Pau Enrique Moliner

Pau Enrique Moliner
University of Edinburgh | UoE · Laboratory for Foundations of Computer Science (LFCS)

About

4
Publications
671
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
25
Citations

Publications

Publications (4)
Article
A subunit in a monoidal category is a subobject of the monoidal unit for which a canonical morphism is invertible. They correspond to open subsets of a base topological space in categories such as those of sheaves or Hilbert modules. We show that under mild conditions subunits endow any monoidal category with a kind of topological intuition: there...
Preprint
Full-text available
A subunit in a monoidal category is a subobject of the monoidal unit for which a canonical morphism is invertible. They correspond to open subsets of a base topological space in categories such as those of sheaves or Hilbert modules. We show that under mild conditions subunits endow any monoidal category with topological intuition: there are well-b...
Article
Full-text available
The category of Hilbert modules may be interpreted as a naive quantum field theory over a base space. Open subsets of the base space are recovered as idempotent subunits, which form a meet-semilattice in any firm braided monoidal category. There is an operation of restriction to an idempotent subunit: it is a graded monad on the category, and has t...
Preprint
Full-text available
The category of Hilbert modules may be interpreted as a naive quantum field theory over a base space. Open subsets of the base space are recovered as idempotent subunits, which form a meet-semilattice in any firm braided monoidal category. There is an operation of restriction to an idempotent subunit: it is a graded monad on the category, and has t...

Network

Cited By