Paula Montero Llopis

Paula Montero Llopis
Harvard Medical School | HMS · Department of Microbiology and Immunobiology

About

41
Publications
9,713
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,974
Citations

Publications

Publications (41)
Article
Full-text available
Many aging clocks have recently been developed to predict health outcomes and deconvolve heterogeneity in aging. However, existing clocks are limited by technical constraints, such as low spatial resolution, long processing time, sample destruction, and a bias towards specific aging phenotypes. Therefore, here we present a non-destructive, label-fr...
Article
HIV-1 integration favors nuclear speckle (NS)-proximal chromatin and viral infection induces the formation of capsid-dependent CPSF6 condensates that colocalize with nuclear speckles (NSs). Although CPSF6 displays liquid-liquid phase separation (LLPS) activity in vitro, the contributions of its different intrinsically disordered regions, which incl...
Article
Full-text available
Western equine encephalitis virus (WEEV) is an arthropod-borne virus (arbovirus) that frequently caused major outbreaks of encephalitis in humans and horses in the early twentieth century, but the frequency of outbreaks has since decreased markedly, and strains of this alphavirus isolated in the past two decades are less virulent in mammals than st...
Article
Full-text available
Annotation of immunologic gene function in vivo typically requires the generation of knockout mice, which is time consuming and low throughput. We previously developed CHimeric IMmune Editing (CHIME), a CRISPR–Cas9 bone marrow delivery system for constitutive, ubiquitous deletion of single genes. Here we describe X-CHIME, four new CHIME-based syste...
Preprint
Full-text available
Homeostasis of normal tissues and the emergence of diseases such as cancer are controlled by changes in the proportions and states of diverse cell types, cell-cell interactions, and acellular components of the tissue microenvironment. Spatial omics using highly multiplexed tissue profiling makes it possible to study these processes in situ, usually...
Article
Images document scientific discoveries and are prevalent in modern biomedical research. Microscopy imaging in particular is currently undergoing rapid technological advancements. However, for scientists wishing to publish obtained images and image-analysis results, there are currently no unified guidelines for best practices. Consequently, microsco...
Article
Full-text available
Technological advancements in biology and microscopy have empowered a transition from bioimaging as an observational method to a quantitative one. However, as biologists are adopting quantitative bioimaging and these experiments become more complex, researchers need additional expertise to carry out this work in a rigorous and reproducible manner....
Preprint
Full-text available
Images document scientific discoveries and are prevalent in modern biomedical research. Microscopy imaging in particular is currently undergoing rapid technological advancements. However for scientists wishing to publish the obtained images and image analyses results, there are to date no unified guidelines. Consequently, microscopy images and imag...
Article
Full-text available
Images document scientific discoveries and are prevalent in modern biomedical research. Microscopy imaging in particular is currently undergoing rapid technological advancements. However for scientists wishing to publish the obtained images and image analyses results, there are to date no unified guidelines. Consequently, microscopy images and imag...
Article
Full-text available
Single-cell techniques have revolutionized biology; however, the required sample processing inherently implies the loss of spatial localization. Here, using an approach called photoconversion of areas to dissect micro-environments (PADME), we detail steps to isolate live single cells from a primary breast tumor while retaining spatial information b...
Article
Full-text available
The bacterial division apparatus catalyses the synthesis and remodelling of septal peptidoglycan (sPG) to build the cell wall layer that fortifies the daughter cell poles. Understanding of this essential process has been limited by the lack of native three-dimensional views of developing septa. Here, we apply state-of-the-art cryogenic electron tom...
Article
Full-text available
Chimeric antigen receptor (CAR) therapy has had a transformative effect on the treatment of haematologic malignancies1–6, but it has shown limited efficacy against solid tumours. Solid tumours may have cell-intrinsic resistance mechanisms to CAR T cell cytotoxicity. Here, to systematically identify potential resistance pathways in an unbiased manne...
Article
Immunotherapy is a promising treatment for triple-negative breast cancer (TNBC), but patients relapse, highlighting the need to understand the mechanisms of resistance. We discovered that in primary breast cancer, tumor cells that resist T cell attack are quiescent. Quiescent cancer cells (QCCs) form clusters with reduced immune infiltration. They...
Article
Full-text available
Alphaviruses, like many other arthropod-borne viruses, infect vertebrate species and insect vectors separated by hundreds of millions of years of evolutionary history. Entry into evolutionarily divergent host cells can be accomplished by recognition of different cellular receptors in different species, or by binding to receptors that are highly con...
Chapter
Bacillus subtilis is a widely used model bacterium to study cellular processes and development. The availability of an arrayed mutant library gave us the opportunity to cytologically analyze every mutant and screen for new genes involved in cell shape determination, cell division, and chromosome segregation. Here we describe a high-throughput metho...
Article
Full-text available
For quality, interpretation, reproducibility and sharing value, microscopy images should be accompanied by detailed descriptions of the conditions that were used to produce them. Micro-Meta App is an intuitive, highly interoperable, open-source software tool that was developed in the context of the 4D Nucleome (4DN) consortium and is designed to fa...
Preprint
Full-text available
The bacterial division apparatus builds daughter cell poles by catalyzing the synthesis and remodeling of the septal peptidoglycan (sPG) cell wall. Understanding of this essential process has been limited by the lack of native three-dimensional visualization of developing septa. Here, we used state-of-the-art cryogenic electron tomography (cryo-ET)...
Article
Full-text available
roper reporting of metadata is essential to reproduce microscopy experiments, interpret results and share images. The lack of methods reporting in microscopy is evident in that few research articles pass a test for the minimal information required to reproduce experiments (about 17% of 240 articles containing 1,500 figures with images). The problem...
Article
Despite mounting evidence of increasing micro- and nanoplastics (MNPs) in natural environments, food, and drinking water, little is known of the potential health hazards of MNPs ingestion. We assessed toxicity and uptake of environmentally relevant MNPs in an in vitro small intestinal epithelium (SIE). Test MNPs included 25 and 1000 nm polystyrene...
Preprint
Full-text available
Proper reporting of metadata is essential to reproduce microscopy experiments, interpret results and share images. Experimental scientists can report details about sample preparation and imaging conditions while imaging scientists have the expertise required to collect and report the image acquisition, hardware and software metadata information. Me...
Article
Proper reporting of metadata is essential to reproduce microscopy experiments, interpret results and share images. Experimental scientists can report details about sample preparation and imaging conditions while imaging scientists have the expertise required to collect and report the image acquisition, hardware and software metadata information. Me...
Article
Although fluorescence microscopy is ubiquitous in biomedical research, microscopy methods reporting is inconsistent and perhaps undervalued. We emphasize the importance of appropriate microscopy methods reporting and seek to educate researchers about how microscopy metadata impact data interpretation. We provide comprehensive guidelines and resourc...
Preprint
Full-text available
For the information content of microscopy images to be appropriately interpreted, reproduced, and meet FAIR (Findable Accessible Interoperable and Reusable) principles, they should be accompanied by detailed descriptions of microscope hardware, image acquisition settings, image pixel, and dimensional structure, and instrument performance. Nonethele...
Article
Significance Despite recent technological advances to study the human gut microbiota, we still lack a facile system to image dynamic cellular processes in most abundant gut species due to the requirement of oxygen for chromophore maturation of commonly used fluorescent proteins. Here, we took advantage of the ability of anaerobes of the gut microbi...
Article
Full-text available
Many RNA viruses create specialized membranes for genome replication by manipulating host lipid metabolism and trafficking, but in most cases, we do not know the molecular mechanisms responsible or how specific lipids may impact the associated membrane and viral process. For example, hepatitis C virus (HCV) causes a specific, large-fold increase in...
Preprint
Full-text available
Mechanistic studies of anaerobic gut bacteria have been hindered by the lack of a fluorescent protein system to track and visualize proteins and dynamic cellular processes in actively growing bacteria. Although underappreciated, many gut “anaerobes” are able to respire using oxygen as the terminal electron acceptor. The oxygen continually released...
Article
Core facilities are an essential resource in research institutes. They provide dedicated expertise and the instrumentation necessary for the development and improvement of science in academia. However, establishing a new microscopy core facility in a competitive environment like Harvard Medical School is not extent of challenges. In most cases it r...
Chapter
Bacillus subtilis is the most commonly used Gram-positive bacterium to study cellular processes because of its genetic tractability. In addition, during nutrient limitation, B. subtilis undergoes the development process of spore formation, which is among the simplest examples of cellular differentiation. Many aspects of these processes have benefit...
Article
Significance In bacteria, faithful and efficient DNA segregation is intimately linked to the spatial organization of the chromosome. Two distinct organization patterns have been described for bacterial chromosomes ( ori - ter and left- ori -right) that appear to arise from distinct segregation mechanisms. Here, we show that the Bacillus subtilis ch...
Article
Full-text available
While translational read-through of stop codons by suppressor tRNAs is common in many bacteria, archaea and eukaryotes, this phenomenon has not yet been observed in the α-proteobacterium Caulobacter crescentus. Based on a previous report that C. crescentus and Escherichia coli tRNA(His) have distinctive identity elements, we constructed E. coli tRN...
Article
The peptidoglycan (PG) sacculus, a meshwork of polysaccharide strands crosslinked by short peptides, protects bacterial cells against osmotic lysis. To enlarge this covalently closed macromolecule, PG hydrolases must break peptide crosslinks in the meshwork to allow insertion of new glycan strands between the existing ones. In the rod-shaped bacter...
Article
Full-text available
The genetic network involved in the bacterial cell cycle is poorly understood even though it underpins the remarkable ability of bacteria to proliferate. How such network evolves is even less clear. The major aims of this work were to identify and examine the genes and pathways that are differentially expressed during the Caulobacter crescentus cel...
Article
The bacterial chromosome must be compacted more than 1,000-fold to fit into the compartment in which it resides. How it is condensed, organized and ultimately segregated has been a puzzle for over half a century. Recent advances in live-cell imaging and genome-scale analyses have led to new insights into these problems. We argue that the key featur...
Article
In vivo measurements of the mobility and binding kinetics of cellular components are essential to fully understand the biochemical processes occurring inside cells. Here, we describe a fluorescence recovery after photobleaching-based method that can be easily implemented to the study of reaction-diffusion processes in live bacteria despite their sm...
Article
Full-text available
Basic peptides covalently linked to nucleic acids, or chemically modified nucleic acids, enable the insertion of such a conjugate into bacteria grown in liquid medium and mammalian cells in tissue culture. A unique peptide, derived from human T cells, has been employed in a chemical synthesis to make a conjugate with a morpholino oligonucleotide. T...
Article
Full-text available
Eukaryotic cells spatially organize mRNA processes such as translation and mRNA decay. Much less is clear in bacterial cells where the spatial distribution of mature mRNA remains ambiguous. Using a sensitive method based on quantitative fluorescence in situ hybridization, we show here that in Caulobacter crescentus and Escherichia coli, chromosomal...
Article
The ability of neurons to modify synaptic connections is critical for proper brain development and function in the adult. It is now clear that changes in synaptic strength are often accompanied by changes in synaptic morphology. This synaptic plasticity can be maintained for varying lengths of time depending on the type of neuronal activity that fi...

Network

Cited By