature which yields a straight line. Consequently, Q10=exp 

(10.k) with k the slope of the regression line. The estimation of the time of the shelf-life 

(ts) was calculated considering that a microbial level > 106 CFU/mL resulted in a failure 

 11



249 

250 

251 

252 

253 

254 

255 

256 

257 

258 

259 

260 

261 

262 

263 

264 

265 

266 

267 

268 

269 

270 

271 

(spoilage) of the product (see for similar examples in other products: Al-Kadamany, et al. 

[44]).  The shelf-life time, ts, was obtained by solving Eq. (1-3) (solve command in 

Matlab, The Mathworks) for the estimated parameters of the two controls and the 

ozonated growth kinetics when log N(ts) = 6 log(CFU/mL). 

3 Results 

The growth of S. cerevisiae in unprocessed and ozone processed apple juice was assessed 

at SST conditions from 4 °C to 16 °C. Representative growth curves of the yeast 

population are shown in Fig. 2. The initial inoculum of control 1 was similar to 

previously reported levels of 103 CFU/mL [30, 45], while this level has also been 

reported in sound apples [46]. Finally, Kisko et al. [47] recorded ca. 103 CFU/mL level of 

S. cerevisiae in unprocessed apple juice. In the case of the unprocessed control samples 1 

and 2 (i.e., initial inoculum level of 3.0 and 1.30 log CFU/mL, respectively) the lag phase 

was not obvious when the juice was stored under high SST (12 °C and 16 °C) (Fig. 2a 

and 2b). However, a typical growth pattern of S. cerevisiae was observed in the ozone 

processed apple juice stored under SST of 12 °C and 16 °C, consisting of an initial lag 

phase, an exponential growth phase followed by a stationary phase (Fig.2c).  

The estimated kinetic parameters and statistical indices resulting from the regression of 

the microbial data by the Baranyi and Roberts model are shown in Table 1. The values of 

µmax and λ varied according to the storage temperature. The µmax of the unprocessed 

control samples increased from 0. 35 log CFU /day to 1.23 log CFU /day and for ozone 

processed apple juice increased from 0.275 log CFU /day to 1.270 log CFU /day with 

increase of the temperature from 8 to 16 °C. However, the lag phase for ozone processed 

apple juice was decreased from 15.07 days at 8 °C to 2.84 days at 16 °C. For both 
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unprocessed and ozone processed apple juice, the maximum population density (Nmax) 

was found to be unaffected when stored under high SST (12 °C and 16 °C). The effect of 

storage temperature on µmax was further modeled as a function of temperature by using 

the secondary square root model.  The estimated parameters of the model are shown in 

Table 2. The model described satisfactorily the effect of temperature on the growth of S. 

cerevisiae. The calculated value for the theoretical minimum temperature of growth in 

ozone processed apple juice was 0.28 °C. The h0 values obtained for the static 

environments studied were 0.336, 0.671 and 3.417 for unprocessed control 1, 

unprocessed control 2 and ozone processed apple juice samples, respectively.  

272 

273 

274 

275 

276 

277 

278 

279 

280 

281 

282 

283 

284 

285 

286 

287 

288 

289 

290 

291 

292 

293 

The model developed under SST conditions was validated under DST conditions by 

using a periodically changing temperature profile and performing predictions with Eq. (6) 

and (7). As the maximum population density was independent of the applied storage 

temperature it was fixed at 7.5 logs CFU/mL (average of Nmax estimated during 

isothermal conditions for which microbial stationary phase was reached). For the initial 

concentration N(0), a nominal value was taken from the measured plate count result, i.e., 

3.02 (for control 1), 1.32 (for control 2), 1.24 (for ozonated) log (CFU/mL). Finally, the 

nominal values for q(0) were 2.49, 1.05 and 0.03 for control 1, control 2 and ozonated 

apple juice respectively, calculated using Eq.(5) and after estimation of the ho from the 

parameters derived under static environmental conditions. The comparison between the 

predicted and observed growth of S. cerevisiae in unprocessed apple juice and ozone 

processed apple juice samples are shown in Fig. 3.  The performance of the model was 

evaluated statistically by the calculation of the bias (Bf) and accuracy (Af) factors.  
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Two more characteristic parameters were evaluated, the Q10 and the time of spoilage of 

the product under SST conditions (Fig. 4). At the lowest SST (4 ºC) no spoilage occurred 

either for unprocessed or ozone processed apple juice. However, with the higher SST’s 

used product spoilage was observed in 9.45, 3.78, and 2.35 days for unprocessed control 

1 at 8, 12 and 16 ºC, respectively. For unprocessed control 2, the spoilage occured after 

15.08, 6.30 and 4.29 days at 8, 12 and 16 ºC respectively. In the case of ozone processed 

apple juice, the shelf life was increased when compared with both type of controls and 

resulted in 34.26, 10.34 and 7.08 days at 8, 12 and 16 ºC, respectively. Finally the Q10 

was found to be 7.17 in the case of ozonated juice. This was much higher than that 

obtained for the controls, i.e., 5.68, 4.81, indicating the effectiveness of ozonation for 

extension of the shelf-life of apple juice.  

294 
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310 

311 

312 

313 

314 
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4. Discussion 

The results of the present study showed that S. cerevisiae ATCC 9763 is able to grow in 

apple juice stored within a temperature range of 8 to 16 ºC. The Baranyi, and Roberts 

model as well as the square root model described the growth of yeast populations in 

unprocessed and ozone processed apple juice. Based on the static data, a new model was 

developed that described the growth of S. cerevisiae population well in unprocessed and 

ozone processed apple juice under dynamic conditions that simulated a storage 

temperature abuse. At the lower SST’s (4 and 8 ºC), the longer lag phase indicates that 

the yeast population needed longer time to adapt to the environment.  However, at higher 

storage temperatures this effect was not evident, indicating the ability of yeasts to grow at 

these temperatures with a reduced or seemingly absent lag time. By comparison, in the 

case of ozone processed apple juice stored at 8, 12 or 16 ºC, the lag phase (λ) was 
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increased, indicating the effect of temperature and applied ozone stress on growth of S. 

cerevisiae populations. Panagou et al. [10] reported a very short lag phase in different 

pasteurized fruit juices even at the lowest storage temperatures, suggesting that 

inoculated yeasts’ adaptation time was unaffected by these temperatures (4, 8, 12 and16 

ºC) . However, in this study a lag phase was observed for all ozone processed samples. 

This could be due to the oxidizing action of the applied ozone treatment, which may exert 

additional stress prior to allowing growth. Ozone has been reported to inactivate cytosolic 

enzymes, with the most drastic inactivation for glyceraldehyde 3 phosphate 

dehydrogenase and to lesser extent to other cytosolic enzymes. It also affects the quantity 

of ATP and other nucleoside triphosphates, reducing to about 50% of its initial level [48].  

317 
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331 

332 

333 

334 

335 

336 
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338 

The performance of the developed model was validated under dynamic conditions. Ross 

et al. [49] reported that predictive models should ideally have an Af and Bf = 1.00, 

indicating a perfect model fit where the predicted and actual response values are equal 

and satisfactory. Bf limits are more difficult to define because limits of acceptability are 

related to the specific application of the model. Ranges of 0.6-3.99 have been reported for 

the growth pathogen and spoilage microorganisms when compared with independent 

published data [49]. The values of Bf and Af indicated good agreement between observed 

data and predicted data points. Nevertheless, in the case of Control 2 some discrepancy 

was evident (Table 3). This could be attributed to the effect of the inoculum size on the 

microbial adaptation phenomena. This observation may require further evaluation of the 

inoculum size effects which could elucidate if different values of h0 should be considered 

for each of the performed microbial predictions.     
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Different technologies have been applied for inhibiting the growth of spoilage 

microorganism in fruit juices. Patrignani et al. [30] evaluated the potential of high 

pressure homogenization (HPH) for inactivation of S. cerevisiae 635 inoculated in apricot 

and carrot juice and its shelf life extension. Four or more repeated passes at 100 MPa of 

HPH to the apricot juice samples inoculated at a level of 3 log10 CFU/mL showed that S. 

cerevisiae population remained under the detection limit at least up to 144 h at 25 ºC. For 

carrot juice samples subjected to five or more repeated HPH passes, the S. cerevisiae cell 

load was lower than 5 log10 CFU/mL after 144 h at 25 ºC. However, refrigerated storage 

(4 ºC) indicated satisfactory extension of shelf life of HPH processed juices. Qin et al. 

[50] reported over 3 weeks extension of standard shelf life of pulsed electric field (PEF) 

processed apple juice when stored at 4 ºC and 25 ºC. Ferrentino et al. [51] concluded that 

high pressure carbon dioxide (HPCD) treatment proved to be a promising alternative 

technique yielding juices with fresh-like characteristics and extension of shelf life with 

safety. Suarez-Jacobo et al. [52] reported the efficacy of ultra high pressure 

homogenization to develop fresh apple juice with an equivalent shelf life to pasteurized 

apple juice with respect to the microbiological characteristics. Valdramidis et al. [53] 

observed that no spoilage of apple juice was evident at storage temperatures of 4, 8 and 

12 ºC for 36 days after treatment with high hydrostatic pressure at 500 MPa and 550 

MPa. From the present work it is evident that ozone is another non thermal technology 

which can be employed for extending the shelf life of apple juice. The present results 

proved an increase of the shelf-life of the ozonated product that varied between 2.79 to 

24.81 days depending on the storage temperatures when compared with the control 

samples.  
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Validation of the developed modeling approaches will be expanded based on the 

suggestions by Pin et al. [54]. More specifically, kinetic data that come from competition 

of inoculated S. cerevisiae, pathogenic microorganism with a naturally occurring 

microflora of fresh apple juice will be incorporated in future model developments while 

comparative studies between ozonated and other treated technologies will be applied. 

This will permit the application of this model to apple juice products with different 

properties. Further studies will focus on defining the failure (spoilage) of processed apple 

juice based on the effect of ozone on additional to previously reported quality parameters 

(e.g., color, phenolic content) [33] including volatiles responsible for flavor, odour and 

sensory evaluation. Effect of the different inoculums levels on the microbial adaptation 

phenomena will also be assessed to interpret possible modeling discrepancies.  
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