Patricia Bassereau

Patricia Bassereau
  • PhD (1985 and 1990) and Habilitation (1999)
  • French National Centre for Scientific Research

About

322
Publications
45,444
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
13,313
Citations
Current institution

Publications

Publications (322)
Preprint
The phosphoinositidyl lipid (PIP) family is key to spatial regulation of cellular processes, and their appearance, disappearance, and interconversion provide key signals for membrane remodeling at the plasma membrane and beyond. These signals are connected to recruitment of various peripheral membrane proteins, including sorting nexin 9 (SNX9), an...
Article
Full-text available
Cytonemes are signaling filopodia that facilitate long-range cell-cell communication by forming synapses between cells. Initially discovered in Drosophila for transporting morphogens during embryogenesis, they have since been identified in mammalian cells and implicated in carcinogenesis. Despite their importance, mechanisms controlling cytoneme bi...
Article
Full-text available
Integrin clusters facilitate mechanical force transmission (mechanotransduction) and regulate biochemical signaling during cell adhesion. However, most studies have focused on rigid substrates. On fluid substrates like supported lipid bilayers (SLBs), integrin ligands are mobile, and adhesive complexes are traditionally thought unable to anchor for...
Article
Full-text available
Amphiphysin 2 (BIN1) is a membrane and actin remodeling protein mutated in congenital and adult centronuclear myopathies. Here, we report an unexpected function of this N-BAR domain protein BIN1 in filopodia formation. We demonstrated that BIN1 expression is necessary and sufficient to induce filopodia formation. BIN1 is present at the base of form...
Preprint
Full-text available
Cellular signalling relies on the activity of transmembrane receptors and their presentation on the cellular surface. Their continuous insertion in the plasma membrane is balanced by constitutive and activity dependent internalization, which is orchestrated by adaptor proteins recognizing semi-specific motifs within the receptors’ intracellular reg...
Article
Full-text available
Large transcellular pores elicited by bacterial mono-ADP-ribosyltransferase (mART) exotoxins inhibiting the small RhoA GTPase compromise the endothelial barrier. Recent advances in biophysical modeling point toward membrane tension and bending rigidity as the minimal set of mechanical parameters determining the nucleation and maximal size of transe...
Preprint
Cytonemes are signaling filopodia that facilitate long-range cell-cell communication by forming synapses between cells. Initially discovered in Drosophila for transporting morphogens during embryogenesis, they have since been identified in mammalian cells and recently implicated in carcinogenesis. Yet, despite their importance, the mechanisms contr...
Preprint
Large transcellular pores elicited by bacterial mono-ADP-ribosyltransferase (mART) exotoxins inhibiting the small RhoA GTPase compromise the endothelial barrier. Recent advances in biophysical modeling point towards membrane tension and bending rigidity as the minimal set of mechanical parameters determining the nucleation and maximal size of trans...
Preprint
Full-text available
While mechanosensitive ion channels’ gating has been well documented, the effect of membrane mechanics, in particular membrane curvature, on the function of transporters remains elusive. Since conical shape transmembrane proteins locally deform membranes, conversely membrane bending could impact their conformations and their function. We tested thi...
Article
Tunnelling nanotubes (TNTs) connect distant cells and mediate cargo transfer for intercellular communication in physiological and pathological contexts. How cells generate these actin-mediated protrusions to span lengths beyond those attainable by canonical filopodia remains unknown. Through a combination of micropatterning, microscopy, and optical...
Preprint
Full-text available
Large transcellular pores elicited by bacterial mono-ADP-ribosyltransferase (mART) exotoxins inhibiting the small RhoA GTPase compromise the endothelial barrier. Recent advances in biophysical modeling point towards membrane tension and bending rigidity as the minimal set of mechanical parameters determining the nucleation and maximal size of trans...
Preprint
Full-text available
Large transcellular pores elicited by bacterial mono-ADP-ribosyltransferase (mART) exotoxins inhibiting the small RhoA GTPase compromise the endothelial barrier. Recent advances in biophysical modeling point towards membrane tension and bending rigidity as the minimal set of mechanical parameters determining the nucleation and maximal size of trans...
Article
Full-text available
The endosomal sorting complex required for transport (ESCRT) is a highly conserved protein machinery that drives a divers set of physiological and pathological membrane remodeling processes. However, the structural basis of ESCRT-III polymers stabilizing, constricting and cleaving negatively curved membranes is yet unknown. Here we present cryo-EM...
Article
Full-text available
Filopodia are actin-rich membrane protrusions essential for cell morphogenesis, motility, and cancer invasion. How cells control filopodium initiation on the plasma membrane remains elusive. We performed experiments in cellulo, in vitro, and in silico to unravel the mechanism of filopodium initiation driven by the membrane curvature sensor IRSp53 (...
Article
Full-text available
Intracellular trafficking is mediated by transport carriers that originate by membrane remodeling from donor organelles. Tubular carriers contribute to the flux of membrane lipids and proteins to acceptor organelles, but how lipids and proteins impose a tubular geometry on the carriers is incompletely understood. Using imaging approaches on cells a...
Preprint
The spontaneous opening of large transendothelial cell macroaperture (TEM) tunnels can accompany leukocyte diapedesis and is triggered by bacterial exoenzymes that inhibit RhoA-driven cytoskeleton contractility. Modelling the dynamics of TEM via a theoretical framework used for soft matter physics allowed us to depict the essential driving forces a...
Preprint
Full-text available
During cell adhesion, integrins form clusters that transmit mechanical forces to the substrate (mechanotransduction) and regulate biochemical signaling depending on substrate stiffness. In recent years, mechanotransduction studies significantly advanced our understanding of cell adhesion. Most studies were performed on rigid substrates such as glas...
Preprint
Full-text available
Tunneling nanotubes (TNTs) connect distant cells and mediate cargo transfer for intercellular communication in physiological and pathological contexts. How cells generate these actin-mediated protrusions spanning lengths beyond those attainable by canonical filopodia remains unknown. Through a combination of micropatterning, microscopy and optical...
Article
Full-text available
The endosomal sorting complexes required for transport (ESCRT) system is an ancient and ubiquitous membrane scission machinery that catalyzes the budding and scission of membranes. ESCRT-mediated scission events, exemplified by those involved in the budding of HIV-1, are usually directed away from the cytosol (“reverse topology”), but they can also...
Preprint
Full-text available
The endosomal sorting complex required for transport (ESCRT) is a highly conserved protein machinery that drives a divers set of physiological and pathological membrane remodeling processes. However, the structural basis of ESCRT-III polymers stabilizing, constricting and cleaving negatively curved membranes is yet unknown. Here we present cryo ele...
Preprint
Full-text available
Amphiphysin 2 (BIN1) is a membrane and actin remodeling protein mutated both in congenital and adult centronuclear myopathies. The BIN1 muscle-specific isoform finely tunes muscle regeneration in adulthood and regulates myoblast fusion. However, the underlying molecular mechanisms are unknown. Here, we report that BIN1 is required for myoblast fusi...
Preprint
Full-text available
Filopodia are actin-rich membrane protrusions essential for cell morphogenesis, motility, and cancer invasion. How cells control filopodia initiation on the plasma membrane remains elusive. We performed experiments in cellulo, in vitro and in silico to unravel the mechanism of filopodia initiation driven by the membrane curvature sensor IRSp53. We...
Preprint
Full-text available
The endosomal sorting complexes required for transport (ESCRT) system is an ancient and ubiquitous membrane scission machinery that catalyzes the budding and scission of membranes. ESCRT-mediated scission events, exemplified by those involved in the budding of HIV-1, are usually directed away from the cytosol (‘reverse-topology’), but they can also...
Article
Tunneling nanotubes (TNTs) connect distant cells and mediate the transfer of cargo for intercellular communication in both normal physiological and pathological contexts. How the cell controls a common actin toolbox to generate TNTs rather than shorter filopodia that are characteristically <5 μm remains unknown. Utilizing surface micropatterning, w...
Article
Cell membranes are highly deformable and can be strongly curved. For instance, cells extend thin and dynamic tubular plasma membrane protrusions for sensing their surroundings and for their motion called “filopodia.” These finger-like protrusions are formed by actin parallel filaments pushing against the membrane while they polymerize. How actin is...
Article
This article is based on the Concluding Remarks lecture given at the Faraday Discussion meeting on Peptide-Membrane Interactions, held online, 8-10th September 2021
Preprint
Full-text available
Intracellular trafficking is mediated by transport carriers that originate by membrane remodeling from donor organelles. Tubular carriers play major roles in the flux of membrane lipids and proteins to acceptor organelles. However, how lipids and proteins impose a tubular geometry on the carriers is incompletely understood. By exploiting imaging ap...
Article
Full-text available
Secreted proteins are transported along intracellular route from the endoplasmic reticulum through the Golgi before reaching the plasma membrane. Small GTPase Rab and their effectors play a key role in membrane trafficking. Using confocal microscopy, we showed that MICAL-L1 was associated with tubulo-vesicular structures and exhibited a significant...
Article
Full-text available
During HIV-1 particle formation, the requisite plasma membrane curvature is thought to be solely driven by the retroviral Gag protein. Here, we reveal that the cellular I-BAR protein IRSp53 is required for the progression of HIV-1 membrane curvature to complete particle assembly. SiRNA-mediated knockdown of IRSp53 gene expression induces a decrease...
Article
Protein enrichment at specific membrane locations in cells is crucial for many cellular functions. It is well-recognized that the ability of some proteins to sense membrane curvature contributes partly to their enrichment in highly curved cellular membranes. In the past, different theoretical models have been developed to reveal the physical mechan...
Article
Full-text available
Background ESCRT-III proteins are involved in many membrane remodeling processes including multivesicular body biogenesis as first discovered in yeast. In humans, ESCRT-III CHMP2 exists as two isoforms, CHMP2A and CHMP2B, but their physical characteristics have not been compared yet. Results Here, we use a combination of techniques on biomimetic s...
Preprint
Full-text available
During HIV-1 particle formation, the requisite plasma membrane curvature is thought to be solely driven by the retroviral Gag protein. Here, we reveal that the cellular I-BAR protein IRSp53 is required for the progression of HIV-1 membrane curvature to complete particle assembly. Partial gene editing of IRSp53 induces a decrease in viral particle p...
Article
Full-text available
The cell membrane is an inhomogeneous system composed of phospholipids, sterols, carbohydrates, and proteins that can be directly attached to underlying cytoskeleton. The protein linkers between the membrane and the cytoskeleton are believed to have a profound effect on the mechanical properties of the cell membrane and its ability to reshape. Here...
Article
Collective action by inverse-Bin/Amphiphysin/Rvs (I-BAR) domains drive micron-scale membrane remodeling. The macroscopic curvature sensing and generation behavior of I-BAR domains is well characterized, and computational models have suggested various mechanisms on simplified membrane systems, but there remain missing connections between the complex...
Article
Full-text available
Motile and morphological cellular processes require a spatially and temporally coordinated branched actin network that is controlled by the activity of various regulatory proteins, including the Arp2/3 complex, profilin, cofilin and tropomyosin. We have previously reported that myosin 1b regulates the density of the actin network in the growth cone...
Preprint
Full-text available
The cell membrane is an inhomogeneous system composed of phospholipids, sterols and proteins that can be directly attached to underlying cytoskeleton. The linkers between the membrane and the cytoskeleton are believed to have a profound effect on the mechanical properties of the cell membrane and its ability to reshape. Here we investigate the role...
Article
Full-text available
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Preprint
Collective action by Inverse-BAR (I-BAR) domains drive micron-scale membrane remodeling. The macroscopic curvature sensing and generation behavior of I-BAR domains is well characterized, and computational models have suggested various mechanisms on simplified membrane systems, but there remain missing connections between the complex environment of...
Article
Full-text available
Endosomal sorting complexes for transport-III (ESCRT-III) assemble in vivo onto membranes with negative Gaussian curvature. How membrane shape influences ESCRT-III polymerization and how ESCRT-III shapes membranes is yet unclear. Human core ESCRT-III proteins, CHMP4B, CHMP2A, CHMP2B and CHMP3 are used to address this issue in vitro by combining mem...
Article
Salmonella enterica is an intracellular bacterial pathogen. The formation of its replication niche, which is composed of a vacuole associated with a network of membrane tubules, depends on the secretion of a set of bacterial effector proteins whose activities deeply modify the functions of the eukaryotic host cell. By recruiting and regulating the...
Preprint
Full-text available
Motile and morphological cellular processes require a spatially and temporally coordinated branched actin network that is controlled by the activity of various regulatory proteins including the Arp2/3 complex, profilin, cofilin and tropomyosin. We have previously reported that myosin 1b regulates the density of the actin network in the growth cone....
Preprint
Full-text available
Endosomal sorting complexes required for transport-III (ESCRT-III) are thought to assemble in vivo inside membrane structures with a negative Gaussian curvature. How membrane shape influences ESCRT-III polymerization and conversely how ESCRT-III polymers shape membranes is still unclear. Here, we used human core ESCRT-III proteins, CHMP4B, CHMP2A,...
Article
Full-text available
The regulation of actin dynamics is essential for various cellular processes. Former evidence suggests a correlation between the function of non-conventional myosin motors and actin dynamics. Here we investigate the contribution of myosin 1b to actin dynamics using sliding motility assays. We observe that sliding on myosin 1b immobilized or bound t...
Article
Many cellular processes rely on precise and timely deformation of the cell membrane. While many proteins participate in membrane reshaping and scission, usually in highly specialized ways, Bin/amphiphysin/Rvs (BAR) domain proteins play a pervasive role, as they not only participate in many aspects of cell trafficking but also are highly versatile m...
Preprint
Full-text available
ESCRT-III proteins are involved in many membrane remodeling processes including multivesicular body biogenesis as first discovered in yeast. In humans, CHMP2 exists as two potential isoforms, CHMP2A and CHMP2B, but their physical characteristics have not been compared yet. Here, we use a combination of technics on biomimetic systems and purified pr...
Article
In vitro investigation of the interaction between proteins and positively curved membranes can be performed using a classic nanotube pulling method. However, characterizing protein interaction with negatively curved membranes still represents a formidable challenge. Here, we describe our recently developed approach based on laser-triggered Giant Un...
Article
Full-text available
Protein-mediated membrane remodeling is a ubiquitous and critical process for proper cellular function. Inverse Bin/Amphiphysin/Rvs (I-BAR) domains drive local membrane deformation as a precursor to large-scale membrane remodeling. We employ a multiscale approach to provide the molecular mechanism of unusual I-BAR domain-driven membrane remodeling...
Article
Full-text available
Cardiolipin is a cone-shaped lipid predominantly localized in curved membrane sites of bacteria and in the mitochondrial cristae. This specific localization has been argued to be geometry-driven, since the CL's conical shape relaxes curvature frustration. Although previous evidence suggests a coupling between CL concentration and membrane shape in...
Article
HIV particles incorporate host membrane proteins into their envelope to evade the immune system and infect other cells. A study now shows that Gag assembly on the host cell membrane produces a raft-like nanodomain favourable for protein partitioning due to a transbilayer coupling mechanism assisted by long saturated chain lipids and cholesterol.
Article
Full-text available
Septins are cytoskeletal filaments that assemble at the inner face of the plasma membrane. They are localized at constriction sites and impact membrane remodeling. We report in vitro tools to examine how yeast septins behave on curved and deformable membranes. Septins reshape the membranes of Giant Unilamellar Vesicles with the formation of periodi...
Article
Full-text available
The shape of cellular membranes is highly regulated by a set of conserved mechanisms that can be manipulated by bacterial pathogens to infect cells. Remodeling of the plasma membrane of endothelial cells by the bacterium Neisseria meningitidis is thought to be essential during the blood phase of meningococcal infection, but the underlying mechanism...
Article
Full-text available
One challenge in cell biology is to decipher the biophysical mechanisms governing protein enrichment on curved membranes and the resulting membrane deformation. The ERM protein ezrin is abundant and associated with cellular membranes that are flat, positively or negatively curved. Using in vitro and cell biology approaches, we assess mechanisms of...
Preprint
Full-text available
The shape of cellular membranes is highly regulated by a set of conserved mechanisms. These mechanisms can be manipulated by bacterial pathogens to infect cells. Human endothelial cell plasma membrane remodeling by the bacterium Neisseria meningitidis is thought to be essential during the blood phase of meningococcal infection, but the underlying m...
Preprint
The regulation of actin dynamics is essential for various cellular processes. Former evidence suggests a correlation between the function of non-conventional myosin motors and actin dynamics. We investigate the contribution of the catch-bond Myosin1b to actin dynamics using sliding motility assays. We observe that sliding on Myosin1b immobilized or...

Network

Cited By