
Pat WongpanUniversity of Tasmania · Institute for Marine and Antarctic Studies (IMAS)
Pat Wongpan
Doctor of Philosophy
About
27
Publications
6,739
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
343
Citations
Introduction
Skills and Expertise
Publications
Publications (27)
Plain Language Summary
Totten Glacier hosts the most rapidly thinning ice in East Antarctica. This record of thinning is due to rapid melt along the grounding line of the Totten Ice Shelf (TIS), where warm ocean water from the open ocean flows into ice shelf cavities. To understand the pathways and mechanisms of warm water inflow, ocean observation...
Antarctic landfast sea ice (fast ice) is stationary sea ice that is attached to the coast, grounded icebergs, ice shelves, or other protrusions on the continental shelf. Fast ice forms in narrow (generally up to 200 km wide) bands, and ranges in thickness from centimeters to tens of meters. In most regions, it forms in autumn, persists through the...
Sea ice forms a barrier to the exchange of energy, gases, moisture and particles between the ocean and atmosphere around Antarctica. Ice temperature, salinity and the composition of ice crystals determine whether a particular slab of sea ice is habitable for microorganisms and permeable to exchanges between the ocean and atmosphere, allowing, for e...
Sea ice is a key habitat in the high latitude Southern Ocean and is predicted to change in its extent, thickness and duration in coming decades. The sea-ice cover is instrumental in mediating ocean–atmosphere exchanges and provides an important substrate for organisms from microbes and algae to predators. Antarctic krill, Euphausia superba, is reli...
Plain Language Summary
Multi‐year landfast sea ice (fast ice) is abundant around the coast of Antarctica. Fast ice is an important component of Antarctic coastal marine ecosystems, providing a prolific habitat for ice algal communities. Although nutrients are essential for biological productivity within sea ice, the status of nutrients and processe...
The Antarctic marginal ice zone (MIZ) is a highly dynamic region where sea ice interacts with ocean surface waves generated in ice-free areas of the Southern Ocean. Improved large-scale (satellite-based) estimates of MIZ extent and variability are crucial for understanding atmosphere–ice–ocean interactions and biological processes and detection of...
In recent times, scientists have seen large changes in our planet’s climate. Although climate change is a global issue, the effects of climate change are not the same around the world. Each continent, country, and area will experience different effects. These effects include different speeds of warming or, in some places, cooling, and changes to ra...
The Antarctic marginal ice zone (MIZ) is a highly dynamic region where sea ice interacts with ocean surface waves generated in ice-free areas of the Southern Ocean. Improved large-scale (satellite-based) estimates of MIZ width and variability are crucial for understanding atmosphere-ice-ocean interactions and biological processes, and detection of...
A rigorous synthesis of the sea-ice ecosystem and linked ecosystem services highlights that the sea-ice ecosystem supports all 4 ecosystem service categories, that sea-ice ecosystems meet the criteria for ecologically or biologically significant marine areas, that global emissions driving climate change are directly linked to the demise of sea-ice...
The sub‐ice platelet layer (SIPL) is a highly porous, isothermal, friable layer of ice crystals and saltwater, that can develop to several meters in thickness under consolidated sea ice near Antarctic ice shelves. While the SIPL has been comprehensively described, details of its physics are rather poorly understood. In this contribution we describe...
The Arctic sea-ice-scape is rapidly transforming. Increasing light penetration will initiate earlier seasonal primary production. This earlier growing season may be accompanied by an increase in ice algae and phytoplankton biomass, augmenting the emission of dimethylsulfide and capture of carbon dioxide. Secondary production may also increase on th...
The Arctic sea-ice-scape is rapidly transforming. Increasing light penetration will initiate earlier seasonal primary production.
This earlier growing season may be accompanied by an increase in ice algae and phytoplankton biomass, augmenting the emission
of dimethylsulfide and capture of carbon dioxide. Secondary production may also increase on th...
Sea ice, which forms in polar and nonpolar areas, transmits light to ice-associated (sympagic) algal communities. To noninvasively study the distribution of sea-ice algae, empirical relations to estimate its biomass from under-ice hyperspectral irradiance have been developed in the Arctic and Antarctica but lack for nonpolar regions. This study exa...
Although the effects of snow during sea-ice growth have been investigated for sea ice which is thick enough to accommodate dry snow, those for thin sea ice have not been paid much attention due to the difficulty in observing them. Observations are complicated by the presence of slush and its subsequent freeze-up, and the surface heat budget might b...
Saroma-ko Lagoon, located on the Okhotsk Sea coast of Hokkaido, is seasonally covered by flat, homogeneous, easily accessible and safe sea ice. As such, it proves a very useful experimental site for the study of sea ice processes, the inter-comparison of methods, the testing of equipment, and the training of researchers new to the Polar regions. In...
Many astrophysical and laboratory plasmas involve turbulent magnetic fluctuations, and the resulting magnetic field line random walk (FLRW) plays an important role in guiding particle and heat transport. We use a non-perturbative analytic framework based on Corrsin's hypothesis to study diffusive field line random walks in isotropic turbulence stre...
We have mapped the full crystallographic orientation of sea ice using electron backscatter diffraction (EBSD). This is the first time EBSD has been used to study sea ice. Platelet ice is a feature of sea ice near ice shelves. Ice crystals accumulate as an unconsolidated sub-ice platelet layer beneath the columnar ice (CI), where they are subsumed b...
Fast ice is an important component of Antarctic coastal marine ecosystems, providing a prolific habitat for ice algal communities. This work examines the relationships between normalized difference indices (NDI) calculated from under-ice radiance measurements and sea ice algal biomass and snow thickness for Antarctic fast ice. While this technique...
Vertical temperature strings are used in sea ice research to study heat flow, ice growth rate, and ocean–ice–atmosphere interaction. We demonstrate the feasibility of using temperature fluctuations as a proxy for fluid movement, a key process for supplying nutrients to Antarctic sea ice algal communities. Four strings were deployed in growing, land...
In astrophysical plasmas, the magnetic field line random walk (FLRW) plays an important role in guiding particle transport. The FLRW behavior is scaled by the Kubo number R = (b/B0 )(ℓ∥/ ℓ⊥) for rms magnetic fluctuation b, large-scale mean field B0, and coherence scales parallel (ℓ∥) and perpendicular (ℓ⊥) to B0. Here we use a nonperturbative analy...
In astrophysical plasmas, magnetic field lines often guide the motions of thermal and non-thermal particles. The field line random walk (FLRW) is typically considered to depend on the Kubo number R = (b/B 0)(l// / l⊥) for rms magnetic fluctuation b, large-scale mean field B 0 , and parallel and perpendicular coherence scales and ⊥ , respectively. H...
Antarctic coastal sea ice often grows in water that has been supercooled by interaction with an ice shelf. In these situations, ice crystals can form at depth, rise and deposit under the sea-ice cover to form a porous layer that eventually consolidates near the base of the existing sea ice. The least consolidated portion is called the sub-ice plate...
We examine energetic charged particle diffusion perpendicular to a mean magnetic field B 0 due to turbulent fluc-tuations in a plasma, relaxing the common assumption of axisymmetry around B 0 and varying the ratio of two fluctuation components, a slab component with parallel wavenumbers and a two-dimensional (2D) component with perpendicular wavenu...
Many types of space and laboratory plasmas involve turbulent fluctuations with an approximately uniform mean magnetic field B_0, and the field line random walk plays an important role in guiding particle motions. Much of the relevant literature concerns isotropic turbulence, and has mostly been perturbative, i.e., for small fluctuations, or based o...