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Simulated Versus Observed Cluster Eccentricity Evolution

Stephen N. Floor1,3, Adrian L. Melott1 and Patrick M. Motl2

ABSTRACT

The rate of galaxy cluster eccentricity evolution is useful in understanding

large scale structure. Rapid evolution for z < 0.13 has been found in two differ-

ent observed cluster samples. We present an analysis of projections of 41 clusters

produced in hydrodynamic simulations augmented with radiative cooling and

43 clusters from adiabatic simulations. This new, larger set of simulated clus-

ters strengthens the claims of previous eccentricity studies. We find very slow

evolution in simulated clusters, significantly different from the reported rates of

observational eccentricity evolution. We estimate the rate of change of eccentric-

ity with redshift and compare the rates between simulated and observed clusters.

We also use a variable aperture radius to compute the eccentricity, r200. This

method is much more robust than the fixed aperture radius used in previous

studies. Apparently radiative cooling does not change cluster morphology on

scales large enough to alter eccentricity. The discrepancy between simulated and

observed cluster eccentricity remains. Observational bias or incomplete physics

in simulations must be present to produce halos that evolve so differently.

Subject headings: cosmology: galaxy clusters: evolution – large-scale structure

of universe – methods: numerical

1. Introduction

One would expect eccentricity evolution of an isolated galaxy cluster due to violent

relaxation of the system (Aarseth & Binney 1978). It has been proposed (Melott et al. 2001,

Plionis 2002) that one can put constraints on Ωm by measuring the rate of morphological

changes in clusters. Eccentricity can measure these changes since it is usually measured on

the outer regions of clusters.
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Melott, Chambers, and Miller (2001, hereafter MCM) reviewed five observational clus-

ter data sets (three optical and two X-ray) and found evolution in each case with varying

significance. Plionis (2002, hereafter PL02) also found significant evolution in cluster eccen-

tricity in the optical APM cluster catalog. Recently, Floor et al. (2003, hereafter FMMB)

presented findings that showed much slower evolution of eccentricity in simulated clusters.

It is possible that the addition of radiative cooling might produce simulated clusters that

better emulate observed clusters. The hydrodynamic simulations presented in FMMB have

now been outfitted to include radiative cooling (see Motl et al. 2003). We also have a larger

sample of simulated clusters which improves our statistics greatly.

Galaxy clusters are potentially useful for studying the nonlinear growth of density per-

turbations. Eccentricity measurements of clusters aid in understanding the growth of clusters

and large scale structure. Our procedure emphasizes the outer regions of clusters and is not

particularly sensitive to small scale changes in cluster core density. For this reason, eccen-

tricity evolution provides a means to measure changes in cluster morphology on the largest

scales. Also, eccentricity presents a valuable tool to observational cosmology since loss of

data on small scales will not drastically affect the measured value.

The question posed is whether radiative cooling will reduce the disagreement between

simulated and observed cluster eccentricity. Cooling of the central gas of a cluster would

cause contraction followed by deepening of the central potential well. This could cause

dark matter to preferentially reside in the center yielding a lower eccentricity over time.

Therefore, one might expect the introduction of radiative cooling to increase the rate of

simulated eccentricity evolution. However, if the change in morphology due to cooling is

on small scales then this might not affect the eccentricity of the outer regions, since the

cooling time at the outer regions of clusters is long. The cooling time in the core of clusters

is small which causes a collapse of the region. Since the outer regions are hydrostatically

supported by the inner regions one would expect that cooling in the center could cause

baryonic infall. This moving gas will perturb the dark matter potential which could cause

extra-core morphology changes. Regardless of the effects of cooling on individual clusters,

when mergers take place the accreted substructure can change significantly when cooling is

applied (Motl et al. 2003). For these and pedagogical reasons an investigation of the effects

of radiative cooling on galaxy cluster eccentricity evolution is presented.

The paper proceeds as follows: in §2 we discuss the simulations used to produce our

result. The method of eccentricity computation is discussed in §3. The results and discussion

are in §4 and §5, respectively. Acknowledgments are listed in §6.
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2. Simulations

There were two sets of simulations used in FMMB. One is an N-Body code with only

dark matter which of course has no radiative cooling. The hydrodynamic simulations being

analyzed here were conducted with a coupled Adaptive Mesh Refinement Eulerian hydrody-

namics & N-body code (Norman & Bryan 1999, Bryan, Abel & Norman 2000). The baryonic

fluid is evolved with the Piecewise Parabolic Method (Colella & Woodward 1984) and the

dark matter particle potential is calculated with an adaptive particle mesh scheme using

the second-order accurate TSC interpolation. Each individual cluster simulation evolves the

same cosmological volume (with box length 256 Mpc) with periodic boundary conditions

and deploys the adaptive mesh infrastructure about a different region of interest. Each clus-

ter region is statically refined by two nested grids and within the innermost static subgrid,

further subgrids are created as needed to track collapsing regions. The dark matter particles

exist on the three static grids and have a peak mass resolution of 1.3 × 1010M⊙. For the

calculations presented here, each subgrid is refined by a factor of two compared to its parent

and we allow up to seven levels of refinement yielding a peak spatial resolution of 16 kpc.

We use a flat ΛCDM cosmology with the following parameters: Ωb = 0.026, Ωm = 0.3

and ΩΛ = 0.7 and we assume a Hubble constant H0 = h 100 km s−1 Mpc−1 with h = 0.7.

Our initial conditions are generated with the Eisenstein & Hu (1999) form for the CDM

power spectrum and we use a normalization of σ8 = 0.93. The two samples of numerical

clusters presented here derive from the same initial conditions and cosmological model and

differ only in that for one sample the baryonic fluid is allowed to lose energy to radiation and

cool. The adiabatic sample will be known as ΛCDMH and the cooled sample as ΛCDMRC.

We use a tabulated cooling curve for a plasma of fixed metal abundance of 0.3 solar and

the cooling curve is truncated at a minimum temperature of 104K (Westbury & Henriksen

1992). For the present work we neglect the effects of thermal conduction as well as star

formation and supernova feedback.

We have investigated the morphological effects of radiative cooling on the ΛCDMH

simulations. For a complete description of radiative cooling see Motl et al. (2003). We

used clusters that were isolated using the “HOP” algorithm (Eisenstein & Hut 1998). This

algorithm is based on overdensities and will select all regions above some threshold density

and then merges them based on other considerations. The full procedure is discussed in

FMMB and Eisenstein & Hut (1998) but note that we used the following parameter set:

δpeak = 480, δsaddle = 400, and δouter = 160. Clusters were detected in three-dimensional

space while analysis will be done in two-dimensional projection. We chose to analyze only

the most massive clusters in this simulation. Due to the large volume of the simulated region

(2563 Mpc3) all clusters detected in this fashion were richness R ≥ 2. However, FMMB used
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clusters richness R ≥ 1 so conclusions from these data seem to be richness independent.

Simultaneously, a larger set of the ΛCDMH simulations than available to FMMB were

prepared and made available for analysis. In FMMB the results of eleven analyzed clus-

ters were presented. Here, thirty more projected clusters were simulated using the same

parameters. This gives us much better statistics than in FMMB.

3. Measuring Eccentricity

Due to widely varying definitions of ellipticity (ǫ) we chose instead to use the mathe-

matically defined term eccentricity. For an ellipse with major axis a and minor axis b, the

eccentricity (e) is defined to be

e =

√

1 −
b2

a2
(1)

All results are presented in terms of e. Note that some authors use this formula to define

ellipticity, resulting in some of the ambiguity of the term.

Since we are using three-dimensional simulations it would be possible to measure three-

dimensional features of the isolated clusters. However, to better emulate observed results we

chose to analyze the clusters in projection. Therefore, three projections of each cluster were

made, one along each Cartesian axis. Jing & Suto (2002) discuss a robust triaxial halo mor-

phology measurement technique. This method works well but the halos are identified in three

dimensions. This was not possible in the observational data used here; moreover a method

of applying the triaxial halo analysis to observational data is not presented in Jing & Suto

(2002). Lee & Suto (2004) present a deprojection technique based on Sunyaev-Zel’dovich or

X-ray observational data. This method is however reliant on a five-parameter fit and com-

monly results in errors of 20 percent or higher. It is doubtful that any benefit in accuracy

in eccentricity computation could be garnished given that the inertia tensor method is not

wildly inaccurate. A full study should be conducted regarding the difference in eccentricity

of projected clusters using the inertia tensor method presented here with deprojected 2D

clusters using the method of Lee & Suto (2004). However, since the observational data used

in MCM and PL02 come from both optical and X-ray sources it is impossible to deproject

them all and the triaxial halo method is therefore discounted.

To compare with previous observational studies we analyze both projected dark matter

and simulated projected X-ray emissions. We create synthetic X-ray images by projecting the

calculated X-ray emission (both line and free-free emission) from the gas assuming a metal

abundance of 0.3 relative to solar and in an energy band extending from 0.5 to 2.0 keV.
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We assume that the dark matter halos are representative of the observed optical emissions.

This can be justified by noting that optical emissions come primarily from galaxies which are

approximately collisionless bodies. The relaxation of galaxies and dark matter is therefore

assumed to be similar. White et al. (1993) discuss the distribution of baryonic matter in

galaxy clusters. They determine that the baryon fraction only deviates significantly from the

cosmological baryon fraction near the core of clusters. This implies that for the remainder

of the cluster, the region where our aggregate measures are being conducted, the baryonic

fraction is comparable to the cosmological value. Additionally, Mellier (1999) reviews many

studies where weak lensing is used to show that the dark matter distribution in galaxy

clusters is similar to both the optical and X-ray emission distributions. This is only true if

the n2 dependence of X-ray emissions are taken into account.

We identify the cluster center as the center of mass of the objects produced by the

group finding algorithm. A common substitute for the center of mass is to choose the

highest luminosity pixel of an image. Here this would correspond to the highest density

point in the cluster, assuming that luminosity ∝ density. This procedure was implemented

to see if it affects the measured eccentricities. The change in eccentricity was rarely larger

than the standard deviation of the sample. We continue to use the center of mass because

it is more easily specified and more robust to variation in observational details.

A brief study was conducted to determine the typical displacement of the highest density

peak is from the center of mass. The highest density peak was determined by first rebinning

the projected clusters into larger bins to remove statistical fluctuations. The bins were

selected such that one side is approximately 100 kpc (at z = 0.1), or comparable resolution

to X-ray surveys. The center of the bin with the highest density was noted. It is assumed

that this point would be analogous to the highest luminosity point of an observed cluster.

The mean separation between the center of mass and density peak was 0.32 Mpc with σsep =

0.37 Mpc. The separation of the two is quite erratic; often if the cluster has significant

substructure the highest density point will occur in an outlier of the cluster while the center of

mass is closer to the center of the projected region. This study was conducted using the dark

matter density as a measure. Observational studies obviously cannot use the dark matter

density so another brief study was conducted. The brightest X-ray pixel was discovered using

the same methodology as above. The X-ray luminosity appears to locate the dark matter

center of mass somewhat better than either the highest density dark matter or baryonic

pixel. When the dark matter center of mass was compared to the brightest X-ray pixel the

mean separation was 0.30 with σsep = 0.25 Mpc. We therefore advocate using the brightest

X-ray pixel as the center of an image rather than the brightest optical pixel, when both are

available.
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Once the cluster center is determined, we emulated procedures used in the studies

discussed in MCM and PL02. A circle of radius router = 1.5 h−1 Mpc is drawn about the

cluster center. This circle is commonly referred to as the aperture radius. The mass of the

material inside the aperture radius is then determined. An inner circle is then drawn such

that twenty percent of the mass is contained in the annulus. It was the eccentricity of this

annulus that was measured. See FMMB for a brief discussion of this method as compared

to others. We also used the virial radius, r200 as the aperture radius. This radius is defined

to be the radius of a circle in which the density is 200 times the background density of

the simulation. In this case it was always computed in two dimensions, though it could in

principle be done in three. Results using this as the aperture radius are presented along with

the fixed radius.

Once the annulus is isolated, the moment of inertia about the cluster center is computed.

It is only the material that is inside the annulus that is used to compute the moment of

inertia. The eigenvalues of the moment of inertia tensor are proportional to the square of

the object’s axes. We therefore measure the eccentricity as follows:

e =

√

1 −
λ1

λ2

(2)

with λ1 < λ2. This method’s correctness is subject to its application to a homogeneous

ellipse. Obviously, clusters are not entirely homogeneous objects but this is the best known

method of determining the eccentricity.

4. Results

In Table 1 the results for the ΛCDMH simulations are presented. Table 2 is analogous

except for the slightly smaller size data set of the ΛCDMRC simulations. For each cluster

we show the median, mean, and standard deviation in the mean (σe) of the eccentricity.

Inspection of tables 1-4 and their corresponding σe values will reveal that they are nearly

identical. Tables 3 and 4 display the same information as 1 and 2 except using r200 as

router. Table 5 presents calculated slopes (de/dz ) for both the simulational and observational

data sets. The slopes and errors (σs) were calculated using a least squares algorithm. The

observational data sets are described in either MCM or PL02 as indicated. While all slopes

indicated are larger than zero, the observational slopes are always much larger. Before the

observational slopes were calculated the ellipticities (ǫ) were converted to eccentricities. The

standard definition of ǫ

ǫ = 1 −
b

a
(3)
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with a and b as defined previously. Both MCM and PL02 reported results in this form.

Note that in every case presented the data has some positive slope. The observational

data has a slope close to one while simulational slope is always much less than one. This

supports the conclusion seen in FMMB: simulated clusters evolve slower than observed clus-

ters. This result was checked with the recalculation of eccentricity subject to router = r200.

Despite a reduction in eccentricity for all simulated clusters, the rate of evolution remains

unchanged. It seems that the router choice was not the source of the discrepancy.

5. Discussion

As discussed in FMMB we checked our conclusions by varying many parameters related

to these simulations. We varied the value of σ8, the random seed for density perturba-

tions, the cluster detection algorithm and its parameters, the presence and magnitude of

a cosmological constant, and others. We have now also explored the influence of radiative

cooling, changing the aperture radius, and the definition of the center of a cluster. None of

these alterations drastically changed the results from previous eccentricity studies. Changing

the aperture radius reduced the inter-simulation discrepancy. However, the rate of evolu-

tion remains significantly slower in simulated clusters than in observed ones, even with the

introduction of radiative cooling in the simulations. We discuss here the inter-simulation dis-

agreement, the disagreement between observation and simulation, possible sources of error,

and future work that may aid in understanding this problem.

Using r200 as the aperture radius significantly reduced the inter-simulation eccentricity

difference. We propose that this value be used for the aperture radius in future studies

since it is not difficult to compute and produces more physically correct results. When

working with simulations it is quite easy to compute numerically in projection or otherwise.

Alternately, observational studies can use the analytic result presented in Navarro, Frenk,

and White (1997). While r200 is not precise it does reflect the variation between clusters of

different mass and allows for a more consistent measurement of eccentricity.

There are two main differences noticed between simulated and observed clusters. The

first is the actual measured eccentricity. In simulated clusters the average eccentricity is

about 0.6 or higher which is 0.37 in ellipticity. Observed clusters at z ≈ 0.05 have elliptic-

ities of around 0.3, suggesting that present day clusters would have lower eccentricity than

the predicted present day simulated clusters. Therefore, lack of evolution notwithstand-

ing, there is a problem with simulated cluster morphology. The greater discrepancy is the

rate of eccentricity evolution as presented in FMMB. Radiative cooling did not significantly
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Table 1. ΛCDMH Cluster Eccentricities, N=129, R > 2

Simulation type σ8 Redshift Median e Mean e σe(mean)

ΛCDMH (mass) 0.93 0. .65 .63 .012

ΛCDMH (mass) – 0.1 .67 .67 .012

ΛCDMH (mass) – 0.25 .72 .70 .012

ΛCDMH (X-ray) 0.93 0. .65 .66 .015

ΛCDMH (X-ray) – 0.1 .71 .70 .016

ΛCDMH (X-ray) – 0.25 .73 .72 .015

Table 2. ΛCDMRC Cluster Eccentricities, N=123, R > 2

Simulation type σ8 Redshift Median e Mean e σe(mean)

ΛCDMRC (mass) 0.93 0. .67 .64 .012

ΛCDMRC (mass) – 0.1 .69 .68 .012

ΛCDMRC (mass) – 0.25 .70 .69 .012

ΛCDMRC (X-ray) 0.93 0. .67 .68 .016

ΛCDMRC (X-ray) – 0.1 .73 .71 .015

ΛCDMRC (X-ray) – 0.25 .74 .73 .015
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Table 3. ΛCDMH Cluster Eccentricities (r200), N=129, R > 2

Simulation type σ8 Redshift Median e Mean e σe(mean)

ΛCDMH (mass) 0.93 0. .61 .60 .012

ΛCDMH (mass) – 0.1 .64 .64 .011

ΛCDMH (mass) – 0.25 .68 .66 .012

ΛCDMH (X-ray) 0.93 0. .65 .64 .015

ΛCDMH (X-ray) – 0.1 .64 .63 .015

ΛCDMH (X-ray) – 0.25 .69 .68 .015

Table 4. ΛCDMRC Cluster Eccentricities (r200), N=123, R > 2

Simulation type σ8 Redshift Median e Mean e σe(mean)

ΛCDMRC (mass) 0.93 0. .63 .61 .012

ΛCDMRC (mass) – 0.1 .65 .63 .012

ΛCDMRC (mass) – 0.25 .68 .66 .012

ΛCDMRC (X-ray) 0.93 0. .67 .67 .016

ΛCDMRC (X-ray) – 0.1 .70 .70 .015

ΛCDMRC (X-ray) – 0.25 .67 .67 .015
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change the rate of change of eccentricity. The change seen in de/dz in Table 5 suggests even

slower evolution in a radiatively cooled simulation. Changing the aperture radius did not

significantly change the eccentricity evolution of any sample. Either simulations are lacking

critical physics which cause much faster cluster relaxation or observational cluster samples

are missing either high eccentricity clusters at low z or low eccentricity clusters at high z.

We briefly discuss two physical processes currently being integrated into cosmological

simulations that may help to alleviate this discrepancy, simulated star formation and thermal

conduction. Simulated star formation (and subsequent supernovae) would tend to heat the

gas inside the cluster. However, it is quite difficult to implement a simulation which has detail

down to single-star levels and can simultaneously simulate a cosmological volume. Further,

any morphological effects from star formation would be present at high z and result only in

the production of a lower density core. It is doubtful that star formation would change the

shape of clusters on large enough scales to alter the measured eccentricity significantly. See

Bryan et al. (2001) for a complete description of a star formation model. Additionally, as

suggested by Narayan and Medvedev (2001) and Medvedev et al. (2003), thermal conduction

from the hot outside of the cluster to the center of the cluster can be critical to the X-ray

emissions of a cluster. Loeb (2002) discusses that while conductivity may not be responsible

for cooling core clusters, it can affect the temperature distribution in clusters. He shows that

a large heat conduction coefficient leads to cooling of the cluster gas which transitively affects

the intergalactic medium. These temperature changes outside the core could easily affect

the X-ray morphology of clusters. Any flows via conductivity can affect the eccentricity of

clusters over time since these flows involve the transfer of energy across a significant distance.

Thermal conductivity should be added to simulations to better emulate reality but it is again

doubtful that it will change the eccentricity significantly. There is no obvious missing physics

which should drastically alter the morphology of simulated clusters.

Observational bias or incompleteness in the currently available cluster catalogs could

also produce the observed discrepancy. MCM studies the ellipticity evolution in observational

samples. The various samples were cut to only include those clusters which were members of

the MX galaxy survey. Miller et al. (1999) have shown that this sample has few projection

effects and that only ∼ 5% of clusters are spurious detections of overdensities on the sky.

Additionally, the co-moving number density of these clusters is nearly constant to z = 0.1,

indicating its level of completeness for systems R ≥ 1. However, selection effects present in

the various studies, both optical and X-ray, may have persisted in spite of this cut. Highly

eccentric, low z clusters could be hard to identify using standard cluster detection algorithms

due to their large spread on the sky. We turn to two new observational surveys which will

hopefully add to the completeness of observational cluster catalogs.



– 11 –

We anticipate results from the SDSS (Nichol et al. 2000) which should be completed

shortly. This catalog promises to be quite complete and, provided a proper algorithm is

chosen for cluster detection, bias-free. We feel that the C4 algorithm discussed in Nichol

et al. (2003) appears to be a non-biased cluster detection algorithm applied to a complete

sample of galaxies. Assuming that optical emissions are a tracer of dark matter, a comparison

between simulated dark matter density and optical emissions will possibly shed light on the

presented discrepancy. Additionally, we look forward to a new cluster catalog derived from

the XMM-Newton survey. XMM-Newton has good spatial resolution and excellent sensitivity

(Arnaud et al. 2002) making it a good candidate for dim cluster measurements. Inclusion

of these dim clusters could help the discrepancy presented. Simulated X-ray emission is well

understood and is not subject to the assumption that it directly traces dark matter as optical

emissions are. Other new X-ray surveys will also make this result more robust.
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Table 5. Summary of Eccentricity Evolution for Observational and Simulated Data

Data Set (Paper Source) de

dz
σs N

Optical (MCM & PL02) 1.07 0.14 497

X-ray (MCM) 1.13 0.48 48

Adiabatic Hydrodynamic Sim DM 0.27 0.07 387

Adiabatic Hydrodynamic Sim X-ray 0.24 0.09 387

Cooled Hydrodynamic Sim DM 0.19 0.07 369

Cooled Hydrodynamic Sim X-ray 0.18 0.09 369

CDM N-Body Sim (FMMB low Ω) 0.56 0.13 162


