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ABSTRACT: In the aftermath of a release of microbiological agents,
environmental sampling must be conducted to characterize the release
sufficiently so that mathematical models can then be used to predict
the subsequent dispersion and human health risks. Because both the
dose−response and environmental transport of aerosolized micro-
biological agents are functions of the effective aerodynamic diameter of
the particles, environmental assessments should consider not only the
total amount of agents but also the size distributions of the aerosolized
particles. However, typical surface sampling cannot readily distinguish
among different size particles. This study evaluates different approaches
to estimating risk from measurements of microorganisms deposited on
surfaces after an aerosol release. For various combinations of sampling
surfaces, size fractions, HVAC operating conditions, size distributions
of release spores, uncertainties in surface measurements, and the accuracy of model predictions are tested in order to assess
how much detail can realistically be identified from surface sampling results. The recommended modeling and sampling
scheme is one choosing 3, 5, and 10 μm diameter particles as identification targets and taking samples from untracked floor,
wall, and the HVAC filter. This scheme provides reasonably accurate, but somewhat conservative, estimates of risk across
a range of different scenarios. Performance of the recommended sampling scheme is tested by using data from a large-scale
field test as a case study. Sample sizes of 10−25 in each homogeneously mixed environmental compartment are sufficient
to develop order of magnitude estimates of risk. Larger sample sizes have little benefit unless uncertainties in sample recoveries
can be reduced.

■ INTRODUCTION
After the 2001 anthrax attacks, many researchers have focused
on how to effectively estimate human health risk during a
bioterrorist attack, so that appropriate response actions can be
taken.1−16 Thus, many models have been developed, including
pathogen dose−response models17,18 and environmental trans-
port models.19−23 These previous modeling efforts have
recognized that the size distribution of the particulates has a
substantial impact on the risk. For example, a previous study
estimated that a B. anthracis spore concentration of 100/m2 on
a floor would correspond to a risk of one in a thousand if the
spores were finely aerosolized 1 μm diameter particles, but one
in a million if the spores were present as 10 μm diameter
clumps.24 Smaller particles settle more slowly and are less
readily removed by HVAC system filters.19 These properties
allow them to disperse over larger areas and persist longer in
the air than larger particles. In addition, fine particulates are
more respirable, and thus present greater risks than larger
particles when inhaled.17

Previous modeling efforts have generally accounted for these
aerosol size effects by modeling a number of discrete particle
sizes.17,19,24,25 However, little previous research has examined
how to conduct sampling in order to effectively parametrize
these models. Although some aerosol samplers can provide
information on particulate sizes, aerosol concentrations decline

rapidly after a release making it unlikely that response will be
rapid enough to characterize a release based on aerosol
concentrations. The material used in the attack may not be
recovered in sufficient quantity for a size distribution analysis to
be conducted. Surface sampling techniques generally provide
information on only the total number of organisms or gene
copies present, not the size fractions of particulates with which
organisms are associated. Because different size particles
partition into various environmental compartments at different
rates, the concentrations found in different environmental
compartments convey some information on the size distribu-
tion of the release. Having even limited information on the size
distribution of the release may improve estimates of risk
resulting from the release.
This study addresses the question of how much can be

learned from simple aggregate concentration measurements,
such as could reasonably be made after an actual release. To
assess how well risk can realistically be identified from surface
sampling results, a variety of alternative model formulations and
sampling schemes are evaluated following a 7-step framework.
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The recommended modeling and sampling scheme is then
applied to a case study using parameter estimates from a large
scale field test, which aims to provide insights between a
sampling scheme’s reliability and its required sample size.

■ METHODOLOGY
The method has two components. First, forward modeling is
conducted, in which characteristics of a release are assumed and
a fate and transport model is used to estimate spore
concentrations in different environmental compartments.
Four particle sizes are used in this model, following previous
forward modeling efforts.19 The B. anthracis spore concen-
trations predicted by the fate and transport model then serve as
inputs for different inverse modeling approaches. Because only
three environmental compartments are considered appropriate
for postincident sampling (walls, floor, and HVAC filters), no
more than three particle sizes can be identified for the inverse
model. Different combinations of sampling locations and
particle sizes are evaluated on their ability to match the
forward modeling results. The overall goal of this analysis is to

identify sampling and modeling schemes, specifically as a
combination of sampling locations and modeled particle sizes,
which allow the release quantities for different spore sizes, their
associated risks, and the amount exiting the release room to be
characterized with the least error.

Fate and Transport Model (Forward Modeling). The
general fate and transport model for a simple office with a
HVAC system is expressed as

⎯ →⎯⎯⎯⎯
= ⃗⎯ →⎯⎯⎯⎯M t

t
TM t

d ( )
d

( )
(1)

where
⎯ →⎯⎯⎯⎯
M t( ) is the quantity of spores in different compartments,

and T⃗ is a matrix of transfer coefficients. Based in Figure 1, the
modeled office is divided into 7 internal compartments: air,
tracked floor, untracked floor, walls, ceiling, HVAC, and the
nasal passages of an occupant of the office, and the eighth
compartment that consists of all areas external to the room.
Thus the general fate and transport model can be written as
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where Mair(t) is the number of spores in the air compartment,
Mtf(t) is the number of spores on the tracked surface of the
floor, Mutf(t) is the number of spores on the untracked surface
of the floor,Mw(t) is the number of spores on the walls,Mf(t) is
the number of spores on the filter, Mec(t) is the number of
spores in the external compartment, Mce(t) is the number of
spores on the ceiling, Mn(t) is the number of spores in the
occupant’s nasal passages. Mair, Mtf, Mutf, Mw, Mf, Mec, Mce, and
Mn are all given in units of spores (number of organisms). Next
we define the following parameters: Q is the discharge from the
air compartment (m3/s), μ2 is the resuspension rate from the
tracked surface into the air compartment (s−1), p is the fraction
of air recirculated into the building by the HVAC system, ef is
the efficiency of the filter at removing particles, en is the
efficiency of the nasal passages at removing particles, I is the
inhalation rate of the occupant (m3/s), and V is the volume of
the room (m3). λtf, λutf, λw, and λce are the deposition rates for
aerosolized pathogens onto the tracked surface, the untracked
surface and the floors, walls, and ceiling respectively (s−1),

which can be expressed by parameters representing the indoor
air flow conditions:
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where D (m2/s) is the particle diffusivity, ke (s
−1) is turbulence

intensity, and v (m/s) is particle settling velocity, which is given in
eq 6 as a function of the particle’s diameter (d, unit of m), the
viscosity of air (μair, unit of kg/(m × s)), the density of the particle
(ρp, unit of kg/m

3), and the density of air (ρair, unit of kg/m
3):
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For the details of the solution to eq 2, please refer to Hong et al.24

Parameter values are provided as Supporting Information (Table S1).
Such compartment modeling approaches are widely used,

although their limitations must be acknowledged. This modeling
approach assumes that each compartment is completely mixed,
which is not accurate at the immediate time of a release but
becomes much more accurate as the release disperses over time.
Thus, the methodology presented here is intended for use in
areas somewhat removed from the initial release such that
concentrations on different surfaces (walls, untracked floor, and
HVAC filter) can be considered reflective of more or less the
same time-averaged air concentration. The model used here is
based on literature studies of how particulates behave in the
indoor environment.1,19,26,31 In the case of B. anthracis spores, a
verification of the above-mentioned fate and transport model
has been undertaken32 by comparing the results of a completely
mixed compartment model with observations of B. anthracis
spore concentrations from the Hart Senate Office Building
reported by Weis et al.10 The observed behavior of the spores
was generally consistent with model predictions, allowing the
model to be used to generate order of magnitude estimates of
risk.32 This verification analysis used a Bayesian Monte Carlo
approach to identify release parameters. Although the Bayesian
Monte Carlo approach has promise, it does require the identifica-
tion of prior distributions for parameters and thousands of model
runs to characterize posterior distributions, which is complicated
and computationally intensive. In the following section, the
potential of a more straightforward and rapid classical approach
to identifying release characteristics is evaluated.
Particle Identification (Inverse Modeling). Because all of

the processes in eq 2 are first order, the release quantity (Mr⃗ )
can be expressed as the product of a matrix, commonly termed

the inverse transfer matrix (
⎯ →⎯⎯ −T 1) and the mass of deposited B.

anthracis spores in each environmental compartment (
⎯→⎯
Mr).

33

⎯→⎯ =
⎯ →⎯⎯ ⎯→−M T Mr s

1
(7)

The inverse transfer matrix (
⎯ →⎯⎯ −T 1) in eq 7 is a function of

time, as specified by the fate and transport model. This matrix
goes through an initial period of rapid change, when deposition
from the air compartment is the dominant process. Then resus-
pension, a much slower process, becomes the rate controlling
process. This is illustrated in Figure S1 which shows the mass in
different compartments over time for the four different particle
sizes considered. The mass in each compartment varies initially
and then stabilizes within several hours of the release. This
stabilization is not a true steady state, as eventually resuspension

will deplete concentrations on tracked surfaces (and in fact a
gradual decline in tracked floor concentration can be seen over
several hours for the 10 μm fraction, as this fraction is most readily
resuspended). However, this period after the initial deposition
phase is termed “quasi-steady state” because surface concentrations
are roughly stable over the time period during which initial release

characterization would be expected to occur (days). The
⎯ →⎯⎯ −T 1

matrix can be considered roughly constant in this period.
At quasi-steady state, if the diameters of spores are divided

into four groups: 1 μm, 3 μm, 5 μm, and 10 μm,16 eq 7 can be
expanded to give
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here Ksurf i_j is the distribution coefficient for spores with
diameter of j on surface i, Ms_surf i is the unbiased mass
measurement of the total spores on surface i, and Mrj is the
initial release quantity for spores whose diameters are j μm. It is
the Mrj values which need to be identified from sampling so
that the impacts of the release can be modeled. Each size
fraction that is considered introduces another row to the left-
hand side of eq 8 which requires an additional distribution
coefficient and surface be measured to identify the release
quantity (that is there must be an additional row on the right-
hand side).
Because of the difficulties associated with recovering samples

from surfaces,34−36 leading to potential errors in the sampling
and analysis steps, measurements from the surfaces vary from
their true values. Thus, it is necessary to evaluate the impacts of
such errors in measurements of Ms⃗ on the characterized release

quantity,
⎯→⎯ ̂
Mr . Simulated measurement errors are constructed by

Hadamard multiplying (element by element product, symbol ◦)
Ms⃗ , the environmental compartment concentration values from
the fate and transport model, by a coefficient (Z⃗):

⎯→⎯ =
⎯ →⎯⎯ ⎯→◦⎯→̂ −M T M Z( )r s

1
(9)

For the initial evaluation the errors in the Z⃗ matrix are assumed
to be normally distributed with mean of 1 and standard
deviation of 0.3. The value of 0.3 corresponds to fairly large
errors (the 95% interval extends from a 60% underestimate to a
60% overestimate) reflecting the desire to identify an approach
robust to even large measurement errors. After the initial eva-
luation using these assumed errors, the framework is subsequently
applied using errors calibrated to data from a large-scale field
sampling exercise.

Modeled Scenarios. Three sets of size distributions of
released B. anthracis spores are employed to test the robustness
of candidate modeling and sampling schemes. The nominal size
distribution is based on the lab analysis of the 2001 anthrax
letter attack: the fractions of 1, 3, 5, and 10 μm are 0.14%,
1.46%, 8.40%, and 90%, respectively.37 The second set doubles
the quantity of spores with diameters of 1, 3, and 5 μm, and
reduces the amount of 10 μm; thus the new fractions are
0.28%, 2.92%, 16.80%, and 80%, respectively. This size fraction
represents the situation where more fine particles are released,
which is termed “light”. The third size fraction, termed “heavy”,
has half the number of 1, 3, and 5 μm spores (size fractions are

Figure 1. Schematic of single room office suite.
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0.07%, 0.73%, 4.20%, and 95%) as compared to the nominal
situation. Because different HVAC operation situations might
change the fate and transport properties of released spores and
impact human exposure, three HVAC operating conditions are
considered, representing low, medium, and high air recircula-
tion rates (p = 0.5, 0.75, 0.95) for each set of size distributions
considered. In addition, surface concentration measurements
with errors (model predictions multiplied by a coefficient
matrix Z⃗) and without errors are considered. Since the impacts
of measurement error are modeled by a matrix Z⃗ whose
elements are random numbers, it is necessary to propagate this
uncertainty. Thus medians and 90% confidence intervals from
Monte Carlo simulations with 1000 iterations are included. In
total each candidate scheme is evaluated under 18 conditions
(3 HVAC operational conditions × 3 size fraction distributions ×
with and without measurement errors).
Evaluation Framework. Only 3 out of 8 modeled locations

(wall, untracked floor, and HVAC filter) are considered feasible
for sampling in this study. The indoor air, external air, ceiling,
and human nasal passage compartments in the fate and
transport model (eq 2) are excluded due to the relatively low
concentration values that would be expected in these
compartments several hours after a release, which could not
be measured accurately. The tracked floor is excluded because it
provides essentially the same information as the untracked
floor but with less reliability as it is less stable over time. This
indicates that no more than three size fractions can be identified
from the release quantity (eq 7 will be underdetermined if one
tries to identify four size fractions), while the full model includes
four size fractions.
The steps of the model evaluation framework used in this

study are illustrated in Figure 2: (1) the full model, consisting
of all 4 size fractions, is run and concentrations in the different
environmental compartments at quasi-steady state, as well as
the risk to the occupants of the room and the amount of spores
exiting the room, are simulated; (2) a set of compartments is
chosen for measuring B. anthracis spore concentrations, where
the selected compartments should provide concentrations that
are homogeneous and greater than the analytical detection
limit; (3) particle sizes are selected to be modeled; given that

only 3 environmental compartments are considered suitable for
measurement and that the full model has 4 particle sizes, the
number of size fractions to be modeled based on available
measurements must be reduced from the number in the full
model, hence this is termed the reduced model; (4) the
inverse transfer matrix at quasi-steady for the reduced model is
computed based on the modeled particle sizes and surfaces to
be measured (i.e., particle sizes and environmental compart-
ments not selected in Steps 2 and 3 are excluded from the
model), and the matrix (Z⃗), representing measurement error, is
generated; (5) Monte Carlo simulations are conducted, and the
release quantities of the particle sizes for the reduced model are
estimated: when surface measurements are error free, the
release quantities are calculated with eq 7. When simulated
measurement errors are included in the environmental
concentrations, eq 9 is used. When measurement errors are
present, it is possible to obtain negative estimates of mass.
Zeros are substituted for any negative estimates; (6) using the
estimated release quantities and the reduced model (i.e., the
model formulated in Step 4), the risk to occupants of the room
and the number of spores exiting this room are calculated; and
(7) the ratios of the reduced model and full model are
determined for the risk to occupants and amount of spores
exiting the room.
For an identification approach to be effective, the ratios of

quantities such as human risk and the amount of spores exiting
the room between the reduced form and the full model (based
on four size fractions) should be close to one but should not
have much risk of falling substantially below one. Ratios greater
than one represent conservative models, meaning that a model
that overestimates risk to the occupants of the room, which in
most cases would be preferred to an approach that under-
estimates risk. Likewise an approach that overestimates the
number of spores leaving the room (which would inform
estimates of risk to those downwind of the release) would
generally be preferred over an approach that underestimates the
number of spores leaving the room. However, in order to
provide a reasonable prediction, these ratios should not be too
far away from one.

Figure 2. Evaluation framework used in this study.
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■ RESULTS

The first modeling and sampling schemes considered are
those with three different size fractions. The fraction of spores
with the diameter of 10 μm is always identified because it
constitutes the vast majority of the release, while the other
two identification targets are selected from the remaining
three candidate particle sizes. Table 1 presents results for
identification approaches for three particle sizes. If the
surface sampling results are perfect (no errors), ratios for the
occupants’ risk, and the amount of spores exiting the room are
very close to 1, indicating that these approaches closely match
the full model. However, once sampling inefficiency and
potential errors are considered, the median ratios from some
sampling schemes overestimate risk by a factor of 2 or 3. This
indicates that predictions for the release quantity and ratios are
sensitive to measurement errors. Across the different size
fraction identification schemes, the ones using 3, 5, and 10 μms
as the identification targets outperform others, because the fifth
percentiles for the ratios of human health risk and the amount
of spores exiting the room are closer to 1, which means

adopting this sampling scheme reduces the potential extent of
underestimation due to sampling error.
If two size fractions are to be estimated, again the 10 μm size

fraction is always included in the model because it accounts for
the majority of spores. The other identification target is
selected from the 1, 3, and 5 μm diameter size fractions, while
two sampling surfaces are selected from the untracked floor,
wall, and HVAC filter. Table S2 provides the results for the
identification approaches based on two sampling surfaces. If
measurement error is not considered, three candidate sampling
schemes satisfy the evaluation criteria: (1) identifying 5 and
10 μm particle sizes by sampling from the untracked floor, and
the walls; (2) identifying 5 and 10 μm particle sizes by sampling
from the walls and the HVAC filter; and (3) identifying 3 and
10 μm particle sizes by sampling the untracked floor and the
HVAC filter. However, if the effect of measurement error is
considered, the fifth percentile ratios for the human risk are less
than 0.5 for the selected combinations, indicating serious
underestimations of risk are possible due to sampling error.
As a result, none of the two particle size approaches are
recommended.

Table 1. Results for Approaches to Identify Three Size Fractionsa

ratio of occupants’ risk
(compared to full model)

ratio of spores exiting the room
(compared to full model)

measurement error measurement error

selected
compartments

size fractions to
be identified

(μm)
set of size
distribution

HVAC
operation
condition

no
measurement

error 50% 5% 95% no measurement error 50% 5% 95%

untracked floor,
walls, HVAC
filter

1,3,10 nominal 0.50 1.15 1.83 0.68 5.02 1.06 1.34 0.88 2.12
0.75 1.14 1.92 0.73 4.90 1.06 1.38 0.90 2.14
0.95 1.11 1.68 0.69 4.61 1.05 1.31 0.89 2.10

light 0.50 1.20 1.37 0.59 3.48 1.12 1.26 0.85 1.99
0.75 1.18 1.31 0.57 3.38 1.11 1.25 0.86 1.94
0.95 1.14 1.27 0.55 3.18 1.09 1.21 0.85 1.91

heavy 0.50 1.11 2.47 0.88 6.56 1.03 1.41 0.91 2.32
0.75 1.10 2.56 0.88 6.63 1.03 1.45 0.94 2.35
0.95 1.08 2.32 0.89 6.45 1.03 1.42 0.91 2.30

overall 0.57 6.63 0.85 2.35
1,5,10 nominal 0.50 1.00 1.40 0.61 3.70 1.00 1.19 0.85 1.70

0.75 1.00 1.44 0.65 3.58 1.00 1.20 0.87 1.70
0.95 1.00 1.31 0.63 3.35 1.00 1.16 0.86 1.68

light 0.50 1.00 1.12 0.55 2.53 0.99 1.10 0.81 1.53
0.75 1.00 1.08 0.53 2.47 0.99 1.10 0.83 1.51
0.95 1.00 1.07 0.54 2.33 0.99 1.07 0.82 1.46

heavy 0.50 1.00 1.82 0.80 4.76 1.00 1.24 0.87 1.91
0.75 1.00 1.88 0.81 4.80 1.00 1.28 0.89 1.91
0.95 1.00 1.77 0.77 4.69 1.00 1.25 0.86 1.88

overall 0.53 4.80 0.81 1.91
3,5,10 nominal 0.50 1.00 2.53 0.79 6.05 1.00 1.52 0.96 2.69

0.75 1.00 2.58 0.89 6.05 1.00 1.54 0.95 2.71
0.95 1.00 2.35 0.92 5.61 1.01 1.48 0.96 2.66

light 0.50 1.00 1.80 0.75 3.99 1.00 1.36 0.92 2.39
0.75 1.00 1.71 0.78 3.75 1.01 1.35 0.91 2.37
0.95 1.00 1.57 0.77 3.53 1.01 1.28 0.90 2.25

heavy 0.50 1.00 3.43 1.03 8.13 1.00 1.61 0.97 2.98
0.75 1.00 3.48 1.02 8.47 1.00 1.65 1.00 3.02
0.95 1.00 3.21 1.00 8.24 1.00 1.60 0.97 2.93

overall 0.75 8.47 0.90 3.02
aThe size fractions of 1, 3, 5, and 10 μm for the nominal scenario are 0.14%, 1.46%, 8.40%. and 90%. The size fractions of 1, 3, 5, and 10 μm for the
light scenario are 0.28%, 2.92%, 16.80%, and 80%. The size fractions of 1, 3, 5, and 10 μm for the heavy scenario and 0.07%, 0.73%, 4.20%, and 95%.
If a negative release quantity is identified, it will be assumed 0. Bold shows the recommended approach. Values in the “overall” row come from the
lowest 5% and the highest 95% ratios.
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The results of single particle sampling approaches are
summarized in Tables S3 and S4. As might be expected, single
particle approaches cannot capture the diversity of behavior of
different particulate sizes and perform poorly.

■ APPLICATION OF THE SAMPLING SCHEME
Based on the above results, identifying 3, 5, and 10 μm particle
size fractions based on samples from the untracked floor, walls,
and the HVAC filter is recommended as a modeling and
sampling scheme. To examine how such an approach might be
applied, and what degree of uncertainty would be present in
results, concentration measurements from a large scale field test
are analyzed below.
In September 2008, Battelle Energy Alliance conducted five

release events of Bacillus atrophaeus, a surrogate for B. anthracis,
at Idaho National Laboratory (INL) in a typical two-story
commercial building (Building PBF632) in order to support the
Department of Homeland Security (DHS), the Environmental
Protection Agency (EPA), and the Joint Program Executive
Office Chemical and Biological Defense’s (JPEOCBD) Sample
Collection Operation Test Plan. Among the five tested release
events, Events 1, 2, and 4 were performed on the first floor of
the building, while Events 3 and 5 were performed on the
second floor. For each release event, Bacillus atrophaeus spores
were aerosolized through a battery-powered generator, and
surface concentrations were measured using collection
methods: vacuum, wipe, and swab. Between release events,
the building was decontaminated and the effectiveness of
decontamination was verified by clearances samples. For details
of this field test, please refer to the official report.38

To create the matrix Z⃗, it is necessary to estimate sample
recovery variability and uncertainty associated with different
collection methods. This was done using settling plate samples
as a reference by a multivariate regression model. Recovery
efficiencies (γj) are estimated as

∑ ∑β γ ε= + +
= =

I JYi j k
i

n

i i k
j

n

j j k i j k, ,
1

,
1

, , ,

i j

(10)

where the dependent variable is the log transformed surface
concentration Yi,j,k, i indexes the combination of room and
sampling event where the sample was taken (thus rooms are
indexed separately for each of the sampling events), j indexes
collection method, and k indexes the measurements within each
room−event and sampling method combination. The model
has two classes of parameters: (1) βi the nuisance parameters,
which account for the effects of Ii,k, the indicator of location−
event combination (Ii,k is 1 when the kth sample is from the ith
location−event combination and 0 otherwise), and (2) γj the
collection method recovery fractions, which account for the
effects of Jj,k, the collection method indicator (Jj,k is 1 when the
kth sample is sampled by the jth collection method and 0
otherwise). The error terms of this regression (εi,j,k) are
collection method specific, following a normal distribution with
a mean of zero and a standard deviation of σj (εi,j,k ∼ N(o,σj)).
Parameters are estimated by maximum likelihood estimation
(MLE) using data from the 3 release events with more than
55% detectable concentrations (Events 1, 4, and 5) for a total
of 550 observations, which consists of 146 swabs samples, 76
vacuum samples, 227 wipes samples, and 101 settling plate
samples. The inverse of the information matrix is used to
estimate standard errors of model parameters. The standard
error of γj, denoted by σj, is of particular interest since this is the

uncertainty in mean recovery (compared to the settling plate
data that were used as a reference). The normality of the
residual errors from the best fitted model has been verified, and
values of σj and σγ, are present in Table 2 by sample collection
method.

For samples taken from an unknown surface, the overall
uncertainty has two sources, uncertainty in mean recovery (σγ)
and variability in the recovery from sample to sample (σj). The
sampling variability can be reduced by increasing sample size.
However, unless a reference method is available, increasing the
sample size will not reduce uncertainty in the recovery fraction.
Although a reference method (i.e., settling plate data) was
available for this field study, one would not be available in
the aftermath of an actual biological attack. Thus for a given
collection method j, its residual error, (i.e., the elements of
matrix Z⃗), is generated by the following distribution:

ε σ
σ

∼ +γ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟N

n
ln 0,j

j2
2

(11)

where n is the sample size.
Based on errors calculated in this manner and shown in

Table 2, nine different Z⃗ matrices are developed, one for each
of three sample collection methods (swabs, vacuum, and wipes)
and three sample sizes (1, 9, and 25). These Z⃗ matrices
estimated from the field data are tested on the previously
recommended sampling and modeling scheme, taking samples
from untracked floor, wall, and the HVAC filter to identify 3, 5,
and 10 μm. A Monte Carlo simulation of 1000 iterations is used
for each sampling scheme, and the ratios of human risk and
amount of spores exiting the room are computed. The impacts
of imperfect sample recovery and sample size are investigated
by checking the quotients between the 95th percentile and fifth
percentile of these two ratios, which represents the uncertainty
factor of the results. The closer this quotient is to 1, the less
uncertainty in the sampling scheme. Figure 3 illustrates this
quotient as a function of sample size for nine sampling
schemes. Uncertainties in number of spores exiting the room
are smaller than those in health risks to occupants of the release
room. Thus health risk to occupants of the room drives the
sample size requirement. Based on these inputs, it is suggested
to take 25 samples from each environmental compartment
(walls, floor, HVAC filter in a homogeneously mixed zone),
which results in roughly 1 order of magnitude difference
between the 95th percentile and fifth percentile estimations
for risk estimates in the release room. Sample sizes larger than
25 from each environmental compartment within the same
homogeneously mixed zone provide little benefit as the

Table 2. Standard Deviation and Its Uncertainty for the
Error Term (Log Scale)a

total error for indicated
sample size

collection method uncertainty variability (σγ
2+((σj

2)/n))1/2

σγ σj n = 1 n = 4 n = 25

swab 0.32 0.94 0.99 0.57 0.38
vacuum 0.18 0.67 0.69 0.38 0.22
wipe 0.25 0.97 1.00 0.54 0.31

aσγ is uncertainty in mean recovery for different collection method,
while σj is variability in the recovery from sample to sample.
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remaining uncertainty is dominated by uncertainty in mean
recovery (σγ) rather than sampling variability (σj). Given that a
reference method (i.e., settling plates) would not be available in
a real release, additional samples will not reduce uncertainty in
recovery rates. Accordingly once the sample size is sufficient to
reduce the effect of σj on overall uncertainty, then there is little
benefit to further sampling. One potential option to reduce σγ
would be to conduct positive control studies.39 Although this
option is not explored further here, the expected reduction in σγ
could be used with the approach described here to estimate
the benefit of such positive control studies. Among the three
sample collection methods, samples taken by wipes have
the most sampling variability and hence require the largest
sample size, followed by swab and vacuum. One should be
aware that results may be sensitive to specifics of sampling
techniques (material used for sampling, sample extraction
method used, see for example Solon et al.40) and thus con-
clusions might change as improved sampling methods are
developed (see Griffith41 for a summary of the performance
of a variety of sampling methods).

■ DISCUSSION

This analysis provides a framework for determining how much
detail can feasibly be included in models and provides guidance
on appropriate sampling schemes. This analysis suggests that
(1) a 3 size fraction model (3, 5, and 10 μm), which can be
estimated based on aggregate surface sampling of the untracked
floor, wall, and the HVAC filter, provides reasonable and
conservative estimates of risk and number of spores leaving the
release room; and 2) in an example application, a sample size
of about 25 (in each environmental compartment of a
homogeneously mixed zone) provided order of magnitude
estimates of risk, but unless a reference is available to enable
uncertainties in recovery to be reduced, there is little benefit to
taking more than 25 samples from each surface within a
homogenously mixed zone.
Implicit in this approach is the assumption that the mean

concentration is to be used to estimate risk. This is appropriate
for estimating exposure within a homogeneously mixed zone
when risk estimates are based on either the exponential or beta-
Poisson dose response function, as both these functions are
based on population average exposures and allow for Poisson
variability in exposure across individuals.42 Exponential and

Figure 3. Relationship between a sample scheme’s amount of uncertainty (ratio of 95th to 5th percentiles of estimated risk) and its sample size for
different ventilation recirculation rates (p = 0.5, p = 0.75, and p = 0.95) and different particle size distribution (light, heavy, and nominal, see text for
definitions) (Identification targets are 3, 5, and 10 μm, and samples are taken from untracked floor, wall, and the HVAC filter)○.
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beta-Poisson models have both been used successfully to
describe B. anthracis dose response.17,43

Calculations involved in this paper depend on a wide variety
of parameter inputs and modeling assumptions. Model
sensitivity analyses indicate that resuspension rate32 and dose
response16 are key parametric uncertainties in estimating risk.
Structural uncertainties are also important. In particular, the
applicability of the complete mixing assumption is of great
importance and should be carefully assessed for each
application. While uniform mixing key is generally true over
time for fine particles as deposition rates are slow relative to
mixing rates, the immediate vicinity of a release may contain
large amounts of coarse particles due to rapid deposition of
these particles before mixing can occur. Thus, the complete
mixing assumption could underestimate risk to the people who
were exposed at close range and right after a release, but would
provide more accurate risk estimates as exposures became more
removed in space and time from the initial release. More
detailed work, such as computational fluid dynamics modeling
could provide guidance as to how to interpret surface
concentrations in the immediate vicinity of a release. Whether
this framework is applicable can be readily ascertained from
sampling data. Areas of a room showing spatial variability in
sampling results would be areas for which the complete mixing
assumption is not valid. Results from areas with consistent and
uniform concentrations would be appropriate for use with this
method.
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