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This paper covers part of the developments of SINAV 

study. In particular, TAS-I and PoliTo designed and 

prototyped a continuous and autonomous 

navigation architecture designed for unstructured 

environments and uneven grounds, also effective in 

absence of sunlight thanks to active sensors. 

Moreover, Deep Learning (DL) modules were 

trained and deployed in support of the rover 

autonomy. 

1. INTRODUCTION 

Autonomous navigation is the foundation of robotic 

exploration of the surface of distant celestial bodies. 

First of all, it enables to circumvent unavoidable 

signal round-trip times that do not permit decent 

human-in-the-loop control of vehicles; secondly, a 

number of safety features, such as obstacle 

avoidance, are inherently embodied by the 

autonomy solution; last but not least, it enables 

scientists and ground control to focus on more 

appealing problems, like processing more data.  

Traditionally, due to performance limits in radiation-

hardened on-board computers and data handling 

systems, rovers were able to move autonomously, 

but with a stop-and-go strategy: a perception loop is 

executed, the 3D information is computed, a 

traversability map is later derived and a few meters 

long path is obtained and executed by means of the 

locomotion system.  

However, this allow to travel only a few hundreds of 

meter each Sol. Continuous Autonomous Navigation 

consists of a fast looping strategy of perception, 

mapping and planning algorithms, allowing the 

rover to safely travel without the need to stop: its 

understanding of surrounding environment would 

be always considered up-to-date and sufficient to 

plan safe paths and being aware of nearby obstacles. 

Travel time would also benefice from the capability 

to travel in dark conditions.  

Note: in this paper, complementary problems like 

heat accumulation during continuous actuator 

operation and power management are not taken 

into account, since the focus is solely on the 

algorithmic and computational aspect of a smooth, 

continuous navigation. 

2. COMPANY HERITAGE 

The TAS-I Robotics Team started investigating 

autonomy solutions for mobile robots in 2008, 

within the STEPS (Systems and Technologies for 

Space ExPloration) project. In that first iteration, a 

pressurized mobile rover mockup has been built, 

with a fully-functional locomotion subsystem and a 

suite of state-of-the-art sensors and navigation 

algorithms [1]. A second phase of the project, called 

STEPS 2, led to detailed evaluation of early models 

of Time-of-Flight (ToF) cameras for surface mapping 

and obstacle detection, and the development of a 

Real-Time OS abstraction layer for robotics, with 

tests carried on in a newly-built facility called RoXY 

(ROver eXploration facilitY), featuring a 400m2 
outdoor, mars-like playground [2].  

The so-called “TAS-I Robot Management 

Framework” or “Test Bench for Robotics and 

Autonomy” (TBRA) consisted in a flexible and 

modular software architecture (Framework Engine) 

in which each functional module (representing the 

GNC subsystems) implements a key functionality of 

the GNC (Guidance Navigation and Control) [3]. 

Modules communicate by means of standardised 

interfaces designed for exchange of necessary 

information among the modules composing the 

entire system. This approach permits the 

interchange-ability of each subsystem without 



affecting the overall functionalities of the GNC 

system. Moreover, this framework featured 

different KAL (Kernel Abstraction Layers) to allow its 

deploy over Linux, RTEMS or RTAI. While this 

approach was interesting, the maintenance costs of 

the framework and the technical debt accumulating 

for its much needed upgrade recently (2020) led the 

Team to consider a new framework, not existing cat 

the time of STEPS projects: Robot Operating System 

(ROS) 2. All the major R&D projects and breadboards 

within the group are now supported by state-of-the-

art development based on ROS 2. 

3. FACILITIES 

TAS-I ROvers eXploration facilitY is a technological 

area dedicated to robotic systems design, 

development, validation and verification. It is 

located in TAS-I Turin site, covers an area of about 

600m2, including a Mars playground, control room 

and workshop. 

 

Figure 1 - TAS-I Turin RoXY 

The outdoor playground covers an area of ~400m2, 

reproducing Mars-like planetary morphology in 

terms of color, landscape, boulders, smaller rocks 

and slopes. The perimeter is surrounded by a 

uniform background which isolates the terrain from 

external interferences like peoples and vehicles.  

The control room hosts the software development 

validation and verification infrastructure, as well as 

five work stations for developers and operators.  

The workshop provides a secure area where to store 

the robots and to perform integration, test and 

maintenance activities. 

4. STUDY OVERVIEW 

The SINAV study is an ASI co-founded project started 

in September 2021, with a final demo executed in 

RoXY in September 2023. It is one of the biggest 

projects ever co-founded by ASI (Contract N. 2021-

13-E.0) in Autonomous Navigation and Artificial 

Intelligence subjects, with a total budget of 

approximately 1.5 M€. The Italian acronym stands 

for “Innovative Solutions for Fast and Autonomous 

Navigation)”, and the project comprised both a 

surface segment (rover) and an aerial/orbital 

segment (drone/cubesat): TAS-I Robotics group led 

the development of the surface segment, starting 

from a complete hardware retrofitting of the STEPS 

2 mobile robot, a skid-steered MobileRobots Seekur 

Jr and proceeding then with software architecture 

and algorithm development and deploy. PoliTo 

strongly contributed to algorithm selection, 

development and testing. 

 

Figure 2 - Retrofitted MobileRobots Seekur Jr 

The SINAV project primarily aimed to: 

 grow average rover speed tenfold w.r.t. current 

missions; 

 enable autonomous continuous navigation; 

 enable navigation in absence of light; 

 leverage active sensors such as ToFs; 

 use DL to enhance rover navigation; 

 allow fusion of rover/drone/satellite mapping 

data; 

 demonstrate rover & drone cooperation. 



The ToF cameras are particularly performant in case 

of untextured surfaces such as the lunar surface, can 

perceive in a completely dark scenario and require 

less computing w.r.t. classical stereovision pipelines. 

[4] This is why the study targeted their exploitation 

and integration in an autonomous navigation 

system designed for unstructured environments. 

5. SETUP OVERVIEW 

The SINAV rover features two OBCs: 

 a Versalogic VL-41 EBX mainboard with an Intel 

i7-3615QE and 16 GB DDR3 RAM; 

 a Nvidia Xavier NX with 6 Nvidia Camel cores 

and 8 GB of RAM. 

and the following sensors: 

 a Stereolabs ZED 2i stereo camera, with 2K 

resolution and polarized lens; the SDK provides 

CUDA-accelerated visual tracking and normal 

estimation; 

 two LUCID Vision Labs Helios2+ ToF cameras 

with VGA resolution and 100 Hz framerate;  

 an Xsens Mti 620 VRU with built-in filtering; 

The environment is mainly perceived via 3D Point 

Cloud representation (or the correspondent 2D 

depth image, to save memory and bandwidth). The 

SW framework can be configured to process 

structured point clouds, which are clouds associated 

to a matrix (just as a common RGB image): this 

typically allows to apply optimized (faster) 

algorithms at a cost of slightly higher memory usage. 

 

Figure 3 - Example raw point cloud 

6. SW ARCHITECTURE 

The SINAV architecture is conceptually simple; it 

consists of few layers: 

 the hardware, comprising both sensors and 

actuators of the robotic platform; 

 the low-level abstraction code, with the 

Hardware Abstraction Layer (HAL) harmonizing 

the read/write access to sensors and actuators, 

and the Locomotion/Actuation block that 

wraps motors to abstract the platform 

maneuvering (SINAV robot has only one 

locomotion mode: skid-steering); 

 the autonomous navigation layer, strictly 

subdivided in: 

o localization 

o mapping 

o planning (path planning) 

o control (path tracking) 

which enables to process sensor inputs and 

command vehicle maneuvers to reach a 

navigation goal; 

 the high-level, deliberative layer which can take 

short term mission decisions in lieu of the 

mission control center, if needed. It 

implements Behavior Tree (BT) reconfigurable 

logic. 

 

 

Figure 4 - Reference architectural schema 

Notice that Localization and Mapping are explicitly 

separated instead of being replaced by a “SLAM” 

block. The idea is to keep the software as modular 

as possible, for a variety of reasons such as logic and 



fault isolation, maintenance and even didactic 

purposes: this platform and framework will be used 

in R&D for the upcoming years to train roboticists, 

so fairly monolithic software solutions are avoided if 

possible. SLAM is still possible to achieve by proper 

selection of suitable localization and mapping 

blocks, which are free by design to communicate / 

exchange data.  

 

Each of the architectural blocks typically comprises 

many software blocks, called “components”. 

 

 

Figure 5 - Localization subsystem 

The localization subsystem is in charge to provide 

position an orientation update of the robotic 

platform and of every dependent reference frame. 

An EKF filter takes into account mechanical 

odometry, orientation estimation coming from 

onboard Vertical Reference Unit (VRU), visual 

odometry provided either by the onboard Stereo 

camera visual tracking algorithm or by point cloud 

registration techniques applied on the fused point 

cloud from the two ToFs. The choice between the 

two visual odometry sources usually depends on the 

presence or absence of light. On the VRU orientation 

estimate, a zero-velocity update filtering [5] is made 

to suppress yaw drift when the vehicle is not moving 

(no magnetometer is used to get absolute heading). 

 

 

Figure 6 - Mapping subsystem 

The mapping subsystem duty is to synthetize a 2D 

traversability map of the surrounding environment, 

allowing the planning subsystem to take decisions 

about the path to generate. Again, this subsystem 

can either work with point clouds coming from 

either the stereo camera or from the ToF(s). The 

points generated from the border of the sensor are 

discarded (the residual lens distortion is usually 

higher), surface normals are computed on the cloud 

if needed (for example, the stereo camera SDK 

internally compute them, while no similar solution is 

found on the purchased ToFs). Then, the clouds are 

collapsed on the ideal 2D plane, binning points on a 

fixed grid. Each tile gets a slope angle computed 

from the set of points belonging to it. No mean Z 

value is computed since this system does not 

compute an intermediate DEM representation. This 

means that in this basic pipeline layout, the 

navigation criteria (cost function of the 

traversability map) is based on the slope angle. 

Obstacles can already be intrinsically detected due 

to the high slope in correspondence to their borders 

w.r.t. the ground floor. 



 

 

Figure 7 - Planning and control subsystem (Nav2) 

The planning and control subsystems are instead 

inherited by an open source framework called Nav2 

[6]. This pluggable framework allows to swap path 

planner and controller with either a set of pre-

defined ones or custom implementations. In the 

context of SINAV project, PoliTo contributed with 

the integration of the Shifted Grid Fast Marching [7] 

planner and the LQR controller. Moreover, Nav2 

embeds the runtime for the execution of Behavior 

Trees [8] policies (the Deliberative Layer of our 

architecture). 

 

7. ROS 2 IMPLEMENTATION 

While space robotics SWs are typically implemented 

as monolithic (and statically-linked) applications, 

the preferred approach in the robotic field is to 

move to distributed frameworks. Although several 

other solutions exist (eg. YARP, MRPT), the de-facto 

standard in both R&D and modern industrial 

applications is called Robot Operating System 2 (ROS 

2), a framework abstracting Scheduling, Time 

management and most importantly data exchange 

across so called “nodes”, either via Remote 

Procedure Calls (RPC) or Inter-/Intra-Process 

Communication (ICP) [9]. Using ROS 2 for R&D 

development drastically widens the amount of 

skilled developers that can join the project, due to 

its widespread usage in the robotics community. 

To explain how ROS 2 true potential can be 

unlocked, take as reference the following figure. 

Two ROS 2 applications, or nodes, can be developed, 

built and executed independently; communication 

would then happen via IP over DDS protocol (red 

blocks example). However, ROS 2 nodes crafted as 

“components” can be also seamlessly loaded in the 

same process space at runtime (orange blocks 

example). If at this stage, the user enables a specific 

flag, intra-process communication can be enabled, 

so the RMW layer is completely bypassed: data is 

exchanged via zero-copy protocol (green blocks 

example). 

 

Figure 8 - Intra-process optimization in ROS 2 

This way, ROS 2 enables developers to separate and 

isolate concerns in development, test and debug 

phase, allowing easily to switch to an optimized 

runtime with near zero overhead [10]. In the SINAV 

projects, many small components were developed, 

each wrapping usually a very simple task so that the 

user can choose at runtime how to build its perfect 

data processing pipeline, for example.  



Another optimization that can heavily reduce 

runtime cost consists in type adaptation: due to the 

ROS IDL message representation, commonly native 

structures, such as OpenCV matrices, needs to be 

converted to POD structures back and forth when 

sending or receiving messages (red blocks case here 

under). TAS-I Team developed a set of custom data 

adapters supported by ROS 2 API, allowing the 

framework to directly exchange native structures of 

choice via IPC without conversion overheads. This 

proved extremely useful to process and exchange 

heavy data such as structured point clouds. 

 

Figure 9 - Message adapters in ROS 2 

TAS-I Team carefully partitioned the AutoNav 

runtime across the two rover OBCs, minimizing the 

amount of data exchanged over IP. Then, on each of 

the two OBCs, the majority of the component are 

grouped together dynamically in the same 

component container, effectively maximizing the 

data exchanged via intra-process (where only tokens 

- addresses- are exchanged, with the data effectively 

never copied). 

Moreover, the DDS communication was limited to 

each of the host, allowing only specific data streams 

to flow on the network via a more efficient protocol 

called Eclipse Zenoh, relying on PtP tunnels instead 

of broadcast communication [11].  

 

8. DL ALGORITHM INTEGRATION 

Four different task-specific Deep Neural Networks 

(DNNs) were developed and trained and easily 

integrated in the ROS 2 architecture of the rover, 

demonstrating the flexibility of the SINAV software 

stack in presence of additional SW modules or 

agents in the same local network. 

DNNs design is based on open-source SOTA 

architectures while training has been performed on 

Thales custom datasets. To answer the low 

availability of specific datasets, realistic 3D 

simulations of the stack deploy environment have 

been created and used for training. Synthetically 

trained DNNs have nonetheless achieved good 

results in real testing environments. Inference is 

based on open-source libraries (ONNX-runtime) and 

has been tuned to work within a low computational 

resource environment. 

 

Figure 10 - Integration of terrain segmentation 

The task covered by the four networks are:  

 terrain segmentation; 

 detection of mission relevant objects; 

 monocular depth estimation; 

 image super-resolution. 

In particular, segmentation output has been 

considered by the stack to update the cost map for 



navigation. In this paper, the integration approach is 

shown to demonstrate the flexibility of the 

architecture. The DNN Terrain classification node, 

which can be executed even on a remote machine, 

sends a grab() request to the Cloud Tagger 

component, which resides in the same component 

container where the stereo camera HAL component 

is (this is to reduce overhead at minimum). A point 

cloud is retained in memory, RGB data is extracted 

and sent back to the DNN module, so that only the 

minimum amount of information is shared over the 

IP network. The DNN assigns a label to each pixel of 

the retrieved image, and calls the tag() service 

sending back a 1-channel image with pixel values 

corresponding to such labels. The Cloud Tagger 

retrieves the source point cloud from memory, adds 

a “label” channel to it dumping all the labels from 

the received raster, and releases the tagged cloud 

downstream. Another component then receives this 

tagged cloud, applies grid binning and assigns to 

each cell a class (depending on the labels of the 

points inside the corresponding bin). The originated 

traversability map can then be mixed with other 

maps (such as the default one encoding slopes) with 

different numerical criteria. 

 

Figure 11 - Segmentation output (synthetic dataset) 

9. TEST CAMPAIGN 

The surface segment test campaign took place in the 

RoXY facility in July 2023, and was successfully 

executed by TAS-I and PoliTo Teams. The rover 

navigated autonomously to waypoints defined at 

runtime by a remote console, sent via wireless PtP 

link to the rover itself. Whenever the rover reached 

a goal, a new one was chosen and sent to it until the 

minimum required demo mission duration (10 

minutes) was reached. The rover navigated 

continuously, detecting and avoiding obstacles 

along its path by re-computation of its path towards 

the requested goal. For each traverse, travel time 

and distance have been logged to extract average 

speed as the final metric. Four runs were executed 

in different light conditions (sunrise, clear sky, 

cloudy, sunset) and two more were executed at dusk 

and by night. The average speed has been always 

above 10 cm/s, which is way above the initial target 

(6-8 cm/s). Moreover, an additional run has been 

done processing additional segmentation data 

coming from the additional DL terrain segmentation 

module, demonstrating avoidance of sandy craters 

that are present in the RoXY facility. 

10. RESULTS AND CONCLUSIONS 

The tests demonstrated the  capability of the system 

to navigate continuously in both day and night time, 

at a mission average > 10 cm/s. By comparison,  

NASA Perseverance can travel at 4.5 cm/s, while 

MER rovers were only able to  navigate at  1 cm/s, 

which was the reference for the tenfold target 

increase of SINAV study. Taking into account 

European state of the art, Rosalind Franklin has 

been designed for just 14 m/h (0.4 cm/s) [12]. 

Of course, this raw comparison is not completely 

fair, since SINAV relied on powerful COTS avionics; 

on the other side, the ROS 2 framework still 

embodies some overhead that penalizes SINAV 

code, together with the one associated to the 

accentuated modularization of the processing 

pipelines. The current status of the system is  

evaluated as a solid TRL 4 overall, but TAS-I intends 

to mature it throughout the next years due to the 

growing interest in European market to create a 

segment of multi-purpose lunar rovers. 

Finally, it is important to highlight that in the future 

the Team aims to leverage advancements in Space 

ROS, which is the NASA/PickNik initiative to make 

ROS 2 compliant to space SW standards, so overall 

TRL could be boosted by such developments.  
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