
Innovative Solutions for Fast Autonomous Navigation (SINAV)

Patrick Roncagliolo (1), Gabriele Berardi (1), Piergiorgio Lanza (1), Andrea Merlo (1),

Davide Graziato (2), Giuseppe D’Amore (3)

 (1) Thales Alenia Space Italy (2) Politecnico di Torino (3) Italian Space Agency

This paper covers part of the developments of SINAV

study. In particular, TAS-I and PoliTo designed and

prototyped a continuous and autonomous

navigation architecture designed for unstructured

environments and uneven grounds, also effective in

absence of sunlight thanks to active sensors.

Moreover, Deep Learning (DL) modules were

trained and deployed in support of the rover

autonomy.

1. INTRODUCTION

Autonomous navigation is the foundation of robotic

exploration of the surface of distant celestial bodies.

First of all, it enables to circumvent unavoidable

signal round-trip times that do not permit decent

human-in-the-loop control of vehicles; secondly, a

number of safety features, such as obstacle

avoidance, are inherently embodied by the

autonomy solution; last but not least, it enables

scientists and ground control to focus on more

appealing problems, like processing more data.

Traditionally, due to performance limits in radiation-

hardened on-board computers and data handling

systems, rovers were able to move autonomously,

but with a stop-and-go strategy: a perception loop is

executed, the 3D information is computed, a

traversability map is later derived and a few meters

long path is obtained and executed by means of the

locomotion system.

However, this allow to travel only a few hundreds of

meter each Sol. Continuous Autonomous Navigation

consists of a fast looping strategy of perception,

mapping and planning algorithms, allowing the

rover to safely travel without the need to stop: its

understanding of surrounding environment would

be always considered up-to-date and sufficient to

plan safe paths and being aware of nearby obstacles.

Travel time would also benefice from the capability

to travel in dark conditions.

Note: in this paper, complementary problems like

heat accumulation during continuous actuator

operation and power management are not taken

into account, since the focus is solely on the

algorithmic and computational aspect of a smooth,

continuous navigation.

2. COMPANY HERITAGE

The TAS-I Robotics Team started investigating

autonomy solutions for mobile robots in 2008,

within the STEPS (Systems and Technologies for

Space ExPloration) project. In that first iteration, a

pressurized mobile rover mockup has been built,

with a fully-functional locomotion subsystem and a

suite of state-of-the-art sensors and navigation

algorithms [1]. A second phase of the project, called

STEPS 2, led to detailed evaluation of early models

of Time-of-Flight (ToF) cameras for surface mapping

and obstacle detection, and the development of a

Real-Time OS abstraction layer for robotics, with

tests carried on in a newly-built facility called RoXY

(ROver eXploration facilitY), featuring a 400m2
outdoor, mars-like playground [2].

The so-called “TAS-I Robot Management

Framework” or “Test Bench for Robotics and

Autonomy” (TBRA) consisted in a flexible and

modular software architecture (Framework Engine)

in which each functional module (representing the

GNC subsystems) implements a key functionality of

the GNC (Guidance Navigation and Control) [3].

Modules communicate by means of standardised

interfaces designed for exchange of necessary

information among the modules composing the

entire system. This approach permits the

interchange-ability of each subsystem without

affecting the overall functionalities of the GNC

system. Moreover, this framework featured

different KAL (Kernel Abstraction Layers) to allow its

deploy over Linux, RTEMS or RTAI. While this

approach was interesting, the maintenance costs of

the framework and the technical debt accumulating

for its much needed upgrade recently (2020) led the

Team to consider a new framework, not existing cat

the time of STEPS projects: Robot Operating System

(ROS) 2. All the major R&D projects and breadboards

within the group are now supported by state-of-the-

art development based on ROS 2.

3. FACILITIES

TAS-I ROvers eXploration facilitY is a technological

area dedicated to robotic systems design,

development, validation and verification. It is

located in TAS-I Turin site, covers an area of about

600m2, including a Mars playground, control room

and workshop.

Figure 1 - TAS-I Turin RoXY

The outdoor playground covers an area of ~400m2,

reproducing Mars-like planetary morphology in

terms of color, landscape, boulders, smaller rocks

and slopes. The perimeter is surrounded by a

uniform background which isolates the terrain from

external interferences like peoples and vehicles.

The control room hosts the software development

validation and verification infrastructure, as well as

five work stations for developers and operators.

The workshop provides a secure area where to store

the robots and to perform integration, test and

maintenance activities.

4. STUDY OVERVIEW

The SINAV study is an ASI co-founded project started

in September 2021, with a final demo executed in

RoXY in September 2023. It is one of the biggest

projects ever co-founded by ASI (Contract N. 2021-

13-E.0) in Autonomous Navigation and Artificial

Intelligence subjects, with a total budget of

approximately 1.5 M€. The Italian acronym stands

for “Innovative Solutions for Fast and Autonomous

Navigation)”, and the project comprised both a

surface segment (rover) and an aerial/orbital

segment (drone/cubesat): TAS-I Robotics group led

the development of the surface segment, starting

from a complete hardware retrofitting of the STEPS

2 mobile robot, a skid-steered MobileRobots Seekur

Jr and proceeding then with software architecture

and algorithm development and deploy. PoliTo

strongly contributed to algorithm selection,

development and testing.

Figure 2 - Retrofitted MobileRobots Seekur Jr

The SINAV project primarily aimed to:

 grow average rover speed tenfold w.r.t. current

missions;

 enable autonomous continuous navigation;

 enable navigation in absence of light;

 leverage active sensors such as ToFs;

 use DL to enhance rover navigation;

 allow fusion of rover/drone/satellite mapping

data;

 demonstrate rover & drone cooperation.

The ToF cameras are particularly performant in case

of untextured surfaces such as the lunar surface, can

perceive in a completely dark scenario and require

less computing w.r.t. classical stereovision pipelines.

[4] This is why the study targeted their exploitation

and integration in an autonomous navigation

system designed for unstructured environments.

5. SETUP OVERVIEW

The SINAV rover features two OBCs:

 a Versalogic VL-41 EBX mainboard with an Intel

i7-3615QE and 16 GB DDR3 RAM;

 a Nvidia Xavier NX with 6 Nvidia Camel cores

and 8 GB of RAM.

and the following sensors:

 a Stereolabs ZED 2i stereo camera, with 2K

resolution and polarized lens; the SDK provides

CUDA-accelerated visual tracking and normal

estimation;

 two LUCID Vision Labs Helios2+ ToF cameras

with VGA resolution and 100 Hz framerate;

 an Xsens Mti 620 VRU with built-in filtering;

The environment is mainly perceived via 3D Point

Cloud representation (or the correspondent 2D

depth image, to save memory and bandwidth). The

SW framework can be configured to process

structured point clouds, which are clouds associated

to a matrix (just as a common RGB image): this

typically allows to apply optimized (faster)

algorithms at a cost of slightly higher memory usage.

Figure 3 - Example raw point cloud

6. SW ARCHITECTURE

The SINAV architecture is conceptually simple; it

consists of few layers:

 the hardware, comprising both sensors and

actuators of the robotic platform;

 the low-level abstraction code, with the

Hardware Abstraction Layer (HAL) harmonizing

the read/write access to sensors and actuators,

and the Locomotion/Actuation block that

wraps motors to abstract the platform

maneuvering (SINAV robot has only one

locomotion mode: skid-steering);

 the autonomous navigation layer, strictly

subdivided in:

o localization

o mapping

o planning (path planning)

o control (path tracking)

which enables to process sensor inputs and

command vehicle maneuvers to reach a

navigation goal;

 the high-level, deliberative layer which can take

short term mission decisions in lieu of the

mission control center, if needed. It

implements Behavior Tree (BT) reconfigurable

logic.

Figure 4 - Reference architectural schema

Notice that Localization and Mapping are explicitly

separated instead of being replaced by a “SLAM”

block. The idea is to keep the software as modular

as possible, for a variety of reasons such as logic and

fault isolation, maintenance and even didactic

purposes: this platform and framework will be used

in R&D for the upcoming years to train roboticists,

so fairly monolithic software solutions are avoided if

possible. SLAM is still possible to achieve by proper

selection of suitable localization and mapping

blocks, which are free by design to communicate /

exchange data.

Each of the architectural blocks typically comprises

many software blocks, called “components”.

Figure 5 - Localization subsystem

The localization subsystem is in charge to provide

position an orientation update of the robotic

platform and of every dependent reference frame.

An EKF filter takes into account mechanical

odometry, orientation estimation coming from

onboard Vertical Reference Unit (VRU), visual

odometry provided either by the onboard Stereo

camera visual tracking algorithm or by point cloud

registration techniques applied on the fused point

cloud from the two ToFs. The choice between the

two visual odometry sources usually depends on the

presence or absence of light. On the VRU orientation

estimate, a zero-velocity update filtering [5] is made

to suppress yaw drift when the vehicle is not moving

(no magnetometer is used to get absolute heading).

Figure 6 - Mapping subsystem

The mapping subsystem duty is to synthetize a 2D

traversability map of the surrounding environment,

allowing the planning subsystem to take decisions

about the path to generate. Again, this subsystem

can either work with point clouds coming from

either the stereo camera or from the ToF(s). The

points generated from the border of the sensor are

discarded (the residual lens distortion is usually

higher), surface normals are computed on the cloud

if needed (for example, the stereo camera SDK

internally compute them, while no similar solution is

found on the purchased ToFs). Then, the clouds are

collapsed on the ideal 2D plane, binning points on a

fixed grid. Each tile gets a slope angle computed

from the set of points belonging to it. No mean Z

value is computed since this system does not

compute an intermediate DEM representation. This

means that in this basic pipeline layout, the

navigation criteria (cost function of the

traversability map) is based on the slope angle.

Obstacles can already be intrinsically detected due

to the high slope in correspondence to their borders

w.r.t. the ground floor.

Figure 7 - Planning and control subsystem (Nav2)

The planning and control subsystems are instead

inherited by an open source framework called Nav2

[6]. This pluggable framework allows to swap path

planner and controller with either a set of pre-

defined ones or custom implementations. In the

context of SINAV project, PoliTo contributed with

the integration of the Shifted Grid Fast Marching [7]

planner and the LQR controller. Moreover, Nav2

embeds the runtime for the execution of Behavior

Trees [8] policies (the Deliberative Layer of our

architecture).

7. ROS 2 IMPLEMENTATION

While space robotics SWs are typically implemented

as monolithic (and statically-linked) applications,

the preferred approach in the robotic field is to

move to distributed frameworks. Although several

other solutions exist (eg. YARP, MRPT), the de-facto

standard in both R&D and modern industrial

applications is called Robot Operating System 2 (ROS

2), a framework abstracting Scheduling, Time

management and most importantly data exchange

across so called “nodes”, either via Remote

Procedure Calls (RPC) or Inter-/Intra-Process

Communication (ICP) [9]. Using ROS 2 for R&D

development drastically widens the amount of

skilled developers that can join the project, due to

its widespread usage in the robotics community.

To explain how ROS 2 true potential can be

unlocked, take as reference the following figure.

Two ROS 2 applications, or nodes, can be developed,

built and executed independently; communication

would then happen via IP over DDS protocol (red

blocks example). However, ROS 2 nodes crafted as

“components” can be also seamlessly loaded in the

same process space at runtime (orange blocks

example). If at this stage, the user enables a specific

flag, intra-process communication can be enabled,

so the RMW layer is completely bypassed: data is

exchanged via zero-copy protocol (green blocks

example).

Figure 8 - Intra-process optimization in ROS 2

This way, ROS 2 enables developers to separate and

isolate concerns in development, test and debug

phase, allowing easily to switch to an optimized

runtime with near zero overhead [10]. In the SINAV

projects, many small components were developed,

each wrapping usually a very simple task so that the

user can choose at runtime how to build its perfect

data processing pipeline, for example.

Another optimization that can heavily reduce

runtime cost consists in type adaptation: due to the

ROS IDL message representation, commonly native

structures, such as OpenCV matrices, needs to be

converted to POD structures back and forth when

sending or receiving messages (red blocks case here

under). TAS-I Team developed a set of custom data

adapters supported by ROS 2 API, allowing the

framework to directly exchange native structures of

choice via IPC without conversion overheads. This

proved extremely useful to process and exchange

heavy data such as structured point clouds.

Figure 9 - Message adapters in ROS 2

TAS-I Team carefully partitioned the AutoNav

runtime across the two rover OBCs, minimizing the

amount of data exchanged over IP. Then, on each of

the two OBCs, the majority of the component are

grouped together dynamically in the same

component container, effectively maximizing the

data exchanged via intra-process (where only tokens

- addresses- are exchanged, with the data effectively

never copied).

Moreover, the DDS communication was limited to

each of the host, allowing only specific data streams

to flow on the network via a more efficient protocol

called Eclipse Zenoh, relying on PtP tunnels instead

of broadcast communication [11].

8. DL ALGORITHM INTEGRATION

Four different task-specific Deep Neural Networks

(DNNs) were developed and trained and easily

integrated in the ROS 2 architecture of the rover,

demonstrating the flexibility of the SINAV software

stack in presence of additional SW modules or

agents in the same local network.

DNNs design is based on open-source SOTA

architectures while training has been performed on

Thales custom datasets. To answer the low

availability of specific datasets, realistic 3D

simulations of the stack deploy environment have

been created and used for training. Synthetically

trained DNNs have nonetheless achieved good

results in real testing environments. Inference is

based on open-source libraries (ONNX-runtime) and

has been tuned to work within a low computational

resource environment.

Figure 10 - Integration of terrain segmentation

The task covered by the four networks are:

 terrain segmentation;

 detection of mission relevant objects;

 monocular depth estimation;

 image super-resolution.

In particular, segmentation output has been

considered by the stack to update the cost map for

navigation. In this paper, the integration approach is

shown to demonstrate the flexibility of the

architecture. The DNN Terrain classification node,

which can be executed even on a remote machine,

sends a grab() request to the Cloud Tagger

component, which resides in the same component

container where the stereo camera HAL component

is (this is to reduce overhead at minimum). A point

cloud is retained in memory, RGB data is extracted

and sent back to the DNN module, so that only the

minimum amount of information is shared over the

IP network. The DNN assigns a label to each pixel of

the retrieved image, and calls the tag() service

sending back a 1-channel image with pixel values

corresponding to such labels. The Cloud Tagger

retrieves the source point cloud from memory, adds

a “label” channel to it dumping all the labels from

the received raster, and releases the tagged cloud

downstream. Another component then receives this

tagged cloud, applies grid binning and assigns to

each cell a class (depending on the labels of the

points inside the corresponding bin). The originated

traversability map can then be mixed with other

maps (such as the default one encoding slopes) with

different numerical criteria.

Figure 11 - Segmentation output (synthetic dataset)

9. TEST CAMPAIGN

The surface segment test campaign took place in the

RoXY facility in July 2023, and was successfully

executed by TAS-I and PoliTo Teams. The rover

navigated autonomously to waypoints defined at

runtime by a remote console, sent via wireless PtP

link to the rover itself. Whenever the rover reached

a goal, a new one was chosen and sent to it until the

minimum required demo mission duration (10

minutes) was reached. The rover navigated

continuously, detecting and avoiding obstacles

along its path by re-computation of its path towards

the requested goal. For each traverse, travel time

and distance have been logged to extract average

speed as the final metric. Four runs were executed

in different light conditions (sunrise, clear sky,

cloudy, sunset) and two more were executed at dusk

and by night. The average speed has been always

above 10 cm/s, which is way above the initial target

(6-8 cm/s). Moreover, an additional run has been

done processing additional segmentation data

coming from the additional DL terrain segmentation

module, demonstrating avoidance of sandy craters

that are present in the RoXY facility.

10. RESULTS AND CONCLUSIONS

The tests demonstrated the capability of the system

to navigate continuously in both day and night time,

at a mission average > 10 cm/s. By comparison,

NASA Perseverance can travel at 4.5 cm/s, while

MER rovers were only able to navigate at 1 cm/s,

which was the reference for the tenfold target

increase of SINAV study. Taking into account

European state of the art, Rosalind Franklin has

been designed for just 14 m/h (0.4 cm/s) [12].

Of course, this raw comparison is not completely

fair, since SINAV relied on powerful COTS avionics;

on the other side, the ROS 2 framework still

embodies some overhead that penalizes SINAV

code, together with the one associated to the

accentuated modularization of the processing

pipelines. The current status of the system is

evaluated as a solid TRL 4 overall, but TAS-I intends

to mature it throughout the next years due to the

growing interest in European market to create a

segment of multi-purpose lunar rovers.

Finally, it is important to highlight that in the future

the Team aims to leverage advancements in Space

ROS, which is the NASA/PickNik initiative to make

ROS 2 compliant to space SW standards, so overall

TRL could be boosted by such developments.

References

[1] P. Messidoro, M. A. Perino and D. Boggiatto, “Enabling technologies for space exploration systems: The

STEPS project results and perspectives,” Acta Astronautica, vol. 86, pp. 219-236, 2013.

[2] A. Biggio, A. Sperindé, S. Torelli, E. Simetti, C. Inni, L. Vercellino, F. Salvioli and B. Bona, Validation and

verification of modular GNC by means of TAS-I robot management framework in outdoor rovers exploration

facility, Turin, 2015.

[3] A. Biggio, S. Torelli, A. Sperindé, E. Simetti, C. Ianni, F. Salvioli, L. Vercellino and B. Bona, Design and

implementation of a robot management framework and modular gnc for robotic space exploration, Turin,

2016.

[4] K. Uno, L.-J. Burtz, M. Hulcelle and K. Yoshida, “Qualification of a Time-of-Flight Camera as a Hazard

Detection and Avoidance Sensor for a Moon Exploration Microrover,” Trans. JSASS Aerospace Tech. Japan,

vol. 16, no. 7, pp. 619-627, 2018.

[5] R. P. Suresh, Sridhar, Vinay, J. Pramod and V. Talasila, “Zero Velocity Potential Update (ZUPT) as a

Correction Technique,” in 3rd International Conference On Internet of Things: Smart Innovation and Usages

(IoT-SIU), Bhimtal, 2018.

[6] S. Macenski, F. Martin, R. White and J. G. Clavero, “The Marathon 2: A Navigation System,” in IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), Las Vegas, 2020.

[7] P. Roncagliolo, “Evaluation and Implementation of Modern Path Planning Algorithms for Planetary

Exploration Rovers,” Genoa, 2020.

[8] R. Ghzouli, T. Berger, E. B. Johnsen, A. Wasowski and S. Dragule, “Behavior Trees and State Machines in

Robotics Applications,” IEEE Transactions on Software Engineering, pp. 1-24, 21 April 2023.

[9] S. Macenski, T. Foote, B. Gerkey, C. Lalancette and W. Woodall, “Robot Operating System 2: Design,

architecture, and uses in the wild,” Science Robotics, vol. 7, no. 66, 2022.

[10] S. Macenski, A. Soragna, M. Carrol and Z. Ge, “Impact of ROS 2 Node Composition in Robotic Systems,” IEEE

Robotics and Automation Letters, 2023.

[11] W.-Y. Liang, Y. Yuan and H.-J. Lin, “A Performance Study on the Throughput and Latency of Zenoh, MQTT,

Kafka, and DDS,” 2023.

[12] M. Winter, B. Chris, V. Pereira, R. Lancaster, M. Caceres, K. Mcmanamon, B. Nye, N. SIlva, D. Lachat and M.

Campana, “ExoMars Rover Vehicle: Detailed Description of the GNC System,” in 13th Symposium on

Advanced Space Technologies in Robotics and Automation, Noordwijk, 2015.

