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ABSTRACT

Motivation: The importance of non-coding RNAs is becoming

increasingly evident, andoften the functionof thesemoleculesdepends

on the structure. It is common to use alignments of related RNA

sequences to deduce the consensus secondary structure by detec-

ting patterns of co-evolution. A central part of such an analysis is to

measure covariation between two positions in an alignment. Here,

we rank various measures ranging from simple mutual information to

more advanced covariation measures.

Results: Mutual information is still used for secondary structure

prediction, but the results of this study indicate which measures

are useful. Incorporating more structural information by considering

e.g. indels and stacking improves accuracy, suggesting that physically

realistic measures yield improved predictions. This can be used to

improve both current and future programs for secondary structure

prediction. The best measure tested is the RNAalifold covariation

measure modified to include stacking.
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1 INTRODUCTION

In recent years, it has become increasingly evident that many RNAs

play a more active role in the cell than just being the mediator of

information between the DNA and protein levels. These non-coding

RNAs (ncRNAs) have a functional role, and their function is fre-

quently tied to the structure of the molecule. Methods for predicting

the secondary structure of functional RNAs are therefore becoming

increasingly important. A benchmarking study of various structure

prediction programs can be found in the somewhat dated study by

Gardner and Giegerich (2004).

Secondary structure prediction has been pursued in various ways:

folding a single sequence using energy minimization is imple-

mented in e.g. RNAfold (Hofacker et al., 1994), Mfold (Zuker

and Stiegler, 1981; Zuker, 2003) and RNAstructure (Mathews

et al., 2004), while a method for simultaneously performing

sequence alignment and structure prediction was described by

Sankoff (1985). Although there is no published implementation

of the full Sankoff algorithm, different simplifications exist

e.g. FOLDALIGN (Gorodkin et al., 1997; Havgaard et al.,
2005), Dynalign (Mathews and Turner, 2002) and PMmulti

(Hofacker et al., 2004).
The most widely used methods for the analysis of ncRNA

are based on comparative analysis of related sequences. All such

methods are based on some measure of covariation making an in-

depth study of different measures important. A number of these

programs use the standard mutual information (MI) or variants

hereof [e.g. KNetFold (Bindewald and Shapiro, 2006), COVE

(Eddy and Durbin, 1994), ILM (Ruan et al., 2004), MatrixPlot

(Gorodkin et al., 1999), Construct (Lück et al., 1999)] while others
use more advanced measures [e.g. RNAalifold (Hofacker et al.,
2002), RNAz (Washietl et al., 2005), MSARI (Coventry et al.,
2004)] or are based on stochastic context-free grammars [e.g.

Pfold (Knudsen and Hein, 2003), QRNA (Rivas and Eddy,

2001), EvoFold (Pedersen et al., 2006)]. In this study, we analyze

a number of measures ranging from simple MI to more advanced

measures. Although it has been suggested that measures

including phylogenetic information are the most powerful

(Akmaev et al., 2000), these methods have not been included in

this study.

In the comparative approach, the goal is to predict the common

structure for a set of aligned RNA sequences by using the evolu-

tionary information in the alignment. The secondary structure is

constituted by base pairing interactions between nucleotides. These

are mainly the Watson–Crick base pairs (C � G and A � U) and the

wobble base pair (G � U), although other base pairing interactions

have been shown to be more important than previously anticipated

(Leontis et al., 2002; Lee and Gutell, 2004). During evolution,

RNA sequences can mutate while retaining the same structure. If

a base pair is disrupted by a mutation at one position, evolution

favours mutations that correct this. It is these compensatory muta-

tions that comparative methods use when optimizing the structure of

a sequence alignment.

The comparative approach relies on two conflicting properties:

information and alignment quality. Structure can only be inferred

for positions that have actually mutated. Fully conserved columns

have no covariance information, and thus highly diverged sequen-

ces carry most covariance information. On the other hand, highly

diverged sequences are difficult to align correctly, and therefore the

comparative methods are expected to be best for sequences that are

diverged to the point where one can still obtain a good multiple

alignment (without using covariance information). A recent survey

showed that sequences below �65% identity were inaccurately�To whom correspondence should be addressed.
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aligned, thus destroying secondary structure information (Gardner

et al., 2005). It is also clear that it may be advantageous to use

covariance information for the alignment, and thus align and predict

structure at the same time, but current methods for that are limited

to small alignments.

As more focus is being given to ncRNAs, interest in locating

these in genomic sequences is growing. Genefinders for this prob-

lem are appearing: Using stochastic context-free grammars is

employed in the programs QRNA (Rivas and Eddy, 2001) and

EvoFold (Pedersen et al., 2006). In these, the grammars are desi-

gned to detect signal from base pairing interactions using an implicit

covariation measure. MSARI (Coventry et al., 2004) uses a com-

bination of base pairing probabilities (McCaskill, 1990) and

a sliding window for finding complementary subsequences while

allowing for small misalignments. In RNAz (Washietl et al., 2005) a
sliding window is used to fold subalignments using RNAalifold.

The consensus structure is compared to the minimum free energy

structures of the individual sequences. The covariation measure

used in this approach is therefore the same as in RNAalifold.

To measure covariation between two sites in the RNA molecule,

where the sequence is changed while base pairing interactions are

preserved, mutual information is the textbook example, e.g. (Durbin

et al., 1998) because it measures the information in base pairs which

cannot be explained from single base frequencies. The idea is to find

sites where the degree of co-occurring mutations is higher than one

would expect by chance. Sites showing a high degree of covariation

are seen as likely base pairs. Several methods include an MI com-

ponent in their scoring scheme, e.g. COVE (Eddy and Durbin,

1994), ILM (Ruan et al., 2004), MatrixPlot (Gorodkin

et al., 1999), KNetFold (Bindewald and Shapiro, 2006) and Con-

struct (Lück et al., 1999).
Although MI and other measures of covariation are widely used

there has, to the best of our knowledge, never been a thorough

analysis of the discriminative power of these measures. In this

study, we analyze a number of RNA datasets using different mea-

sures of covariation. The datasets cover both different classes of

structural RNAs and different degrees of overall sequence identity.

We show that the standard MI is not very discriminative, and that

extending the measure with additional structural information yields

a more powerful measure. The best covariation measure tested in

this study is a new formulation of the measure used in RNAalifold

(Hofacker et al., 2002) where stacking of base pairs is taken into

account. The most discriminative measure, though, is averaged base

pairing probability matrices calculated using the partition function

(McCaskill, 1990), which uses energy terms and is independent of

covariation information.

2 APPROACH

We have evaluated the discriminative power of different covariation

measures. The following measures described previously in the lit-

erature were implemented:

� Standard MI (Shannon, 1948; Chiu and Kolodziejczak, 1991;

Gutell et al., 1992)

� MI summing only Watson–Crick and wobble base pairs

(Gorodkin et al., 1999) (MIW)

� Normalized MI (Martin et al., 2005) (MIN)

� The covariation measure used in RNAalifold (Hofacker et al.,
2002) (B)

A number of novel measures based on the preceding list were

implemented and evaluated as well:

� MI using gap penalties (MIP)

� MI summing base pairs and including stacking (MIS�W)

� MI summing base pairs, including stacking and using gap

penalties (MIS�W�P)

� MI summing base pairs and using gap penalties (MIW�P)

� The B measure including stacking (Bs)

Note that for simplicity some of the measures are denoted MI

although they are technically not mutual information measures. This

will be elaborated in the following. The performance of the above

measures is compared to using averaged base pairing probability

matrices calculated using the partition function (McCaskill, 1990).

We used the implementation from the Vienna package (Hofacker

et al., 1994). The different measures are described in detail under

methods.

The datasets were compiled by making three random samplings

from each of three large structural alignments (tRNA, 5S rRNA and

U5) (Griffiths-Jones et al., 2003; Szymanski et al., 2002; Zwieb,
1997) yielding a total of nine datasets. The alignments used in this

study are known to be of high quality, and they have previously been

used in the benchmark by Gardner et al. (2005), but other datasets
could in principle have been used. The sampling was performed in

such a way that the overall identity of the subalignments was con-

trolled. The subalignments are of low (40–60%), medium (60–80%)

and high (80–100%) overall identity, where the % ID is calculated

using the reference alignments. In each subalignment, any all-gap

columns were removed but otherwise the correct alignment and

reference structure is preserved. The sizes of the alignments are

summarized in Table 1.

The nine individual datasets were analyzed separately, but in the

following the results reported are averages for each of the identity

intervals (i.e. containing an alignment of 5S rRNA, tRNA and U5).

This is done to avoid bias from the composition of the individual

families while measuring the performance as a function of sequence

similarity.

The measures are compared using the Matthew’s correlation

coefficient (MCC, see methods), which is maximal (¼ 1) if, for

a given threshold g, all true base paired columns are above and all

other pairs are below g. Thus, the higher the MCC, the better the

discrimination. Each measure was evaluated using 100 threshold

values evenly distributed between the minimum and maximum

value for that particular measure. Since the range and distribution

Table 1. The sample sizes

RNA family Low % ID Medium % ID High % ID

tRNA 29 16 14

5S rRNA 21 25 30

U5 20 20 20

The number of sequences in each dataset used in the analysis.
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of the different measures vary, the actual threshold values are not

comparable. Other binning strategies were tested but did not affect

the results (data not shown).

3 METHODS

The covariation measures used in this study are described in the following

along with the evaluation scheme used to benchmark the measures.

3.1 Evaluating the measures

Each covariation measure is evaluated based on how well it discriminates

between true and false base pairs. Given a sequence alignment of structural

RNAs, every possible base pair (i, j) can be evaluated using each of the

suggested measures. Since the reference structure is available, these scores

can be divided into true base pairs BPT and false base pairs BPF.

Each measure calculates a score for a possible base pair, but the question

is how large a score has to be to best discriminate true base pairing inter-

actions from false. For this, a threshold value has to be used. For a given

threshold value, g, the number of true positives, TP, can be found as the

number of scores in BPT greater than or equal to g. Similarly, the number of

false negatives, FN, is the number of scores in BPT that are smaller than g.

The number of false positives, FP and true negatives, TN, can be found in a

similar manner from the scores in BPF.

To evaluate the different measures, 100 thresholds evenly distributed

between the minimum and maximum score were used and the numbers

TP, FP, TN and FN calculated. For example, for the standard mutual

information, 100 numbers between 0 and log2(4) were tried. For each

threshold, one could use the sensitivity and positive predictive value to

evaluate the discriminative power of the measure. Instead of selecting

thresholds based on either of these, however, a balance between them is

sought by using the MCC (Matthews, 1975):

MCC ¼ TP ·TN � FP ·FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTPþ FNÞðTN þ FPÞðTN þ FNÞ

p
Using this, MCC as a function of the threshold values was analyzed for each

covariation measure (see Supplementary material). The actual values of the

thresholds vary between the measures due to the different ranges, but an

equal number of possible thresholds was used for each.

The datasets analyzed contained either tRNA, 5S rRNA or U5 sequences.

For each of these families, three datasets were generated having an overall

identity of 40–60%, 60–80% and 80–100% (in the following these are

referred to as low, medium and high identity, respectively). For each identity

interval the average over the three datasets was used, thus showing the

dependency on the sequence similarity while being independent of the

specific family.

3.2 Standard MI

Functional RNA molecules are under selective pressure to preserve their

secondary structure. This evolutionary pressure can lead to a change in the

primary sequence that keeps the base pairing interactions intact. An example

of such a chain of mutations is:

A �U!G �U!G �C

Thus, related RNAs can differ in sequence while having the same structure.

This makes pure sequence alignment of structural RNAs difficult. As shown

in Gardner et al. (2005), most sequence alignment tools fail when the

sequence identity is below 50–60%. To use this evolutionary information

in the prediction of secondary structure, one needs to find pairs of columns in

the alignment that show a higher degree of covariation than expected by

chance. This might indicate base pairing interaction between the two posi-

tions. The classic measure for this is the MI content (Shannon, 1948; Chiu

and Kolodziejczak, 1991; Gutell et al., 1992; Durbin et al., 1998).

In the context of RNA alignment, this score is defined on pairs of columns,

i and j, in the multiple alignment. Let a be a letter from column i and let b be a

letter from column j. The frequency fi,j(ab) at which a base pair of type ab is
observed is compared to the number of times one would expect the pair to

occur by chance. The latter is calculated using the frequencies of the two

single nucleotides in the two columns, fi(a) and fj(b). For two columns i and j,

the mutual information is given by the following expression:

MIi‚ j ¼
X
ab

f i‚ jðabÞ log2
f i‚ jðabÞ
f iðaÞf jðbÞ

‚ ð1Þ

where the sum is over all 16 possible pairs of bases in the two columns.

Keep in mind that 0 · log2(0) ¼ 0. This is the relative entropy of the joint

distribution relative to the product distribution, also known as the

Kullback–Leibler divergence (Kullback and Leibler, 1951). The MI gives

the amount of information obtained about one position in the alignment

if one knows what the other position is. The higher the MI, the more

information is gained.

There are some problems with this measure: if one or both positions are

conserved in sequence the MI is zero. Another problem is the level of noise

from covarying columns that cannot form base pairs and thus should not

contribute to the measure in the context of classical canonical pairing. Fur-

thermore, structurally neutral mutations, such as A � U ! G � U do not

contribute to the MI. Finally, there is the question of how to deal with gaps in

the alignment.

Since gap characters symbolize insertion/deletion events, it makes little

sense to deduce covariation from them. It is therefore necessary to subtract

the number of gaps when calculating the MI. Note, however, that the number

of gaps in the two columns i and jmay vary. But if the frequencies are based

on two different numbers of observations, the MI score fails. Instead, all the

pairs that contain at least one gap character are disregarded when calculating

frequencies.

3.3 MI with gap penalty

As mentioned, the standard formulation of MI does not penalize gaps.

Instead, positions with gaps are disregarded. This presents a new

problem: consider a pair of columns containing many gaps but where the

few remaining positions display a high degree of covariation. Since the

gaps are disregarded, this column pair receives a good score. This is not

necessarily the desired behaviour: it would be interpreted as a high degree of

structural conservation, but that does not correspond with the large number

of indels.

Instead, a large number of gaps at a given position implies that the region

is variable and the MI score is less certain. This means that less weight

should be placed on these positions. A simple way to incorporate gap penal-

ties into the MI score is to define a gap penalty b and let it influence the MI

score as a function of the number of gap positions. Let NG
i‚ j be the number of

positions containing at least one gap, and let MIi, j be defined as in Equation

(1). A variation of the MI score with gap penalties is:

MIPi‚ j ¼ MIi‚ j � NG
i‚ j ·b: ð2Þ

As can be seen, the MI score of a column pair with no gaps will not be

penalized, while more gaps give a larger penalty. If all positions contain a

gap, the column pair will receive a negative MI score of N ·b. In the

experiments we used b ¼ 1
N.

3.4 MI using only canonical base pairs

The standard MI is sensitive to noise from unwanted, non-canonical base

pairs. A possible variation of MI that might limit the noise is to focus on the

acceptable base pairs alone and ignore the rest (Gorodkin et al., 1999).While

the 4 nucleotides give rise to 16 possible base pairs, only 6 of these are

considered structurally important. If this distinction is incorporated into the

MI score, it would only gather information from positions that actually

display structural covariation.

Let the set of the six canonical base pairs be denoted BPs. Using Equation

(1) over members of the set BPs instead of all 16 possible pairs would not

S.Lindgreen et al.
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yield a mutual information since only a subset of the possible occurrences is

used. Instead, a relative entropy measure (Cover and Thomas, 1991) is

introduced, but for consistency the MI terminology is used.

Let bi‚ j 2 f0‚1g indicate whether there is a canonical base pair between

columns i and j, and let p(bi, j ¼ 1) be the probability of such a base pair.

Then, the probability of having a canonical base pair between columns i and

j becomes:

pðbi‚ j ¼ 1Þ ¼
X

ab2BPs
pi‚ jðabÞ:

The probabilities of the specific base pairs can be estimated from the

actual frequencies. This probability is compared to the probability of observ-

ing a base pair by chance given the single nucleotide probabilities. Let this

background be denoted q(bi,j ¼ 1):

qðbi‚ j ¼ 1Þ ¼
X

ab2BPs
piðaÞpjðbÞ:

This incorporates only the six canonical base pairs. Using these defini-

tions, the probability for not having a base pair is given as p(bi,j ¼ 0) with

background q(bi,j ¼ 0). In combination, this yields the following relative

entropy:

MIWa
i‚ j ¼

X
x2f0‚ 1g

pðbi‚ j ¼ xÞ log2
pðbi‚ j ¼ xÞ
qðbi‚ j ¼ xÞ :

Note that p(bi,j ¼ 0) and q(bi,j ¼ 0) are equal to 1 – p(bi,j ¼ 1) and

1 – q(bi,j ¼ 1), respectively. Although this is the most rigorous measure,

experiments showed that better discrimination was achieved if the term with

x ¼ 0 was dropped from the measure (data not shown). The final scoring

function therefore only considers the structural base pairs, thus filtering noise

from non-pairing interactions:

MIWi‚ j ¼ pðbi‚ j ¼ 1Þ log2
pðbi‚ j ¼ 1Þ
qðbi‚ j ¼ 1Þ ð3Þ

Intuitively, this measure avoids some of the problems with the standard

MI by explicitly focusing on the canonical base pairs. A measure using only

the log-odds score log2
pðbi‚ j¼1Þ
qðbi‚ j¼1Þ

� �
was also tried but it did not perform well

(data not shown).

A combined measure, that includes an explicit gap penalty, can easily be

defined in a manner similar to Equation (2):

MIW�P
i‚ j ¼ MIWi‚ j � NG

i‚ j ·b ð4Þ

3.5 MI with stacking

The stacking of adjacent base pairs—also known as nearest-neighbour

interactions—is a common feature in RNA secondary structure (Borer

et al., 1974; Onoa and Tinoco, 2004). Therefore it is reasonable to extend

the MI measure and incorporate stacking. Using column pair (i, j) as a

reference, if MIi, j is large, stacking implies that the adjacent column pair

(i + 1, j – 1) might also give a good score. By combining the two expressions,

stacking would be considered explicitly by the MI.

As mentioned for the standard MI, there is a problem with noise, and this

is dramatically increased when considering adjacent columns. In the stan-

dard formulation of MI, 16 pairs are considered of which 10 are non-

canonical. In the stacking formulation, the combination of two columns

lead to a summation over 256 terms of which 220 contain at least one

non-canonical pair. Thus, the signal-to-noise ratio decreases.

Instead, a measure incorporating stacking but only considering the

canonical base pairs is used. This drastically reduces the number of

variables to estimate, which makes it possible to calculate the measure

based on most alignments. The measure uses relative entropy and is an

extension of the MIW measure. Let bi‚ j 2 f0‚1g be defined as before,

and let biþ1‚ j�1 2 f0‚1g indicate a base pair at the internal positions. The

relative entropy is a sum over the four possible combinations of bi,j and

biþ1‚ j�1 (corresponding to pair/pair, pair/not pair, not pair/pair and not pair/

not pair):

MISi‚ j ¼
X

x2f0‚ 1g

y2f0‚ 1g

pðbi‚ j ¼ x‚biþ1‚ j�1 ¼ yÞ log2
pðbi‚ j ¼ x j biþ1‚ j�1 ¼ yÞ
qðbi‚ j ¼ x j biþ1‚ j�1 ¼ yÞ :

The probabilities are estimated from the aligned sequences. For a given

column pair in an alignment, let cxy count the number of times that bi,j ¼ x

and bi+1,j�1 ¼ y. For instance, c11 is the number of times a canonical pair is

observed both between (i,j) and (i + 1,j�1). To calculate the relative entropy,

only these four numbers are necessary making it a practical measure to use.

The joint probability is simply found using the corresponding count:

pðbi‚ j ¼ x‚biþ1‚ j�1 ¼ yÞ ¼ cxy
N

‚

where N is the number of sequences. The conditional probability is found

using the relation:

pða j bÞ ¼ pða‚bÞ
pðbÞ

which in the present case gives:

pðbi‚ j ¼ x j biþ1‚ j�1 ¼ yÞ ¼
cxy
N

c0yþc1y
N

¼ cxy
c0y þ c1y

The background q describes the probability of the observations occurring

by chance. The dinucleotide probabilities are estimated from the single

nucleotide frequencies. Since q is the null–model, the columns are consid-

ered independent. Therefore, the conditional probability q(a j b) is simply the

probability of the first random variable:

qðbi‚ j ¼ x j biþ1‚ j�1 ¼ yÞ ¼ qðbi‚ j ¼ xÞ

Practical experiments showed that the measure performed best when only

considering positions containing a canonical base pair between columns i

and j. This corresponds to always demanding bi, j ¼ 1, effectively removing

the outer summation. This corresponds well to the final formulation of MIW.

The stacking measure using canonical base pairs is:

MIS�Wi‚ j ¼X
y2f0‚ 1g

pðbi‚ j ¼ 1‚biþ1‚ j�1 ¼ yÞ log pðbi‚ j ¼ 1 j biþ1‚ j�1 ¼ yÞ
qðbi‚ j ¼ 1Þ :

ð5Þ

This measure can be extended with an explicit gap penalty as in Equation (2):

MIS�W�P
i‚ j ¼ MIS�Wi‚ j � ðNG

i‚ j þ NG
iþ1‚ j�1Þ ·b

0
: ð6Þ

Since the number of gap positions is found from two column pairs, the

gap penalty b0 is modified to fit the possibly larger number of gaps by

using b0 ¼ b/2.

3.6 Normalized MI

Martin et al. (2005) argue that normalizing the standardMI score by the joint

entropy of the same random variables yields a more discriminative measure.

Given a multiple alignment, let a be a character from column i and let b be a

character from column j. The joint entropy of the two columns is given as:

Hi‚ j ¼ �
X
ab

Pi‚ jða‚bÞ logPi‚ jða‚bÞ‚

where Pi, j (a, b) is the joint probability of observing character a in column i

and character b in column j. The joint probability can be estimated from the
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frequencies of the dinucleotides. This yields the following expression for the

normalized MI:

MINi‚ j ¼
MIi‚ j

Hi‚ j
, ð7Þ

using the definition of MIi, j, from Equation (1).

It has been argued that this normalization removes some of the noise in

the MI score (Martin et al., 2005): a column pair with a large entropy score

will also receive a (not necessarily warranted) large MI score. This skew is

removed by normalizing with the entropy. However, this argument is based

on protein alignments and assumes that most of the pairs do not show

significant MI due to structural and functional constraints. This does not

necessarily hold for RNA alignments, where it is known that structure is

more conserved than sequence. Furthermore, the number of possible pairs is

much smaller in RNA than in proteins, so the MI signal might be better in the

present setting.

3.7 RNAalifold measure

In the RNAalifold program an alternative measure of covariation is used

(Hofacker et al., 2002). Let N be the number of aligned sequences, let a and

b denote sequences, a,b ¼ 1,2, . . . ,N, and let aai denote the character at

position i in sequence a. As before, we only consider base pairs in BPs, i.e.

the set of Watson–Crick basepairs and the G � U wobble base pair. For each

sequence a, the matrix Pa describes the possible base pairs. Thus, Pa
i‚ j ¼ 1

if base pair ðaai ‚aaj Þ 2 BPs, and Pa
i‚ j ¼ 0 otherwise.

Let dðaiaj‚bibjÞ be the Hamming distance between two base pairs at

positions i and j in the alignment, i.e. d ¼ 0 if the 2 base pairs are identical,

d ¼ 1 if the base pairs vary at exactly one position (consistent substitution),

and d ¼ 2 if the 2 base pairs are different (compensatory mutations). The

more mutations observed that retain the base pairing interaction, the more

evidence that the base pair is correct:

Ci‚ j ¼
1�
N
2

� X
a <b

dðaai aaj ‚b
b
i b

b
j ÞPa

i‚ jP
b
i‚ j

To penalize inconsistent pairs (i.e. all non-WC pairs and pairs between

a gap and a nucleotide), let Iðaai aaj Þ be an indicator variable denoting whether
a pair in a sequence a is inconsistent:

Iðaai aaj Þ ¼
�
0 if Pa

i‚ j ¼ 1

1 otherwise:

The penalty for the base pair under consideration is then found as:

qi‚ j ¼
1

N

XN
a¼1

Iðaai aaj Þ:

The combined covariation measure is then given as:

Bi‚ j ¼ Ci‚ j � fqi‚ j, ð8Þ

where f is a scaling factor for the penalty term. We used f ¼ 1 as in the

original paper.

3.8 The RNAalifold measure including stacking

The RNAalifold covariation already includes gap penalties and treatment of

canonical base pairs, and the idea of including stacking information can also

be extended to this measure. Originally, we used an asymmetric version that

only considered the base pair internal to (i,j) cf. Equation (5). An anonymous

referee suggested the symmetric version described here which further

improved the performance.

For a pair of columns (i,j), we also consider the neighbouring pairs

(i�1,j+1) and (i+1,j�1). Let d(aiaj,bibj), Pa
i‚ j and Iðaai aaj Þ be defined as

above. The covariation for a pair aai a
a
j in a sequence a now also depends

on aai�1a
a
jþ1 and aaiþ1a

a
j�1. The calculation of the covariation is, as before,

found by considering all possible sequence pairs, but now neighbouring

nucleotide pairs are considered. The inconsistency penalty qi‚ j is found in

a similar manner.

By normalizing the stacking version to give a score in the same range as

the original measure, it becomes clear that the covariation measure BS can be

found as a weighted average of the original RNAalifold score of the three

pairs under consideration. Thus, since the covariation between (i,j) and

(i�1,j+1) and between (i,j) and (i + 1,j � 1) is considered, the final formu-

lation becomes:

BS
i‚ j ¼

Bi�1‚ jþ1 þ 2 ·Bi‚ j þ Biþ1‚ j�1

4
: ð9Þ

3.9 Base pair probabilities

The partition function described by McCaskill (1990) calculates the proba-

bility Ps(i,j) of seeing a base pair between positions (i, j) in sequence s given

the nearest-neighbour energy model. The base pairing probabilities are based

on the ensemble of all possible structures for the given sequence weighted by

the free energy of the individual structures. This information can be used to

assign probabilities to proposed base pairs in an alignment of N sequences as

follows: first, a probability matrix Ms is calculated for each ungapped

sequence s. When a base pair in the alignment is proposed between columns

i and j, it has some probability of occurring in each of the N sequences. If a

sequence s contains a gap at either of the two positions in the alignment the

probability is 0, otherwise the corresponding entry in Ms is used.

Given positions (i, j) in the alignment, let (is, js) be the original positions in
the ungapped sequence s. The partition score for a given base pair is then

given as:

Pi‚ j ¼
1

N

XN
s¼1

Msðis‚ jsÞ: ð10Þ

The score is thus the mean probability assigned to a base pair by the

partition function. If a base pair is undefined in a number of sequences, the

score is lower due to the lack of evolutionary evidence for that particular

base pair. We use the partition function as implemented in the RNAfold

program from the Vienna package (Hofacker et al., 1994).

4 RESULTS AND DISCUSSION

4.1 Information decreases with overall similarity

The performance of the different measures was analyzed using

MCC as a function of threshold values. Graphs showing MCC

versus threshold for the individual datasets as well as graphs for

the different identity intervals can be found in the Supplementary

material. The performance of the different measures is summarized

in Figure 1. For each measure, the maximum MCC for all the

thresholds we used is shown for each of the three identity intervals.

This makes comparison of the relative performance both between

measures and between the identity intervals easy.

We also analyzed the performance of the different measures as a

function of the number of sequences in the dataset by using sets

containing from 2 to 20 sequences (see Supplementary material).

All measures performed best with many sequences, which is not

surprising, but the relative rating of each measure did not change

dramatically.

As expected, all covariation based measures perform best on the

low identity datasets with a mean MCC of 0.56. As the overall

similarity of the sequences increase, the methods perform worse.

This is due to the fact that all these measures rely on a signal from

sequence variation. If the sequences are too similar, there is no

signal in the alignment and the measures fail. However, the

drop in performance varies between the different methods. Some

methods are drastically affected (e.g. MIP and B), while the standard
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mutual information measure is only slightly worse. The best mea-

sure is BS with MCC ¼ 0.76.

While most of the sequence variation based measures gave MCC

scores greater than 0.5 on the low identity interval, only BS exceeded

0.5 on the medium identity interval with MCC ¼ 0.56 (mean MCC

of 0.41). The normalized mutual information (MIN) is the only

measure that shows an increase in MCC from the low to the medium

overall identity datasets. A likely explanation is that the normalized

measure depends on the MI measure, which is only slightly affected

by the increase in sequence identity. At the same time, the normal-

ization is based on the entropy of the alignment, which decreases as

the alignment becomes more ‘ordered’ with the larger overall iden-

tity. This is the second best measure on this identity interval with

MCC ¼ 0.44.

When the overall similarity is further increased to the 80–100%

interval all measures perform significantly worse, and the mean

MCC drops to 0.12. It is clear that using the information content

is futile when the sequences are almost identical. The best method is

again BS with MCC ¼ 0.28.

For comparison, the partition function is included in the evalu-

ation. This measure is widely used in RNA structure prediction

methods but it is based on a completely different approach. All

the other measures use evolutionary information from a seq-

uence alignment, while the partition function uses experimentally

obtained energy terms to determine base pairing interactions. Since

the partition function does not rely on covariation it is not affected

by sequence similarity to the same extent as the other measures. For

the purpose of discriminating between true and false base pairs the

partition function performs very well on all identity intervals.

It is interesting to see that the partition function also performs

better on the low identity datasets. This is not due to covariation of

the sequences, but due to the benefits of averaging over a divergent

set of structure predictions—an effect that is known from ensemble

methods (Krogh and Vedelsby, 1995).

On the low identity datasets the partition function obtains an

MCC of 0.92, which is significantly better than the covariation

measures. For the 0.60–0.80% interval, the MCC is decreased to

0.88. Finally, the lowest MCC obtained using the partition function

(0.68 for the high identity dataset) is only slightly lower than the

highest MCC obtained by any other measure (0.76 for BS on the low

identity dataset). Based on these results, it is clear that the partition

function is an excellent measure for discriminating between true and

false base pairs, as it was also shown in Mathews (2004). Com-

bining the partition function with one of the covariation measures

makes obvious sense, such as it is done in e.g. RNAalifold

(Hofacker et al., 2002).

4.2 Extending the basic measure

Since the performance is so dependent on the sequence similarity

only the results from the low identity datasets will be discussed in

the following. Referring to Figure 1 and Table 2 , it can be seen that

the standard MI only achieves an MCC of 0.41. The measure is

therefore a poor choice for discriminating between true and false

base pairs. Normalizing by the entropy (MIN) as suggested by

Martin et al. (2005) does not help, on the contrary the perfor-

mance decreases (MCC ¼ 0.24). A partial explanation for the

poor behaviour of these MI scores is that they rely on many fre-

quency estimates, which results in in a poor signal-to-noise ratio

unless an unrealistically high number of sequences is available.

Constraining the measure to only consider canonical base

pairs (MIW) gives an increase in MCC to 0.52, and further using

the stacking formulation in MIS�W yields MCC ¼ 0.55. This is the

expected behaviour since the new formulations should limit the

noise and improve the true structural signal. The simple extension

of adding a gap penalty (MIP) gives a considerable improvement

of the MCC to 0.59. It should be noted that this improvement in

MCC can be due to the alignments used: since gaps in stems are

actively avoided in the hand-curated alignments, the bonus from the

gap penalty is boosted. Nevertheless, since gaps are unwanted in

structurally important stretches, this result is promising.

Combining the use of canonical base pairs with a gap penalty

(MIW�P) gives a good MCC of 0.64, which is significantly better

than either one alone. Adding a gap penalty to the stacking measure

(MIS�P�W) increases the MCC to 0.64 compared to stacking alone.

The gap penalty thus shows good improvements when used in

combination with the different measures. It is possible that the

gap penalty could be further optimized, since it is a simple formu-

lation that is used.
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M
C

C
0.

0
0.

2
0.

4
0.

6
0.

8

Low %ID
Medium %ID
High %ID

S
ta

n
d

ar
d

G
ap

 p
en

al
ty

W
C

 p
ai

rs

N
o

rm
al

iz
ed

S
ta

ck
+W

C

S
ta

ck
+p

en
+W

C

W
C

+p
en

A
lif

o
ld

A
lif

o
ld

+s
ta

ck

P
ar

ti
ti

o
n

Fig. 1. For each measure, the maximum MCC obtained for the thresholds

used in this study is shown for the low, medium and high identity datasets.

Table 2. Summary of performance

Measure Low identity

(g,MCC)

Medium identity

(g,MCC)

High identity

(g,MCC)

MI (1.01,0.41) (1.01,0.39) (0.57,0.10)

MIP (0.91,0.59) (0.88,0.41) (0.58,0.13)

MIW (0.60,0.52) (0.52,0.39) (0.08,0.13)

MIN (0.30,0.24) (0.46,0.44) (0.28,0.12)

MIS�W (0.68,0.55) (0.78,0.34) (0.66,0.03)

MIS�W�P (0.50,0.64) (0.45,0.38) (0.77,0.06)

MIW�P (0.45,0.64) (0.41,0.40) (0.09,0.12)

B (0.61,0.66) (0.85,0.42) (0.58,0.16)

BS (0.36,0.76) (0.52,0.56) (0.42,0.28)

P (0.22,0.92) (0.26,0.88) (0.19,0.68)

The table shows the optimal pairs of threshold (g) and MCC obtained in this study for

each measure used on the three identity intervals.
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The measure used in RNAalifold also limits the allowed base

pairs and explicitly penalizes gaps and inconsistent pairs. This gives

a good MCC of 0.66 which is better than any of the MI based

measures. The stacking version of the RNAalifold measure (BS)

is even better giving an MCC of 0.76. The RNAalifold measure

and its stacking extension are comparable to MIW�P and MIS�P�W,

respectively: they all include gap penalties and only focus on

canonical base pairs. The main difference is the explicit penalty

for inconsistencies in the RNAalifold measure, which gives a

significant improvement in MCC.

The advantage of using the symmetric stacking is that the level of

noise is smoothed while the signal is only slightly affected (mainly

in stem ends), thus improving the signal-to-noise ratio. In parallel

with the BS measure, a symmetric version of the MIS�W measure

was tested. However, experiments showed that the performance

decreased which is possibly due to the decreased signal-to-noise

ratio as a result of the increase in variables to estimate (data

not shown). We also tested a next-to-nearest-neighbour version

of the BSmeasure which resulted in a slight improvement. However,

the weighting scheme was rather ad hoc and could not be justified

(the fourth row of Pascal’s triangle; data not shown). It might be

worth doing further investigations into this stacking model.

5 CONCLUSION

The standardMI is not well suited for the task of secondary structure

prediction, and not all the proposed extensions can remedy this.

Adding a simple gap penalty, though, greatly increases the perfor-

mance as shown above. Likewise, counting only the most common

base pairs also gives better results. It is also seen that combining

different extensions in general improve the MCC.

The covariation measure used in RNAalifold (Hofacker et al.,
2002) performs very well and is a good choice due to its simplicity.

The simple extension to include stacking in this measure also shows

potential and might be worth exploiting in the future. Of the covaria-

tion based measures evaluated in this work, this was the most dis-

criminative. The partition function used for comparison was the

most powerful, though. The performance of the individual measures

for the three similarity classes is summarized in Table 2 together

with the threshold values.

In this study, we have analyzed a number of measures to distin-

guish true and false base pairs. Standard MI is still widely used, but

our evaluation indicates that this is not the best measure. The results

presented here should give other researchers an idea of useful

information measures for RNA secondary structure prediction

and—just as importantly—an idea of which measures are not useful.
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