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Anomaly detection is applied in several critical areas, such as early disease
detection in healthcare, fraud detection in finance, and intrusion detection
in cybersecurity. Anomalies often have different causes, resulting in differ-
ent classes of anomalies having distinctly heterogeneous characteristics. In
addition, they also occur infrequently and unpredictably in datasets. It is,
therefore, difficult to obtain training data that covers all possible classes of
anomalies. Using machine learning these data can be transformed into in-
sights that enable data-driven decisions. In particular, Reinforcement Learn-
ing methods have attracted significant interest due to their ability to learn
complex behavior in the high-dimensional data space. Thereby, the anomaly
detector makes no assumptions about the concept of anomalies. Instead, it
identifies new anomalies by continuously expanding its knowledge through
collected reward signals.

This paper attempts to show potentialities to overcome the difficulties
of traditional anomaly detection methods with Reinforcement Learning.
Th, possible methodologies are explained and substantiated with current
research approaches (if available) that attempt to solve these problems. Thus,
their requirements, strengths, and weaknesses are analyzed.

CCS Concepts: • Computing methodologies → Reinforcement learn-
ing; • Information systems → Data mining.

Additional Key Words and Phrases: Anomaly detection, Machine Learning
and Reinforcement Learning.

1 INTRODUCTION AND MOTIVATION
Accelerated technological advances have increased unstructured
data, contributing to rapid growth in data volumes. The amount of
unlabeled data available is far more tremendous than practically
processed [9]. No traditional technique can analyze and control these
vast amounts of data without coping with an increase of several
difficulties, e.g., a decrease in computational efficiency [6]. Therefore
analytical and predictive tools are needed. Unsupervised can often
detect various anomalies because labeled data do not constrain them.
Hence such approaches have dominated this area for decades [6].
However, they can produce many false positives due to the lack
of prior knowledge about true anomalies [5, 12]. Using machine
learning techniques can transform this data into knowledge that
enables data-driven decisions that increase the efficiency, robustness,
and scalability of anomaly detection approaches [6, 11].
This paper is divided into three sections. The first section of

the paper starts with the theoretical background and covers all
the areas that should better understand. It should be noted that
some basic knowledge about data collection, preprocessing, and
machine learning, in general, is assumed. The second part then deals
with the actual objective. The respective methodologies, algorithmic
approaches, and their advantages and disadvantages are discussed.
Finally, the last section then summarizes all these findings and
presents possible further research ideas.
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2 THEORETICAL BACKGROUND
This section of the paper explains the theoretical background and
covers all the crucial areas for a better understanding of the topic. It
should be noted that some basic knowledge about data acquisition,
preprocessing, and machine learning, in general, is assumed.

2.1 Anomaly detection
Anomaly detection, also known as novelty or outlier detection, refers
to detecting data instances that deviate significantly from most data
instances. Due to increasing demand and applications in broad areas
such as financial monitoring, health, and security, anomaly detection
plays an increasingly important role in various fields [6]. Moreover,
anomaly detection has been one of the critical research areas in
data science for several decades due to its ubiquity [7]. Anomaly
detection refers to the techniques for finding specific data points or
patterns that do not fit the normal distribution of the dataset. It deals
with rare events, minority, uncertainty, and unpredictability leading
to unique problem complexities. In manufacturing, for example, it
can be used to identify parts that are likely to fail. In security, it
can be applied to detect potentially threatening users, and in social
networks, it can identify people with unusual characteristics.

2.2 Reinforcement Learning
Reinforcement Learning (RL) is a fundamental paradigm of machine
learning along with supervised and unsupervised learning [10].
It differs from supervised learning in that it does not learn from
a training set of labeled examples provided by a knowledgeable
external supervisor. RL also differs from unsupervised learning,
which is typically about finding structures hidden in collections of
unlabeled data. Instead, it is about how intelligent agents should
perform actions to maximize cumulative rewards. RL problems are
closed-loop problems since the actions of the learning system affect
its subsequent inputs. The outcomes of each action, including reward
signals that affect over time, are the main distinguishing features of
RL. One of the challenges in RL is the tradeoff between exploration
and exploitation [3]. To obtain different rewards, an RL agent must
favor actions that it has tried in the past and have proven effective in
generating rewards. However, to discover such actions, it must try
actions that it has not previously selected. The agent must exploit
what it already knows to obtain a reward, but it must also explore
to make better future choices. So, generally speaking, RL problems
are about learning what to do and mapping situations to actions. It
involves capturing the most important aspects of the environment
through interactions and then learning from them.

3 ANOMALY DETECTION IN THE CONTEXT OF
REINFORCEMENT LEARNING

In this section, the requirements for selecting suitable RL-based
algorithms for anomaly detection are discussed. Based on this, the
difficulties of traditional anomaly detection methods are explained,
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and possibilities that can be overcome with the help of RL are identi-
fied. Then, approaches from current research will be presented that
attempt to solve these problems. Thus, their requirements, strengths,
and weaknesses are analyzed.

The choice of an RL algorithm for an anomaly detection method
depends primarily on the characteristics of the input data [7]. Input
data can be categorized as sequential, e.g., music, speech, text, or
non-sequential, e.g., graph, image, and table data (which will focus
on this work). In addition, the input data can be divided into low- or
high-dimensional data depending on the number of features. With
the increase of data, two main problems arise. First, the performance
of conventional algorithms in anomaly detection is suboptimal be-
cause they cannot capture complex structures as the data increases,
and it becomes nearly impossible for conventional methods to scale
to such large datasets to find anomalies [7]. Secondly, there are
too few anomaly datasets with labels. For conventional data, many
datasets are labeled, which can then be easily used for supervised
learning [7]. This advantage cannot be exploited in unsupervised
learning for anomaly detection since anomalies can occur in differ-
ent variations and strongly depend on the underlying datasets.

3.1 Feature selection
Since the cost of data collection decreases, the space of features
used to characterize a particular predictor of interest grows expo-
nentially [8]. It becomes nearly impossible for conventional methods
to scale to such large datasets to find anomalies [8]. Moreover, the
performance of conventional algorithms are suboptimal because
they cannot capture complex structures as the data increases [8].
Therefore, identifying the most characterizing features that mini-
mize the variance without tampering with the models’ bias is critical
to successfully training a machine learning model [8]. In feature
selection approaches, the purposes of the features are maintained
while the feature space is optimally reduced according to a particu-
lar evaluation criterion. There are many potential benefits of using
feature selection, including increasing accuracy, finding optimal
computation costs, and overcoming the curse of dimensionality to
improve predictive performance, and removing the irrelevant fea-
tures according to a given criterion [4, 8].
Mehdi and Rasoul et al. [4, 8] propose two similar approaches

how to improve feature selection for large datasets. Thus, they use
a temporal difference algorithm where the state space comprises
all possible subsets of the features. The action space for every state
is defined by the number of features not already included in the
model. An action represents a feature included in the model. The
reward function determines the scored accuracy, which is used to
evaluate the current set’s predictive ability. Thereby, the reward
is the difference in accuracy value for the current state and the
next state after including an additional feature in the model. The
average of all collected rewards for that feature in several iterations
is considered as its final score. This difference between the values
of two consecutive states shows the effectiveness of the correspond-
ing feature that causes the transition allowing to (I) handle high
dimensional features space and (II) being robust enough for any
non-linear relationship between the predictors and the response
feature [8].

3.2 Labeling with few labels
The second major problem that anomaly detection has to tackle is
that there are too few anomaly datasets with labels [6]. For conven-
tional data, many datasets are labeled, which can then be easily used
for supervised learning, allowing for adequate and fast training on
the one hand and subsequent modeling on the other. This advantage
cannot be exploited in unsupervised learning for anomaly detec-
tion since anomalies can occur in different variations and strongly
depend on the underlying datasets.

Fig. 1. Pang et al.’s anomaly detection-oriented deep RL approach [6].

The following approach by Pang et al. [6] addresses the problem
described above by using learning knowledge recognition models
from a small set of partially labeled anomalies and a large unla-
beled dataset. Pang et al. propose a deep RL-based approach that
actively searches for new classes of anomalies that lie outside the
domain of the labeled training data. This approach learns to achieve
a balance between exploiting the existing data model and searching
for new classes of anomalies. It can then use the labeled anom-
aly data to improve detection accuracy without limiting anomalies
searched to the given anomaly examples. Therefore, an anomalous
environment is defined (denoted with E) by a mixture of an external
reward function and an observation generator to train the agent
(denoted with A). The deep RL method tries to learns and select an
optimal action (denoted with at) from two possible actions. This
action corresponds to labeling a given observation as normal or
anomalous. At each time step, the agent receives an observation
generated by the observation generator and performs an action. An
intrinsic reward function (denoted with f ) is defined to provide a
second reward (denoted with rit) based on the abnormality of ob-
servation to encourage unsupervised active exploration to detect
possible unlabeled anomalies. The anomaly can be inferred from the
agent’s estimated value, i.e., the expectation of the future reward
if a given action is performed during a given observation. Figure 1
illustrates the above-described procedure with a extension of the
anomaly detection agent and the anomaly-biased environment for
better understanding. Thereby, the agent is realized by a typical RL
structure, e.g., Q-Learning.
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3.2.1 Advantages and disadvantages. Analysis of the approach has
shown that (p.I) it can use the limited labeled anomaly data and
actively explore the heterogeneous and sparse anomaly data in the
large unlabeled datasets. (p.II) It allows to detect significantly more
anomalies than existing methods [6]. (p.III) This technique can sup-
port traditional unsupervised anomaly detection approaches by rais-
ing the founded/generated labels to the anomaly detection method
to improve the model’s accuracy. In doing so, (p.IV) it achieves
a 23% - 98% increase in relative AUC-PR by only increasing the
number of training steps. Moreover, (p.V) it outperforms all compet-
ing methods, e.g., state-of-the-art deep semi-supervised detectors
DevNet, DevNet+, and Deep SAD by 1% - 10% in AUC-ROC [6].
(p.VI) Increasing the number of known anomaly classes provides
more monitoring information to achieve significant improvement,
especially for datasets where the first known anomaly class cannot
provide much generalizable information. The main problem of this
approach is that (c.I) the overall performance becomes worse when
the dataset has too low dimensionality since the model is not expres-
sive enough to capture complex relationships in most datasets [6].
In addition, (c.II) the time complexity of the training is slower than
for the competing methods due to the high degree of parameters.

3.3 Hyperparameter optimization
The increasing complexity and amount of datasets also increased
training time by requiring more resources, making hyperparameter
optimization a general problem in machine learning and playing a
significant role, limiting potentially the underlying anomaly detec-
tion approaches as earlier described [2]. It is an integral aspect of
achieving the best performance for each model. It decides whether
a trained model turns out to be state-of-the-art or simply moderate
[2]. Thus, hyperparameter tuning must keep a low computational
budget performance, be robust and scalable. Hyperparameters are
often optimized by training a model on a grid of possible hyperpa-
rameter values. The set of parameters is then taken that performs
best on a validation sample.

Jomaa et al. [2] propose a hyperparameter tuning method. Their
agent learns to explore the hyperparameter space of fixed network
topology. The agent starts at a random location in the hyperparame-
ter space of the dataset and navigates on the surface of a givenmodel
type. Thereby, the agent explores the environment by selecting the
following best hyperparameter configuration and receives a reward
with every step until a terminal state is reached. The observed re-
ward depends only on the dataset and the selected hyperparameter
configuration. Once an action is selected, a new hyperparameter
configuration is evaluated.
The proposed approach (I) does not suffer from the cubic di-

mensionality problem like Gaussian-based approaches [2]. Jomaa
et al. show that their method (II) outperforms the state-of-the-art
approaches, especially with a smaller budget, where the average dis-
tance to the minimum is small from the first selection [2]. Moreover,
(III) the agent balances exploration and exploitation by enforcing
termination when an episode is repeated.

3.4 False positives
In practice, analysts typically examine the top instances in a ranked
list of anomalies identified by an anomaly detection system to iden-
tify true anomalies [12]. This analysis process generates labels that
can be used to re-rank the anomalies to discover more true anom-
alies and reduce false positives. Existing strategies have focused
on making the top instances more likely to be anomalous based on
feedback. As a result, they then greedily select the top instance to
query. However, these greedy strategies can be suboptimal, as some
low-ranked instances are maybe more helpful in the long run [12].
Zha et al. [12] propose Active Anomaly Detection with Meta-

Policy (Meta-AAD), a novel strategy that learns a meta-policy for
query selection to solve the problem of false positives. Figure 2
illustrates the above-described procedure. Meta-AAD uses deep RL
to train with meta-policy to select the most appropriate instance
to optimize the number of anomalies detected during the query
process (step 01). In each iteration, the meta-policy chooses one
of the instances (step 02) and queries an analyst, i.e., human (step
03a and b), to optimize its knowledge base (step 04a and b). It uses
three types of information to decide which instance to query (step
03/04) by starting with the anomaly detector’s calculated anomaly
scores. These provide information about which instances are further
from the majority to help the meta-policy identify more anomalous
instances. Using the already labeled anomalous instances can be
helpful to identify more anomalous instances by promoting those
similar to these known anomalous instances, which improves per-
formance. In addition, using non-anomaly labeled instances is also
helpful. Similar instances can then be rejected, which reduces the
number of false positives. Finally, it outputs after several training
phases possible anomalies (step 05).

3.4.1 Advantages and disadvantages. Zha et al. show that (p.I) Meta-
AAD outperforms state-of-the-art ranking strategies [12]. Moreover,
the analysis shows that (p.II) the trained meta-policy is intrinsic
and transferable, achieving a balance between short-term and long-
term rewards. (p.III) It achieves more than 25% improvement in
letters and speech compared to the best alternatives [12]. This ap-
proach also (p.IV) converges fast, making training the meta-policy
computationally efficient and easy to apply. (p.V) A strong meta-
policy can be trained even with small datasets since the features
are transferable and the proposed training strategy is effective. (c.I)
Meta-AAD incorporates human feedback into anomaly detection,
which reduces the degree of automation and increases the overall
effort. Moreover, (c.II) rewards depend heavily on the dataset. (c.III)
Too large negative rewards can lead to a decrease in performance.

3.5 Causal Reinforcement Learning
RL is concerned with maximizing cumulative reward over a period,
while causal inference provides techniques to combine structural
information about the data generation process and the data itself
to make derivations and inferences up to a counterfactual nature.
The main difference between causal inference and inference of as-
sociation is that causal inference analyzes the response of an effect
variable when a cause of the effect variable is changed. Adding
causal structural information to sample-efficient RL techniques can
(I) improve accuracy, learning performance, and optimality [1].
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Fig. 2. Zha et al.’s active anomaly detection with deep RL (Meta-AAD) approach [12].

The idea behind causality-based off-policy policy evaluation is
that the target policy is treated as a kind of intervention comprising
counterfactual actions different from those in the behavioral policy.
Therefore, to evaluate the target policy based on observational data
generated by the behavioral policy, the focus lies on the difference
between the two policies’ outcomes. Dealing with off-policy evalua-
tion is nothing more than predicting the decision-making system
under counterfactual interventions. From this perspective, causality
enhances previous off-policy evaluation methods by transferring
the cause-effect relationship from observations to the target policy
evaluation process. Causality makes it possible that estimators that
do not rest on MDP models can still generalize by dealing with
past experiences, which are leveraged to make predictions under
interventions. The difficulty of anomaly detection in the context of
RL is decision-making in unknown environments without analysis
because poor estimation or limited knowledge of the environment
can not be further improved by trial and error. Causal inference (II)
gives new insights about this problem, equipping the autonomous
agent to behave accordingly, with better generalization ability and
enabling the agent to estimate the counterfactual outcomes. Further-
more, built on the similarity and close connection between causality
and RL, further connections can be made between both approaches
for data exploration, error estimation, and lower-bound limits. By
using causal inference, (III) new possibilities can be exploited in the
context of traditional approaches [1]. One example is the hyperpa-
rameter optimization mentioned earlier. If one knew how specific
parameters behave when they are changed, one could target the
entire search space and reduce it accordingly. It would also reduce
the overall run time. Another way to use causal inference would be
in the context of detecting anomalies during the decision process.
For example, one could look at how the addition or omission of a
particular data set affects the entirety of the data set, thus affecting
the incoming accuracy rate.

4 RESULTS, CONCLUSION AND DISCUSSION
This section summarizes all presented results from the previous
sections and presents some further possible research ideas.

4.1 Results
Many fields of machine learning are still in a state of significant
change. New approaches are constantly being published that intro-
duce improvements in specific domains. The amount of unlabeled
data available is far more tremendous than practically processed
through the rapid growth of unstructured data [9]. No traditional
technique can analyze and control these vast amounts of data with-
out coping with an increase of several difficulties, e.g., a decrease
in computational efficiency [6]. Therefore analytical and predictive
tools are needed. Using machine learning techniques can trans-
form this data into knowledge that enables data-driven decisions
that increase the efficiency, robustness, and scalability of anomaly
detection approaches [6, 11].

4.2 Conclusion
This paper attempted to show potentialities to overcome the difficul-
ties of traditional anomaly detection methods with Reinforcement
Learning. Possible methodologies are explained and substantiated
with current research approaches (if available) that attempt to solve
these problems. Hence, their requirements, strengths, and weak-
nesses are analyzed.

In conclusion, there is no perfect approach that can solve all prob-
lems at once. It always depends on the current problem focus. If
one wants to train a supervised anomaly detection approach with
few known labels, the approach of Pang et al. [6] would be the most
recommended since it can learn much more knowledge with a small
number of labels by training the agent. Any anomaly detection
algorithm is only as good as the available data set. Therefore, it is
essential to have as much good, i.e., meaningful, data available as
possible to achieve the best possible coverage. This type of selection
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Feature selection Labeling with
few labels

Hyperparameter
optimization False positives Causal

Reinforcement Learning

further
readings

Mehdi and
Rasoul et al. [4, 8] Pang et al. [6] Jomaa et al. [2] Zha et al. [12] Gua et al. [1]

advantages

- handles
high dimensional
features space

- robust enough for any
non-linear relationship

- works on heterogeneous
and sparse anomaly data
- detects significantly
more anomalies than
existing methods

- 23% - 98% increase in
relative AUC-PR
- outperforms the
state-of-the-art
approaches

- increasing the number of
known anomaly classes

achieve
significant improvement

- does not suffer from the
cubic dimensionality

problem
- outperforms the
state-of-the-art
approaches

- balances exploration
and exploitation

- outperforms the
state-of-the-art

ranking strategies
- meta-policy is intrinsic

and transferable,
achieving a balance
between short-term

and long-term rewards
- achieves more than
25% improvement
- converges fast
- works even with
small datasets

- improve accuracy,
learning performance,

and optimality
- gives new insights
about this problem

- new possibilities can be
exploited in the

context of traditional
approaches

disadvantages none

- performance becomes worse
when the dataset has
too low dimensionality
- time complexity of the

training is slow

none

- incorporates human feedback
- rewards depend heavily

on the dataset
- large negative rewards

can lead to a
decrease in performance

none

Table 1. Summary of all explained approaches.

can be performed using the approaches presented by Mehdi and
Rasoul et al. [4, 8]. It is possible to use a high-dimensional feature
space through these approaches while being robust enough to a
nonlinear relationship between the predictors and the response
feature [4, 8]. Another problem in machine learning is the increas-
ing amount and complexity of datasets, which thus increases the
training time [2]. It makes hyperparameter optimization a common
problem in machine learning and plays an important role, poten-
tially limiting the underlying approaches to anomaly detection as
described previously [2]. In order to use as few parameters as pos-
sible and then initialize them as well as possible, one can use the
approach of Jomaa et al. [2]. The agent learns to explore a fixed
network topology’s hyperparameter space by selecting the best
hyperparameter configuration. Finally, arguably one of the most
critical issues is the reduction of false positives, as this reduces the
accuracy of the entire system, and potentially correct anomalies
could be missed. One approach would be Zha et al.’s [12] Meta-AAD.
They use Deep RL to train a meta-policy that selects the most ap-
propriate instance to optimize the number of anomalies detected
during the query process by querying an analyst, i.e., a human. A
completely different direction would be to use a causal RL approach.
One could use causal inference to combine structural information
about the data generation process and the data itself to draw infer-
ences and conclusions up to counterfactual nature. This technique
provides new insights into the problem and gives the autonomous
agent a better generalization capability. The agent can then behave
appropriately, estimating counterfactual outcomes. Furthermore,
building on the close connection between causality and RL, further
connections can be made between casual, and RL approaches to
data exploration, error estimation, and lower bounds. Combining
this method with Zha et al.’s [12] Meta-AAD approach increases the
accuracy and correctness of results by reducing the probability of

false positives. Table 1 summarizes possible methodologies that are
explained and substantiated with current research approaches (if
available) that attempt to solve the mentioned problems. The table
also lists additional literature sources intended to serve for further
in-depth study of the respective areas.

4.3 Discussion
Many RL approaches mentioned in the last section, and other publi-
cations have some problems in common. They are very computa-
tionally intensive and require much time for training and updating
the model [6]. This problem results from the curse of dimension-
ality of the input data. However, using dimensionality reduction
often adds several hyperparameters that are critical for performance
[2]. Moreover, most attempts require a static environment and are
only usable beforehand to perform anomaly detection. Therefore a
possible approach could exploit other aspects of machine learning
to adjust these hyperparameters during runtime to make the best
possible choice on demand available. In particular, another RL agent
could aim to find a suitable parameter set using an appropriate re-
ward function. Using feature selection to find the best features can
reduce several independent but highly correlated hyperparameters
to improve the actual anomaly detection algorithms. This multi-
agent approach would combine the best parts of each algorithm to
create a highly adaptable and good-performing anomaly detection
approach.
In conclusion, machine learning, especially RL, is a promising

research field. Applying it to the domain of anomaly detection will
solve many of today’s known problems as it already partly does
through considering and combining more approaches from differ-
ent fields of machine learning. With already known methodologies
from the traditional anomaly detection domain, new state-of-the-art
methods handle and even partially solve the initial problems.
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