Paul HB Fokkens

Paul HB Fokkens
National Institute for Public Health and the Environment | RIVM

About

53
Publications
8,716
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,172
Citations
Introduction
Skills and Expertise

Publications

Publications (53)
Article
Full-text available
Background Physiologically based kinetic models facilitate the safety assessment of inhaled engineered nanomaterials (ENMs). To develop these models, high quality datasets on well-characterized ENMs are needed. However, there are at present, several data gaps in the systemic availability of poorly soluble particles after inhalation. The aim of the...
Article
Full-text available
Graphene oxide nanomaterials are being developed for wide-ranging applications but are associated with potential safety concerns for human health. We conducted a double-blind randomized controlled study to determine how the inhalation of graphene oxide nanosheets affects acute pulmonary and cardiovascular function. Small and ultrasmall graphene oxi...
Article
Graphene oxide nanomaterials have been developed for wide-ranging applications, but has potential safety concerns for human health. Controlled inhalation exposures in human volunteers have been a vital means to determine the effects and mechanisms of ultrafine particles in air pollution, however, few studies have used this approach to explore the e...
Article
A growing number of epidemiological studies has linked exposure to traffic-related air pollution (TRAP) to neurological and neurodegenerative diseases. In a previous study, we showed that subchronic inhalation exposure to diesel engine exhaust, as a model of TRAP, aggravates amyloid-β plaque formation and motor function impairment in the 5xFAD tran...
Article
In most airplanes, cabin air is extracted from the turbine compressors, so-called bleed air. Bleed air can become contaminated by leakage of engine oil or hydraulic fluid and possible neurotoxic constituents, like triphenyl phosphate (TPhP) and tributyl phosphate (TBP). The aim of this study was to characterize the neurotoxic hazard of TBP and TPhP...
Article
Full-text available
Chronic obstructive pulmonary disease (COPD) is a devastating lung disease primarily caused by exposure to cigarette smoke (CS). During the pyrolysis and combustion of tobacco, reactive aldehydes such as acetaldehyde, acrolein, and formaldehyde are formed, which are known to be involved in respiratory toxicity. Although CS-induced mitochondrial dys...
Article
The most direct effects of inhaled harmful constituents are the effects on the airways. However, inhaled compounds can be rapidly absorbed and subsequently result in systemic effects. For example, e-cigarette vapor has been shown to evoke local effects in the lung, although little is known about subsequent effects in secondary target organs such as...
Article
Full-text available
High-energy industrial processes have been associated with particle release into workplace air that can adversely affect workers’ health. The present study assessed the toxicity of incidental fine (PGFP) and nanoparticles (PGNP) emitted from atmospheric plasma (APS) and high-velocity oxy-fuel (HVOF) thermal spraying. Lactate dehydrogenase (LDH) rel...
Article
Full-text available
Diverse industries have already incorporated within their production processes engineered nanoparticles (ENP), increasing the potential risk of worker inhalation exposure. In vitro models have been widely used to investigate ENP toxicity. Air-liquid interface (ALI) cell cultures have been emerging as a valuable alternative to submerged cultures as...
Article
The advanced ceramic technology has been pointed out as a potentially relevant case of occupational exposure to nanoparticles (NP). Not only when nanoscale powders are being used for production, but also in the high-temperature processing of ceramic materials there is also a high potential for NP release into the workplace environment. In vitro tox...
Article
Full-text available
Inhalation exposure to environmental and occupational aerosol contaminants is associated with many respiratory health problems. To realistically mimic long-term inhalation exposure for toxicity testing, lung epithelial cells need to maintained and exposed under air-liquid interface (ALI) conditions for a prolonged period of time. In addition, to st...
Article
Full-text available
Relatively high concentrations of ultrafine particles (UFPs) have been observed around airports, in which aviation and road traffic emissions are the major sources. This raises concerns about the potential health impacts of airport UFPs, particularly in comparison to those emitted by road traffic. UFPs mainly derived from aviation or road traffic e...
Article
Recently, interest for the potential impact of consumer-relevant engineered nanoparticles on pregnancy has dramatically increased. This study investigates whether inhaled silver nanoparticles (AgNPs) reach and cross mouse placental barrier and induce adverse effects. Apart from their relevance for the growing use in consumer products and biomedical...
Article
The development of engineered nanomaterials is growing exponentially, despite concerns over their potential similarities to environmental nanoparticles that are associated with significant cardiorespiratory morbidity and mortality. The mechanisms through which inhalation of nanoparticles could trigger acute cardiovascular events are emerging, but a...
Poster
Full-text available
Later published in ”The effect of zirconium doping of cerium dioxide nanoparticles on pulmonary and cardiovascular toxicity and biodistribution in mice after inhalation”. Winner of the RSC Environmental Science Nano best poster Prize.
Article
Full-text available
Background: Airborne pollution is a rising concern in urban areas. Epidemiological studies in humans and animal experiments using rodent models indicate that gestational exposure to airborne pollution, in particular diesel engine exhaust (DE), reduces birth weight, but effects depend on exposure duration, gestational window and nanoparticle (NP) c...
Article
A number of studies have shown that induction of pulmonary toxicity by nanoparticles of the same chemical composition depends on particle size, which is likely in part due to differences in lung deposition. Particle size mostly determines whether nanoparticles reach the alveoli, and where they might induce toxicity. For the risk assessment of nanom...
Article
Full-text available
Background Although silver nanoparticles are currently used in more than 400 consumer products, it is not clear to what extent they induce adverse effects after inhalation during production and use. In this study, we determined the lung burden, tissue distribution, and the induction and recovery of adverse effects after short-term inhalation exposu...
Chapter
Full-text available
In previous studies we showed that short-term exposure to high (300 μg/m3) concentrations of diesel engine exhaust (DE) caused an increase in the high-frequency part of the brain spectrum (measured by electroencephalography, EEG). The purpose of this study was to investigate the same markers at lower, more commonly occurring concentrations of DE (1...
Article
Full-text available
Exposure to road traffic and air pollution may be a trigger of acute myocardial infarction, but the individual pollutants responsible for this effect have not been established. We assess the role of combustion-derived-nanoparticles in mediating the adverse cardiovascular effects of air pollution. To determine the in vivo effects of inhalation of di...
Article
Full-text available
Traffic-related particulate matter (PM) may play an important role in the development of adverse health effects, as documented extensively in acute toxicity studies. However, rather little is known about the impacts of prolonged exposure to PM. We hypothesized that long-term exposure to PM from traffic adversely affects the pulmonary and cardiovasc...
Article
Full-text available
This study was designed to determine the sequence of events leading to cardiopulmonary effects following acute inhalation of diesel engine exhaust in rats. Rats were exposed for 2 h to diesel engine exhaust (1.9 mg/m3), and biological parameters related to antioxidant defense, inflammation, and procoagulation were examined after 4, 18, 24, 48, and...
Article
Full-text available
Exposure to air pollution is an important risk factor for cardiovascular morbidity and mortality, and is associated with increased blood pressure, reduced heart rate variability, endothelial dysfunction and myocardial ischaemia. Our objectives were to assess the cardiovascular effects of reducing air pollution exposure by wearing a facemask. In an...
Article
Full-text available
Exposure to fine particulate air pollution is associated with increased cardiovascular morbidity and mortality. We previously demonstrated that exposure to dilute diesel exhaust causes vascular dysfunction in humans. We conducted a study to determine whether exposure to ambient particulate matter causes vascular dysfunction. Twelve male patients wi...
Article
We investigated whether inhaling peak concentrations of aldehydes several times daily is more damaging than semi-continuously inhaling low-dose aldehydes. We exposed Xpa-/-p53+/- knock-out mice either intermittently or semi-continuously to mixed acetaldehyde, formaldehyde, and acrolein. The intermittent regimen entailed exposure to the aldehydes 7...
Article
Full-text available
The oxidant ozone is a well-known air pollutant, inhalation of which is associated with respiratory tract inflammation and functional alterations of the lung. It is well established as an inducer of intracellular oxidative stress. We investigated whether Cockayne syndrome B, transcription-coupled, repair-deficient mice (Csb(-/-)), known to be sensi...
Article
Full-text available
An Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) was used to investigate the size and chemical composition of fine concentrated ambient particles (CAPs) in the size range 0.2-2.6 microm produced by a Versatile Aerosol Concentration Enrichment System (VACES) contained within the Mobile Ambient Particle Concentrator Exposure Laboratory (MAPCEL)....
Article
Full-text available
Many epidemiological studies have shown that mass concentrations of ambient particulate matter (PM) are associated with adverse health effects in the human population. Since PM is still a very crude measure, this experimental study has explored the role of two distinct size fractions: ultrafine (<0.15 microm) and fine (0.15- 2.5 microm) PM. In a se...
Article
Although significant progress has been made over the past few years, there is still debate on the causal fractions that are responsible for particulate matter (PM)-associated adverse health effects. A series of 1-d inhalation exposures to concentrated ambient particles (CAPs) were performed in compromised rats, focusing on pulmonary inflammation an...
Article
In the present study the effects of a 3-day inhalation exposure to model compounds for ambient particulate matter were investigated: ammonium bisulfate, ammonium ferrosulfate, and ammonium nitrate, all components of the secondary aerosol fraction of ambient particulate matter (PM), and carbon black (CB, model aerosol for primary PM). The objective...
Article
Epidemiological studies have observed statistical associations between short-term exposure to increased ambient particulate air pollution and increased hospital admissions, medication use, pulmonary morbidity, and mortality. To examine the effects of particle air pollution in animals, rats with a preexisting pulmonary inflammation (induced by 1600...
Article
Full-text available
A high-efficiency coarse-mode particle concentrator (CPC) has been developed and evaluated in the laboratory as well as validated in the field experiments at the University of Southern California, in Los Angeles, CA, and in Bilthoven, the Netherlands. The CPC operates with a total intake flow of 1000 LPM. The minor flow rate, containing the concent...
Article
This paper presents results from a field evaluation of a mobile high-capacity particle size classifier (HCPSC) which samples at 850lmin−1 and classifies ambient particles in three size groups: coarse, fine (or accumulation) and ultrafine modes. Particles in coarse and fine modes are collected by impaction on a small, uncoated surface area (14cm2) a...
Article
The development and field evaluation of a mobile high capacity particle size classifier (HCPSC), which classifies the ambient particles into coarse, fine and ultrafine modes, are presented. The particle bounce is eliminated using cavity type impact substrate configurations. Field tests proved that the HCPSC substrates could collect a substantial am...

Network

Cited By