Patricia Luz

Patricia Luz
University of the Andes (Chile) | UANDES · Faculty of Medicine

PhD

About

95
Publications
14,656
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,658
Citations
Additional affiliations
January 2009 - March 2012
University of the Andes (Chile)
Position
  • PhD Student

Publications

Publications (95)
Article
Full-text available
Intestinal macrophages have been poorly studied in fish, mainly due to the lack of specific molecular markers for their identification and isolation. To address this gap, using the zebrafish Tg(mpeg1:EGFP) transgenic line, we developed a fluorescence-activated cell sorting strategy (FACS) that allows us to isolate different intestinal macrophage su...
Article
Full-text available
Osteoarthritis (OA) is the most common degenerative joint disease. Mesenchymal stromal cells (MSC) are promising cell-based therapy for OA. However, there is still a need for additional randomized, dose-dependent studies to determine the optimal dose and tissue source of MSC for improved clinical outcomes. Here, we performed a dose-dependant evalua...
Preprint
Full-text available
The connection between stress-induced mood disorders and inflammatory bowel diseases has long been acknowledged. Here, we hypothesize that psychological stress may regulate intestinal inflammation under stress conditions through the release of small extracellular vesicles derived from astrocytes (AsEVs). Sprague-Dawley rats were stressed by movemen...
Article
Full-text available
Background The metabolic reprogramming of mesenchymal stem/stromal cells (MSC) favoring glycolysis has recently emerged as a new approach to improve their immunotherapeutic abilities. This strategy is associated with greater lactate release, and interestingly, recent studies have proposed lactate as a functional suppressive molecule, changing the o...
Preprint
Full-text available
The intricate cellular composition of the skin encompasses dynamic interactions among melanocytes, keratinocytes, and fibroblasts, crucial for protective responses to ultraviolet radiation (UVR), wound healing and aging. Recent insights underline mitochondrial transfer as pivotal in cellular repair, yet its occurrence between skin cells remains unc...
Article
Full-text available
Mitochondrial dysfunction is reiteratively involved in the pathogenesis of diverse neurodegenerative diseases. Current in vitro and in vivo approaches support that mitochondrial dysfunction is branded by several molecular and cellular defects, whose impact at different levels including the calcium and iron homeostasis, energetic balance and/or oxid...
Article
Full-text available
Mitochondrial dysfunction is a central event in the pathogenesis of several degenerative brain disorders. It entails fission and fusion dynamics disruption, progressive decline in mitochondrial clearance, and uncontrolled oxidative stress. Many therapeutic strategies have been formulated to reverse these alterations, including replacing damaged mit...
Article
Background Oral squamous cell carcinoma (OSCC) is the most frequent type of oral cancer. The tumor microenvironment of OSCC induces an alteration of the T lymphocyte, promoting an exhausted phenotype. The main organelle of metabolism is the mitochondrion and in recent years it has been indicated that several cells have the capacity to transfer mito...
Article
Full-text available
Exosomes derived from glial cells such as astrocytes, microglia, and oligodendrocytes can modulate cell communication in the brain and exert protective or neurotoxic effects on neurons, depending on the environmental context upon their release. Their isolation, characterization, and analysis under different conditions in vitro, in animal models and...
Article
Osteoarthritis (OA) is an increasingly frequent chronic condition leading to global disability. Our group has evidenced the effectiveness of Mesenchymal Stem Cells (MSC) in OA. MSC are known to transfer their mitochondria (MitoT) to damaged cells, conveying restorative effects. Of interest, 30% of dysfunctional proteins in human OA cartilage are of...
Article
Full-text available
Background Mesenchymal Stromal Cells (MSC) have been widely used for their therapeutic properties in many clinical applications including myocardial infarction. Despite promising preclinical results and evidences of safety and efficacy in phases I/ II, inconsistencies in phase III trials have been reported. In a previous study, we have shown using...
Article
Full-text available
Background Muscular dystrophies (MDs) are inherited diseases in which a dysregulation of the immune response exacerbates disease severity and are characterized by infiltration of various immune cell types leading to muscle inflammation, fiber necrosis and fibrosis. Immunosuppressive properties have been attributed to mesenchymal stem cells (MSCs) t...
Article
Full-text available
Objectives: Glucokinase Regulatory Protein (GKRP) is the only known endogenous modulator of glucokinase (GK) localization and activity to date, and both proteins are localized in tanycytes, radial glia-like cells involved in metabolic and endocrine functions in the hypothalamus. However, the role of tanycytic GKRP and its impact on the regulation o...
Preprint
Full-text available
Background: Mesenchymal Stromal Cells (MSC) have been widely used for their therapeutic properties in many clinical applications including myocardial infarction. Despite promising preclinical results and evidences of safety and efficacy in phases I/ II, inconsistencies in phase III trials have been reported. In a previous study, we have shown using...
Article
Full-text available
Fish species, such as zebrafish (Danio rerio), can regenerate their appendages after amputation through the formation of a heterogeneous cellular structure named blastema. Here, by combining live imaging of triple transgenic zebrafish embryos and single-cell RNA sequencing we established a detailed cell atlas of the regenerating caudal fin in zebra...
Article
Full-text available
Osteoarticular diseases (OD), such as rheumatoid arthritis (RA) and osteoarthritis (OA) are chronic autoimmune/inflammatory and age-related diseases that affect the joints and other organs for which the current therapies are not effective. Cell therapy using mesenchymal stem/stromal cells (MSCs) is an alternative treatment due to their immunomodula...
Article
Full-text available
Myocardial infarction ranks first for the mortality worldwide. Because the adult heart is unable to regenerate, fibrosis develops to compensate for the loss of contractile tissue after infarction, leading to cardiac remodeling and heart failure. Adult mesenchymal stem cells (MSC) regenerative properties, as well as their safety and efficacy, have b...
Article
Full-text available
A key characteristic of Human immunodeficiency virus type 1 (HIV-1) infection is the generation of latent viral reservoirs, which have been associated with chronic immune activation and sustained inflammation. Macrophages play a protagonist role in this context since they are persistently infected while being a major effector of the innate immune r...
Article
Full-text available
Murphy Roths Large (MRL) mice possess outstanding capacity to regenerate several tissues. In the present study, we investigated whether this regenerative potential could be associated with the intrinsic particularities possessed by their mesenchymal stem cells (MSCs). We demonstrated that MSCs derived from MRL mice (MRL MSCs) display a superior cho...
Conference Paper
The development of immune checkpoint inhibitors is revolutionizing gastric cancer (GC) therapy. However, the presence of an immune-suppressive tumor microenvironment and redundancy between inhibitory immune checkpoints may be responsible for why a high percentage of patients without clinical benefit. An emerging checkpoint target is Tim-3, a membra...
Article
Full-text available
Mesenchymal stem cells (MSCs) are multipotent adult stromal cells widely studied for their regenerative and immunomodulatory properties. They are capable of modulating macrophage plasticity depending on various microenvironmental signals. Current studies have shown that metabolic changes can also affect macrophage fate and function. Indeed, changes...
Article
Full-text available
Estrogens and estrogen-like molecules can modify the biology of several cell types. Estrogen receptors alpha (ERα) and beta (ERβ) belong to the so-called classical family of estrogen receptors, while the G protein-coupled estrogen receptor 1 (GPER-1) represents a non-classical estrogen receptor mainly located in the plasma membrane. As estrogen rec...
Article
Full-text available
The super healer Murphy Roths Large (MRL) mouse represents the “holy grail” of mammalian regenerative model to decipher the key mechanisms that underlies regeneration in mammals. At a time when mesenchymal stem cell (MSC)-based therapy represents the most promising approach to treat degenerative diseases such as osteoarthritis (OA), identification...
Article
Full-text available
Objectives: Mesenchymal Stem/Stromal Cells (MSC) are promising therapeutic tools for inflammatory diseases due to their potent immunoregulatory capacities. Their suppressive activity mainly depends on inflammatory cues that have been recently associated with changes in MSC bioenergetic status towards a glycolytic metabolism. However, the molecular...
Article
Introduction Myocardial infarction ranks first for the mortality worldwide. Since adult hearts are unable to regenerate, fibrosis expands after infarction, leading to cardiac remodeling and heart failure. Adult mesenchymal stem cells (MSC) regenerative properties, as well as their safety and efficacy have been demonstrated in preclinical models but...
Article
Full-text available
Mesenchymal stem cells (MSCs) have been recognized for their regenerative and anti-inflammatory capacity which makes them very attractive to cell therapy, especially those ones to treat inflammatory and autoimmune disease. Two different immune-phenotypes have been described for MSCs depending on which Toll-like receptor (TLR) is activated. MSC1 is...
Article
Full-text available
Mesenchymal stem cell (MSC)-based therapy is being increasingly considered a powerful opportunity for several disorders based on MSC immunoregulatory properties. Nonetheless, MSC are versatile and plastic cells that require an efficient control of their features and functions for their optimal use in clinic. Recently, we have shown that PPARβ/δ is...
Article
Full-text available
Mesenchymal stem cells (MSCs) exhibit potent immunoregulatory abilities by interacting with cells of the adaptive and innate immune system. In vitro, MSCs inhibit the differentiation of T cells into T helper 17 (Th17) cells and repress their proliferation. In vivo, the administration of MSCs to treat various experimental inflammatory and autoimmune...
Article
Full-text available
Background and Purpose Specialized pro‐resolving mediators (SPMs) are a family of lipids controlling the resolution of inflammation and playing a role in many processes including organ protection and tissue repair. While SPMs are potent bioactive molecules in vivo, their role in epimorphic regeneration of organs in vertebrates has not been tested....
Article
Background & Aim Osteoarthritis (OA) is the most frequent joint disease worldwide with yet no known disease modifying drugs. In OA chondrocytes (OAC), the dysregulation of the metabolic biosensors that control mitochondrial biogenesis accounts for decreased numbers of mitochondria (MT) and reduced ATP levels in OA. Recently, our group evidenced tha...
Article
Full-text available
Hypoxia‐inducible factor 1 α (HIF1α), a regulator of metabolic change, is required for the survival and differentiation potential of mesenchymal stem/stromal cells (MSC). Its role in MSC immunoregulatory activity, however, has not been completely elucidated. In the present study, we evaluate the role of HIF1α on MSC immunosuppressive potential. We...
Article
Full-text available
Identifying genes involved in vertebrate developmental processes and characterizing this involvement are daunting tasks, especially in the mouse where viviparity complicates investigations. Attempting to devise a streamlined approach for this type of study we focused on limb development. We cultured E10.5 and E12.5 embryos and performed transcripti...
Article
Full-text available
Feeding behavior regulation is a complex process, which depends on the central integration of different signals, such as glucose, leptin, and ghrelin. Recent studies have shown that glial cells known as tanycytes that border the basal third ventricle (3V) detect glucose and then use glucose-derived signaling to inform energy status to arcuate nucle...
Article
Full-text available
Cell migration is a key function in a myriad of physiological events and disease conditions. Efficient, quick and descriptive profiling of migration behaviour in response to different treatments or conditions is highly desirable in a series of applications, ranging from fundamental studies of the migration mechanism to drug discovery and cell thera...
Article
Full-text available
Mesenchymal stem cells (MSCs) have fueled ample translation for the treatment of immune-mediated diseases. They exert immunoregulatory and tissue-restoring effects. MSC-mediated transfer of mitochondria (MitoT) has been demonstrated to rescue target organs from tissue damage, yet the mechanism remains to be fully resolved. Therefore, we explored th...
Article
Full-text available
Background: Mesenchymal stem cells (MSCs) are multipotent cells with broad immunosuppressive capacities. Recently, it has been reported that MSCs can transfer mitochondria to various cell types, including fibroblast, cancer, and endothelial cells. It has been suggested that mitochondrial transfer is associated with a physiological response to cues...
Article
Full-text available
In the last years, mesenchymal stem cell (MSC)-based therapies have become an interesting therapeutic opportunity for the treatment of rheumatoid arthritis (RA) due to their capacity to potently modulate the immune response. RA is a chronic autoimmune inflammatory disorder with an incompletely understood etiology. However, it has been well describe...
Chapter
Full-text available
Mesenchymal stem cells (MSCs) are multipotent stem cells with immunosuppressive properties able to control both the innate and the adaptive immune system. Based on this latter characteristic, MSC-based therapies have become a thriving area for autoimmune diseases such as rheumatoid arthritis (RA). RA is a chronic inflammatory disorder that involves...
Article
Full-text available
Correction to: Cell Death Dis. 8, e2979 (2017); https://doi.org/10.1038/cddis.2017.374 ; published online 10th August 2017.
Article
Full-text available
The therapeutic effect of mesenchymal stem cells (MSCs) in multiple sclerosis (MS) and the experimental autoimmune encephalomyelitis (EAE) model has been well described. This effect is, in part, mediated through the inhibition of IL17-producing cells and the generation of regulatory T cells. While proinflammatory cytokines such as IFNγ, TNFα, and I...
Data
IL17 mesenchymal stem cells (MSCs) pretreatment increases MSCs therapeutic potential in experimental autoimmune encephalomyelitis (EAE). (A) Daily evaluation of clinical score was performed from the day of MSCs administration until euthanasia. (B) The area under the curve (AUC) of the clinical score for each treatment was calculated and compared. L...
Data
Phenotypic characterization and differentiation potential of wild-type (WT) and L17RA−/− mesenchymal stem cells (MSCs). (A) WT and IL17RA−/− MSCs were stained with specific antibodies against CD45, CD34, CD29, CD44, and Sca-1 and analyzed by flow cytometry. Histograms are representative of at least three independent experiments. (B) Differentiation...
Article
Full-text available
Objectives: Mesenchymal stem cells (MSCs) release extracellular vesicles (EVs) that display a therapeutic effect in inflammatory disease models. Although MSCs can prevent arthritis, the role of MSCs-derived EVs has never been reported in rheumatoid arthritis. This prompted us to compare the function of exosomes (Exos) and microparticles (MPs) isola...
Article
Full-text available
Mesenchymal stem cells (MSC) are highly immunosuppressive cells able to reduce chronic inflammation through the active release of mediators. Recently, we showed that glucocorticoid-induced leucine zipper (Gilz) expression by MSC is involved in their therapeutic effect by promoting the generation of regulatory T cells. However, the mechanisms underl...
Article
Full-text available
Macrophages are essential for appendage regeneration after amputation in regenerative species. The molecular mechanisms through which macrophages orchestrate blastema formation and regeneration are still unclear. Here, we use the genetically tractable and transparent zebrafish larvae to study the functions of polarized macrophage subsets during cau...
Conference Paper
Backgrounds and objectives Mesenchymal stem cells (MSC) are multipotent cells with immunomodulatory functions that are of interest for therapeutic purposes in osteoarticular autoimmune diseases such as rheumatoid arthritis (RA). These functions are primarily mediated by soluble mediators that can be released within extracellular vesicles (EV). EVs...
Chapter
Mesenchymal stem cells (MSC) are multipotent stem cells with a broad well-described immunosuppressive potential. They are able to modulate both the innate and the adaptive immune response. Particularly, MSC are able to regulate the phenotype and function of macrophages that are critical for different biological processes including wound healing, in...
Article
Peroxisome proliferator-activated receptors (PPARs) have emerged as key regulators of physiological and immunological processes. Recently, one of their members PPARβ/δ has been identified as major player in the maintenance of bone homeostasis, by promoting Wnt signalling activity in osteoblast and mesenchymal stem cells (MSC). PPARβ/δ not only cont...
Article
Full-text available
Mesenchymal stem cells (MSCs) are multipotent stem cells that are able to immunomodulate cells from both the innate and the adaptive immune systems promoting an anti-inflammatory environment. During the last decade, MSCs have been intensively studied in vitro and in vivo in experimental animal model of autoimmune and inflammatory disorders. Based o...
Article
Objectives To define how peroxisome proliferator-activated receptor (PPAR) β/δ expression level in mesenchymal stem cells (MSCs) could predict and direct both their immunosuppressive and therapeutic properties. PPARβ/δ interacts with factors such as nuclear factor-kappa B (NF-κB) and regulates the expression of molecules including vascular cell adh...