Patrick Lenggenhager

Patrick Lenggenhager
ETH Zurich | ETH Zürich · Department of Physics

MSc ETHZ Physics

About

19
Publications
2,345
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
163
Citations
Citations since 2017
19 Research Items
163 Citations
20172018201920202021202220230204060
20172018201920202021202220230204060
20172018201920202021202220230204060
20172018201920202021202220230204060
Additional affiliations
November 2019 - present
Paul Scherrer Institut
Position
  • PhD Student
November 2019 - present
University of Zurich
Position
  • PhD Student
September 2018 - present
ETH Zurich
Position
  • Research Assistant
Education
November 2019 - November 2023
ETH Zurich
Field of study
  • Physics
September 2016 - March 2019
ETH Zurich
Field of study
  • Physics
September 2012 - October 2015
ETH Zurich
Field of study
  • Physics

Publications

Publications (19)
Article
Particles hopping on a two-dimensional hyperbolic lattice feature unconventional energy spectra and wave functions that provide a largely uncharted platform for topological phases of matter beyond the Euclidean paradigm. Using real-space topological markers as well as Chern numbers defined in the higher-dimensional momentum space of hyperbolic band...
Preprint
Full-text available
We extend the notion of topologically protected semi-metallic band crossings to hyperbolic lattices in negatively curved space. Due to their distinct translation group structure, such lattices support non-Abelian Bloch states which, unlike conventional Bloch states, acquire a matrix-valued Bloch factor under lattice translations. Combining diverse...
Preprint
Full-text available
Tight-binding models on periodic lattices are commonly studied using Bloch band theory, which provides an efficient description of their energy spectra and wave functions. Besides Abelian Bloch states characterized by a momentum vector, the band theory of hyperbolic lattices involves non-Abelian Bloch states that have so far remained largely inacce...
Preprint
Full-text available
Particles hopping on a two-dimensional hyperbolic lattice feature unconventional energy spectra and wave functions that provide a largely uncharted platform for topological phases of matter beyond the Euclidean paradigm. Using real-space topological markers as well as Chern numbers defined in the higher-dimensional momentum space of hyperbolic band...
Article
Recently, hyperbolic lattices that tile the negatively curved hyperbolic plane emerged as a new paradigm of synthetic matter, and their energy levels were characterized by a band structure in a four- (or higher-) dimensional momentum space. To explore the uncharted topological aspects arising in hyperbolic band theory, we here introduce elementary...
Article
Full-text available
We analyze triply degenerate nodal points [or triple points (TPs) for short] in energy bands of crystalline solids. Specifically, we focus on spinless band structures, i.e., when spin-orbit coupling is negligible, and consider TPs formed along high-symmetry lines in the momentum space by a crossing of three bands transforming according to a one-dim...
Article
Full-text available
Triple nodal points are degeneracies of energy bands in momentum space at which three Hamiltonian eigenstates coalesce at a single eigenenergy. For spinless particles, the stability of a triple nodal point requires two ingredients: rotational symmetry of order three, four, or six; combined with mirror or space-time-inversion symmetry. However, desp...
Article
We analyze triply degenerate nodal points [or triple points (TPs) for short] in energy bands of crystalline solids. Specifically, we focus on spinless band structures, i.e., when spin-orbit coupling is negligible, and consider TPs formed along high-symmetry lines in the momentum space by a crossing of three bands transforming according to a one-dim...
Article
Full-text available
The Laplace operator encodes the behavior of physical systems at vastly different scales, describing heat flow, fluids, as well as electric, gravitational, and quantum fields. A key input for the Laplace equation is the curvature of space. Here we discuss and experimentally demonstrate that the spectral ordering of Laplacian eigenstates for hyperbo...
Preprint
Full-text available
The Bloch band theory describes energy levels of crystalline media by a collection of bands in momentum space. These bands can be characterized by non-trivial topological invariants, which via bulk-boundary correspondence imply protected boundary states inside the bulk energy gap. Recently, hyperbolic lattices that tile the negatively curved hyperb...
Preprint
Full-text available
We analyze triply degenerate nodal points [or triple points (TPs) for short] in energy bands of crystalline solids. Specifically, we focus on spinless band structures, i.e., when spin-orbit coupling is negligible, and consider TPs formed along high-symmetry lines in the momentum space by a crossing of three bands transforming according to a 1D and...
Preprint
Full-text available
The Laplace operator encodes the behaviour of physical systems at vastly different scales, describing heat flow, fluids, as well as electric, gravitational, and quantum fields. A key input for the Laplace equation is the curvature of space. Here we demonstrate that the spectral ordering of Laplacian eigenstates for hyperbolic (negative curvature) a...
Preprint
Full-text available
Triple nodal points are degeneracies of energy bands in momentum space at which three Hamiltonian eigenstates coalesce at a single eigenenergy. For spinless particles, the stability of a triple nodal point requires two ingredients: rotation symmetry of order three, four or six; combined with mirror or space-time-inversion symmetry. However, despite...
Article
Full-text available
We study a class of topological materials which in their momentum-space band structure exhibit threefold degeneracies known as triple points. Focusing specifically on PT-symmetric crystalline solids with negligible spin-orbit coupling, we find that such triple points can be stabilized by little groups containing a three-, four-, or sixfold rotation...
Preprint
Full-text available
We study a class of topological materials which in their momentum-space band structure exhibit threefold degeneracies known as triple points. Focusing specifically on PT-symmetric crystalline solids with negligible spin-orbit coupling, we find that such triple points can be stabilized by little groups containing a three-, four-, or sixfold rotation...
Article
Full-text available
Recently, a novel real-space renormalization group (RG) algorithm was introduced. By maximizing an information-theoretic quantity, the real-space mutual information, the algorithm identifies the relevant low-energy degrees of freedom. Motivated by this insight, we investigate the information-theoretic properties of coarse-graining procedures for bo...
Preprint
Full-text available
Recently a novel real-space RG algorithm was introduced, identifying the relevant degrees of freedom of a system by maximizing an information-theoretic quantity, the real-space mutual information (RSMI), with machine learning methods. Motivated by this, we investigate the information theoretic properties of coarse-graining procedures, for both tran...
Preprint
Full-text available
Recently a novel real-space RG algorithm was introduced, identifying the relevant degrees of freedom of a system by maximizing an information-theoretic quantity, the real-space mutual information (RSMI), with machine learning methods. Motivated by this, we investigate the information theoretic properties of coarse-graining procedures, for both tran...

Network

Cited By