Paul C Marcogliese

Paul C Marcogliese
University of Manitoba | UMN · Department of Biochemistry and Medical Genetics

PhD

About

52
Publications
10,901
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,358
Citations
Introduction
Paul C Marcogliese currently works at the Department of Molecular & Human Genetics, Baylor College of Medicine. Paul does research in Genetics and Neuroscience.
Additional affiliations
July 2016 - June 2022
Baylor College of Medicine
Position
  • PostDoc Position
Description
  • Lab of Hugo J. Bellen
September 2010 - June 2016
University of Ottawa
Position
  • PhD Student
Description
  • Lab of David S. Park

Publications

Publications (52)
Article
Progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta is the primary cause for motor symptoms observed in Parkinson's disease (PD). Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most commonly linked contributor to familial PD. LRRK2 is suggested to be involved in a wide variety of cellular processes, but...
Article
Significance Determining the role for LRRK2, the most common Parkinson’s disease (PD) gene in neurons has been a challenge for the field. Combining interaction data from an unbiased screen in flies and a conserved physical relationship, we show that LRRK2 binds and phosphorylates the actin remodeling protein WAVE2 specifically in myeloid cells. Fur...
Article
Full-text available
Interferon regulatory factor 2 binding protein-like (IRF2BPL) encodes a member of the IRF2BP family of transcriptional regulators. Currently the biological function of this gene is obscure, and the gene has not been associated with a Mendelian disease. Here we describe seven individuals who carry damaging heterozygous variants in IRF2BPL and are af...
Article
Full-text available
De novo truncations in Interferon Regulatory Factor 2 Binding Protein Like (IRF2BPL) lead to severe childhood-onset neurodegenerative disorders. To determine how loss of IRF2BPL causes neural dysfunction, we examined its function in Drosophila and zebrafish. Overexpression of either IRF2BPL or Pits, the Drosophila ortholog, represses Wnt transcript...
Article
Full-text available
Individuals with autism spectrum disorder (ASD) exhibit an increased burden of de novo mutations (DNMs) in a broadening range of genes. While these studies have implicated hundreds of genes in ASD pathogenesis, which DNMs cause functional consequences in vivo remains unclear. We functionally test the effects of ASD missense DNMs using Drosophila th...
Preprint
Heterozygous pathogenic variants in AXIN2 are associated with oligodontia-colorectal cancer syndrome (ODCRCS), a disorder characterized by oligodontia, colorectal cancer, and in some cases, sparse hair and eyebrows. We have identified four individuals with one of two de novo, heterozygous variants (NM_004655.4:c.196G>A, p.(Glu66Lys) and c.199G>T, p...
Article
Full-text available
Cdk8 in Drosophila is the orthologue of vertebrate CDK8 and CDK19. These proteins have been shown to modulate transcriptional control by RNA polymerase II. We found that neuronal loss of Cdk8 severely reduces fly lifespan and causes bang sensitivity. Remarkably, these defects can be rescued by expression of human CDK19, found in the cytoplasm of ne...
Preprint
Full-text available
Thioredoxin-related transmembrane proteins (TMX) of the endoplasmic reticulum (ER) have emerged as key regulators of ER membrane properties. Within the ER lumen, TMX proteins and other ER redox enzymes determine oxidative conditions, which control the formation of ER-mitochondria membrane contacts (ERMCS) and determine their function. ERMCS exhibit...
Article
Full-text available
The last decade has been highlighted by the increased use of next-generation DNA sequencing technology to identify novel human disease genes. A critical downstream part of this process is assigning function to a candidate gene variant. Functional studies in Drosophila melanogaster, the common fruit fly, have made a prominent contribution in annotat...
Article
Nascent proteins destined for the cell membrane and the secretory pathway are targeted to the endoplasmic reticulum (ER) either posttranslationally or cotranslationally. The signal-independent pathway, containing the protein TMEM208, is one of three pathways that facilitates the translocation of nascent proteins into the ER. The in vivo function of...
Article
Full-text available
In most eukaryotic cells, fatty acid synthesis (FAS) occurs in the cytoplasm and in mitochondria. However, the relative contribution of mitochondrial FAS (mtFAS) to the cellular lipidome is not well defined. Here we show that loss of function of Drosophila mitochondrial enoyl coenzyme A reductase (Mecr), which is the enzyme required for the last st...
Preprint
Full-text available
In most eukaryotic cells fatty acid synthesis occurs in the cytoplasm as well as in mitochondria. However, the relative contribution of mitochondrial fatty acid synthesis (mtFAS) to the cellular lipidome of metazoans is ill-defined. Hence, we studied the function of the fly Mitochondria enoyl CoA reductase (Mecr), the enzyme required for the last s...
Article
Full-text available
The recently discovered neurological disorder NEDAMSS is caused by heterozygous truncations in the transcriptional regulator IRF2BPL. Here, we reprogram patient skin fibroblasts to astrocytes and neurons to study mechanisms of this newly described disease. While full-length IRF2BPL primarily localizes to the nucleus, truncated patient variants sequ...
Article
Full-text available
WDR5 is a broadly studied, highly conserved key protein involved in a wide array of biological functions. Among these functions, WDR5 is a part of several protein complexes that affect gene regulation via post-translational modification of histones. We collected data from 11 unrelated individuals with six different rare de novo germline missense va...
Preprint
Parkinson’s disease (PD) is characterized by accumulation of α -synuclein and the loss of dopaminergic neurons. Mutations which cause an increase in the kinase activity of Leucine-Rich-Repeat Kinase-2 (LRRK2) are a major inherited cause of PD. Research continues to determine which targets LRRK2 phosphorylates to cause disease. Polymorphisms in the...
Article
Background: The endoplasmic reticulum (ER)-membrane protein complex (EMC) is a multi-protein transmembrane complex composed of 10 subunits that functions as a membrane-protein chaperone. Variants in EMC1 lead to neurodevelopmental delay and cerebellar degeneration. Multiple families with biallelic variants have been published, yet to date, only a...
Article
Full-text available
Cerebellar hypoplasia and dysplasia encompass a group of clinically and genetically heterogeneous disorders frequently associated with neurodevelopmental impairment. The Neuron Navigator 2 ( NAV2 ) gene (MIM: 607,026) encodes a member of the Neuron Navigator protein family, widely expressed within the central nervous system (CNS), and particularly...
Article
Full-text available
TIAM Rac1-associated GEF 1 (TIAM1) regulates RAC1 signaling pathways that affect the control of neuronal morphogenesis and neurite outgrowth by modulating the actin cytoskeletal network. To date, TIAM1 has not been associated with a Mendelian disorder. Here, we describe five individuals with bi-allelic TIAM1 missense variants who have developmental...
Article
Significance Multiple studies have implicated dozens of risk loci that may be associated with Alzheimer’s disease (AD), but common mechanisms underlying how they may contribute to disease onset or progression remain elusive. This study identifies cell-specific roles for Drosophila orthologs of AD risk genes in lipid droplet formation that, when dis...
Article
Full-text available
TM2 domain containing (TM2D) proteins are conserved in metazoans and encoded by three separate genes in each model organism species that has been sequenced. Rare variants in TM2D3 are associated with Alzheimer’s disease (AD) and its fly ortholog almondex is required for embryonic Notch signaling. However, the functions of this gene family remain el...
Preprint
Full-text available
TM2 domain containing (TM2D) proteins are conserved in metazoans and encoded by three separate genes in each species. Rare variants in TM2D3 are associated with Alzheimer's disease (AD) and its fly ortholog almondex is required for embryonic Notch signaling. However, the functions of this gene family remain elusive. We knocked-out all three TM2D ge...
Preprint
Full-text available
A growing list of Alzheimers disease (AD) genetic risk factors is being identified, but the contribution of these genetic mutations to disease remains largely unknown. Accumulating data support a role of lipid dysregulation and excessive ROS in the etiology of AD. Here, we identified cell-specific roles for eight AD risk-associated genes in ROS-ind...
Preprint
Full-text available
Individuals with autism spectrum disorders (ASD) exhibit an increased burden of de novo variants in a broadening range of genes. We functionally tested the effects of ASD missense variants using Drosophila through humanization rescue and overexpression-based strategies. We studied 79 ASD variants in 74 genes identified in the Simons Simplex Collect...
Article
Full-text available
Background CTNNB1 (MIM 116806) encodes beta‐catenin, an adherens junction protein that supports the integrity between layers of epithelial tissue and mediates intercellular signaling. Recently, various heterozygous germline variants in CTNNB1 have been associated with human disease, including neurodevelopmental disorder with spastic diplegia and vi...
Article
In multipolar vertebrate neurons, action potentials (APs) initiate close to the soma, at the axonal initial segment. Invertebrate neurons are typically unipolar with dendrites integrating directly into the axon. Where APs are initiated in the axons of invertebrate neurons is unclear. Voltage-gated sodium (NaV) channels are a functional hallmark of...
Article
The Translocase of Outer Mitochondrial Membrane (TOMM) complex is the entry gate for virtually all mitochondrial proteins and is essential to build the mitochondrial proteome. TOMM70 is a receptor that assists mainly in mitochondrial protein import. Here, we report two individuals with de novo variants in the C-terminal region of TOMM70. While both...
Article
Full-text available
We identified three unrelated individuals with de novo missense variants in CDK19, encoding a cyclin-dependent kinase protein family member that predominantly regulates gene transcription. These individuals presented with hypotonia, global developmental delay, epileptic encephalopathy, and dysmorphic features. CDK19 is conserved between vertebrate...
Article
ACOX1 (acyl-CoA oxidase 1) encodes the first and rate-limiting enzyme of the very-long-chain fatty acid (VLCFA) β-oxidation pathway in peroxisomes and leads to H2O2 production. Unexpectedly, Drosophila (d) ACOX1 is mostly expressed and required in glia, and loss of ACOX1 leads to developmental delay, pupal death, reduced lifespan, impaired synaptic...
Article
Full-text available
Postsynaptic density (PSD) proteins have been implicated in the pathophysiology of neurodevelopmental and psychiatric disorders. Here, we present detailed clinical and genetic data for 20 patients with likely gene-disrupting mutations in TANC2—whose protein product interacts with multiple PSD proteins. Pediatric patients with disruptive mutations p...
Article
Full-text available
We report two consanguineous families with probands that exhibit intellectual disability, developmental delay, short stature, aphasia, and hypotonia in which homozygous non-synonymous variants were identified in IQSEC1 (GenBank: NM_001134382.3). In a Pakistani family, the IQSEC1 segregating variant is c.1028C>T (p.Thr343Met), while in a Saudi Arabi...
Article
Full-text available
Variants in the leucine-rich repeat kinase-2 ( LRRK2 ) gene are associated with Parkinson’s disease, leprosy, and Crohn’s disease, three disorders with inflammation as an important component. Because of its high expression in granulocytes and CD68-positive cells, LRRK2 may have a function in innate immunity. We tested this hypothesis in two ways. F...
Article
Full-text available
The unfolded protein response (UPR) triggered by endoplasmic reticulum (ER) stress is a feature of many neurodegenerative diseases including Alzheimer’s disease, Huntington’s disease and Parkinson’s disease (PD). Although the vast majority of PD is sporadic, mutations in a number of genes including PARK7 which encodes the protein DJ-1 have been lin...
Article
The pathogenic mechanisms underlying Parkinson's disease (PD)/parkinsonism affect mitochondrial and endolysosomal trafficking. The retromer is required to retrieve some proteins from endosomes to the Golgi and plasma membrane. Here, we discuss how retromer-dependent retrieval also affects ceramide metabolism. Compelling studies across PD models in...
Article
Full-text available
Interferon regulatory factor 2 binding protein-like (IRF2BPL) encodes a member of the IRF2BP family of transcriptional regulators. Currently the biological function of this gene is obscure, and the gene has not been associated with a Mendelian disease. Here we describe seven individuals who carry damaging heterozygous variants in IRF2BPL and are af...
Preprint
Full-text available
The Interferon Regulatory Factor 2 Binding Protein Like (IRF2BPL) gene encodes a member of the IRF2BP family of transcriptional regulators. Currently the biological function of this gene is obscure, and the gene has not been associated with a Mendelian disease. Here we describe seven individuals affected with neurological symptoms who carry damagin...
Chapter
The fruit fly has long been a powerful organism for high‐throughput in vivo studies in biology and genetics. Studies in Drosophila offer a simple platform, modelling multiple human diseases. With an ever‐expanding genetic toolkit, the fly genome has become increasingly accessible to experimental manipulation. The ectopic expression of human disease...
Article
Full-text available
Emerging evidence has demonstrated a growing genetic component in Parkinson disease (PD). For instance, loss-of-function mutations in PINK1 or PARKIN can cause autosomal recessive PD. Recently, PINK1 and PARKIN have been implicated in the same signaling pathway to regulate mitochondrial clearance through recruitment of PARKIN by stabilization of PI...
Article
Full-text available
Parkinson's disease (PD) is one of the most prevalent neurodegenerative brain diseases; it is accompanied by extensive loss of dopamine (DA) neurons of the substantia nigra that project to the putamen, leading to impaired motor functions. Several genes have been associated with hereditary forms of the disease and transgenic mice have been developed...
Article
Full-text available
DJ-1 mutations cause autosomal recessive early-onset Parkinson disease (PD). We report a model of PD pathology: the DJ1-C57 mouse. A subset of DJ-1-nullizygous mice, when fully backcrossed to a C57BL/6J background, display dramatic early-onset unilateral loss of dopaminergic (DA) neurons in their substantia nigra pars compacta, progressing to bilat...
Article
Full-text available
Loss-of-function DJ-1 (PARK7) mutations have been linked with a familial form of early onset Parkinson disease. Numerous studies have supported the role of DJ-1 in neuronal survival and function. Our initial studies using DJ-1-deficient neurons indicated that DJ-1 specifically protects the neurons against the damage induced by oxidative injury in m...

Network

Cited By