Optimized Packet Scheduling in Multiview Video Navigation Systems

Laura Toni, Member, IEEE, Thomas Maugey, Member, IEEE, and Pascal Frossard, Senior Member, IEEE

Abstract

In multiview video systems, multiple cameras generally acquire the same scene from different perspectives, such that users have the possibility to select their preferred viewpoint. This results in large amounts of highly redundant data, which needs to be properly handled during encoding and transmission over resource-constrained channels. In this work, we study coding and transmission strategies in multicamera systems, where correlated sources send data through a bottleneck channel to a central server, which eventually transmits views to different interactive users. We propose a dynamic correlation-aware packet scheduling optimization under delay, bandwidth, and interactivity constraints. The optimization relies both on a novel rate-distortion model, which captures the importance of each view in the 3D scene reconstruction, and on an objective function that optimizes resources based on a client navigation model. The latter takes into account the distortion experienced by interactive clients as well as the distortion variations that might be observed by clients during multiview navigation. We solve the scheduling problem with a novel trellis-based solution, which permits to formally decompose the multivariate optimization problem thereby significantly reducing the computation complexity. Simulation results show the gain of the proposed algorithm compared to baseline scheduling policies. More in details, we show the gain offered by our dynamic scheduling policy compared to static camera allocation strategies and to schemes with constant coding strategies. Finally, we show that the best scheduling policy consistently adapts to the most likely user navigation path and that it minimizes distortion variations that can be very disturbing for users in traditional navigation systems.
Index Terms

Interactive multiview streaming, packet scheduling, correlated sources, rate-distortion optimization, multiview navigation, multimedia communication.

I. INTRODUCTION

The bursting diffusion of novel video sharing and streaming applications has recently opened the era of user-centric multimedia. In new multimedia services, users do not passively download media content, but rather dynamically select the content they are interested in. Resource allocation strategies cannot anymore be built offline, according to predefined users behaviors. Hence, effective real-time interactive services can only be devised if adaptivity to channel conditions and users dynamics represents the primary feature of media delivery strategies.

In order to accommodate for dynamic networks, online resource allocation strategies have been proposed for video applications [1], [2]. However, few works have extended the study to interactive multiview video streaming applications. The main challenges with these new applications are the proper handling of the spatial correlation that exists among different camera views capturing the same 3D scene, and the uncertainty of users requests since those can freely navigate in the multiview content. These two challenges have not been addressed together, to the best of our knowledge. Spatial correlation has been taken into account in multisource resource allocation strategies for sensor networks [3] and for more general wireless networks [4], [5]. Interactivity of users is however mostly overlooked in resource allocation solutions in the literature. In this work, we exactly aim at filling this gap by proposing resource allocation strategies where users’ navigation features play a key role in the optimized scheduling of information from correlated sources.

We consider a live acquisition scenario in which multiple cameras acquire frames of the same scene but from different perspectives. Each camera acquires the scene, produces and stores frames in its buffer, possibly in different independently encoded versions. We assume that no content information is exchanged among cameras due to the system configuration or resource limitations. The only minimal information that is known a priori is the position of the cameras, which is possibly updated when cameras change positions in dynamic settings. The encoded frames are then sent from the cameras to a central server through a bottleneck channel under deadline constraints imposed by the streaming application. A server gathers the camera frames
Figure 1. Multicamera system with bottleneck network. Each camera acquires, encodes, and temporally stores frames of a given view of the 3D scene. Frames are sent through a bottleneck channel to a central server, that eventually serves clients’ requests.

and eventually serves the clients requests. Our objective in such a system is to maximize the temporal quality variations for users navigating in the multiview content. In particular, when the channel constraints do not permit to send all captured views, it becomes important to optimize the scheduling policy in such a way that the quality in the reconstruction of the multi-camera data is maximized and both bandwidth and time constraints are met.

We propose a new navigation-aware packet scheduling algorithm for streaming from multiple correlated cameras in bandwidth-limited networks. We consider a correlation-based rate distortion (RD) model that is specific to multi-camera systems and we formulate a packet scheduling optimization problem that minimizes the distortion of the data available at the server, while also reducing the distortion variations along most likely navigation paths. We further propose to select the coding structure dynamically according to the packet scheduling strategy. In this way, we are able to constantly adapt the set of coded packets that are transmitted to the server to the channel conditions, to the content information, as well as to the expected users behavior. To solve the resulting multivariate optimization problem, we propose a novel solving algorithm that is able to reduce the computational complexity of the scheduling solution by decomposition while preserving its optimality. Simulation results demonstrate that our new dynamic scheduling algorithm outperforms baseline scheduling policies with static coding strategy and transmission schemes with limited adaptivity. In particular, we show that information about users’ interaction in the problem formulation leads to an improvement in terms of perceived quality with respect to classical scheduling algorithms. Simulation results also outline the limitations of commonly used
static encoding strategies that have poor performance in highly constrained scenarios. Finally, the results show that smooth quality variations are experienced over the navigation path with our optimal scheduling strategy, which is not the case of state-of-the-art scheduling solutions that merely target minimal average distortion.

The remainder of this paper is organized as follows. Related works on multiview video streaming are described in Section II. Section III describes the multicamera system, together with our new rate-distortion function for the representation of 3D scenes. The packet scheduling problem is formulated in Section IV and the trellis-based optimization solution is provided in Section V. In Section VI, we discuss the simulation results, and we conclude in Section VII.

II. RELATED WORKS

Although resource allocation strategies have been widely investigated in the literature for single view video streaming, there are still many open challenges in multiview video scenarios. In this section, we describe the works related to multiview scheduling policies and highlight the lack of complete solutions that take into account both source correlation in multiview settings and users interactivity in navigation applications.

Several works have studied the problem of scheduling of correlated video sources [3]–[7]. The work in [3] proposes a spatial correlation model for visual information in wireless multimedia sensor networks (WMSNs) and introduces an entropy-based analytical framework to evaluate the visual information offered by multiple cameras. The system however only solves a static correlation-based camera selection problem, while we consider a dynamic correlation-based packet scheduling optimization problem in our work. More dynamic camera scheduling for WMSNs have been proposed in [6], [7], where optimal resource allocation strategies adapt to the dynamics of the system. The optimization however mainly addresses surveillance networks or object tracking scenarios, where the problem formulation consists in maximizing the coverage of the area monitored by the camera sensors while preserving the life time of the network. In our work, we rather optimize the experienced quality of interactive users and the expected quality variations perceived over likely navigation paths. Other works [4], [5] have studied the problem of source correlation aware transmission policy optimization for multiview scheduling. However, the interactivity of users has been neglected and only predefined coding strategies have been considered so far.
Some prior studies address the problem of providing to users interactivity in selecting views, while saving on transmitted bandwidth and view-switching delay [8]–[13]. The work in [11] is mainly focused on coding views with a minimum level of redundancy in order to simplify the view switching, and the works in [10], [14] optimize the selection of views to be encoded and transmitted based on the user interest. The authors in [12], [15] investigate the transmission of multiview video coded streams on P2P networks and IP multicast, respectively. These works mainly focus on the coding optimization proposed as an a priori defined solution to provide interactive access to the different views [16]. In our work, we rather dynamically optimize the coding modes and the scheduling of video frames for interactive multiview navigation. We extend our preliminary work in [17] to include users’ interactivity in the scheduling optimization. This allows the system to dynamically adapt the transmission of the coded frames to various system’s dynamics and to outperform the above transmission policies of a priori encoded frames.

Finally, in our scheduling optimization we aim at minimizing the experienced distortion as well as the temporal variations of the experienced distortion for interactive users. Recently, it has been shown the importance of studying the temporal quality variations in adaptive streaming strategies [18], [19]. These works target single view adaptive streaming over HTTP. We follow similar intuitions and extend the mixed objective function composed on both the perceived distortion and the temporal distortion variation to multiview video navigation applications.

III. MULTIVIEW ACQUISITION FRAMEWORK

In the following, we first present the multicamera system considered in our work. Then, we describe in details the adopted coding scheme and show that the correlation between the different cameras plays a crucial role in the reconstruction of images in multiview navigation in resource constrained environments. Finally, we propose a new rate-distortion model for the representation of the 3D scene information.

A. Multi-camera acquisition system

We consider a system with M cameras that acquire images and depth information of a 3D scene from different viewpoints. Each frame can be encoded as a key frame (i.e., as intra-coded frame) or dependent frames, that are independently coded with distributed source coding (DSC) techniques using correlated key frames as side information (SI). We denote by P the dependent
frames that use key frames correlated in the temporal domain as possible SI, while WZ frames use neighboring key frames both in the temporal and the spatial domains. The encoded versions are stored in each camera buffer for a maximum of T_D time slots, where T_D represents the frame deadline. The coded frames are then transmitted to a central server, which eventually serves the requests from interactive users.

Each camera acquires temporally consecutive frames, which are correlated, especially for static or low-motion 3D scenes: this is the temporal correlation in image sequences. Neighboring cameras might also acquire overlapping portions of the same scene; this leads to correlated frames due to the spatial correlation between multiview cameras. We assume that no information is exchanged between camera except minimal information about the camera position. With this position information, each camera is able to coarsely estimate the contribution that it can offer to the reconstruction of neighbor views [5]. For an image F, we denote by $\rho(F|F)$ the level of correlation between F and its neighbors (either in time or space) in a set F. This level $\rho(F|F)$ represents the proportion of the image F that can be estimated from F. In the case of only one image F' composing the set F, we have $\rho(F|F')$ as the correlation level between the two images.

In practice, network limitations might prevent the transmission of all views to the server, which eventually serves users according to their different requests while navigating in the multiview dataset. At the decoder side, missing images can be reconstructed from correlated neighboring views if available 1. Both temporal and spatial correlation might help in reconstructing missing images, so that it is important to accurately select the images to be transmitted and their encoding mode (i.e., key-frame or dependent frame), such that the average distortion is minimized and quality variations along the users’ navigation paths are limited. This is precisely the frame scheduling problem considered in this paper. Before formulating the problem more precisely, we provide below details about the coding modes and the rate-distortion model used in our multiview system.

1The decoding process can be physically performed either at the central server or at the clients. Our problem formulation is general enough to consider both cases.
B. Frame Coding Modes

We now give some details on the encoding and decoding structure that are considered in our interactive multiview system. At the camera side, each frame is independently encoded as a key frame. It is also encoded as P or WZ frames, with no a priori information on the frames that will be available at the decoder side (i.e., with no a priori knowledge of the actual frame scheduling). For each image F, we define a neighborhood as the images that can be used as side information for decoding the P or WZ version of F. Ideally, the neighborhood of image F should include all images correlated to F. This would increase the chances for F to be decoded if transmitted as dependent frame. Similarly to [20], each P or WZ frame is encoded with respect to the least correlated frame in the neighborhood, that is with a coding rate that guarantees decoding in the worst-case scenario. The lower is the correlation between F and the least correlated image in the neighborhood, the less efficient is the coding of F as dependent frame. For this reason, the neighborhood is limited to any frame that has a level of correlation with F greater than a predefined threshold value β.

More in details, the m-th camera acquires the frame $F_{t,m}$ at time t. For any acquired frame $F_{t,m}$, we define the set of possible SI frames in spatial and temporal domain respectively as

$$
\mathcal{N}_S(F_{t,m}) = \{F_{t,l} \text{ s.t. } \rho(F_{t,m}|F_{t,l}) > \beta_S, \text{ with } l \in [1, M] \} \\
\mathcal{N}_T(F_{t,m}) = \{F_{t',m} \text{ s.t. } \rho(F_{t,m}|F_{t',m}) > \beta_T, \text{ with } t' \leq t \}
$$

The P version of $F_{t,m}$ is encoded considering as SI only neighbor frames in the temporal domain, i.e., $\mathcal{N}_T(F_{t,m})$. Analogously, we assume that the WZ version of $F_{t,m}$ is encoded assuming a SI region, which extends in both time and space, and it defined as $\mathcal{N}(F_{t,m}) = \{\mathcal{N}_S(F_{t,m}) \cup \mathcal{N}_T(F_{t,m})\}$. Note that only key frames within the defined neighborhoods can be used at the decoder as SI.

We assume that the WZ version of the frame $F_{t,m}$, which has been encoded by considering $F_{t,l}$ as side information, has an encoding rate of $\mathcal{R}(F_{t,m}|F_{t,l}) = [1 - \rho(F_{t,m}|F_{t,l})] R^K_{t,l}$, where $R^K_{t,l}$ is the encoding rate of the key version of $F_{t,l}$. Thus, since encoding is based on worst case
SI frames, each WZ and P frame is encoded at a rate of

\[
R_{t,m}^{WZ} = \max_{F_{t',j} \in \mathcal{N}(F_{t,m})} \left\{ 1 - \rho(F_{t,m} | F_{t',j}) \right\} R_{t',j}^{K} \quad (2)
\]

\[
R_{t,m}^{P} = \max_{F_{t',m} \in \mathcal{N}_{T}(F_{t,m})} \left\{ 1 - \rho(F_{t,m} | F_{t',m}) \right\} R_{t',m}^{K}.
\]

Note that a more scalable scheme can be considered by assuming different WZ or P versions, each one with different \(\beta \) thresholds and thus different encoding rates. This would refine the optimal scheduling solution, but it would not change our problem formulation. For the sake of simplicity, we consider one WZ and P version per frame in the following.

At the receiver side, each received key frame is decoded independently. We denote by \(\chi \) the key frames available at the decoder. Key frames in \(\chi \) and in the neighborhoods \(\mathcal{N}(F_{t,m}) \) or \(\mathcal{N}_{T}(F_{t,m}) \) are used to decode WZ or P frames, respectively. The missing images that have not been transmitted at the server are estimated, at the decoder, with view interpolation algorithms using information from neighbor key frames. The neighborhood of a missing image \(F_{t,m} \) is given by the set of key frames with a non null correlation with \(F_{t,m} \). More precisely, a missing view is recovered from the neighbor key frames available at the receiver by depth-image based rendering (DIBR) techniques [21]. Typically, DIBR algorithms use depth information in order to estimate by projection the position of pixels from view \(k \) in the missing view \(n \). The projected pixels are generally of good precision (depending on the accuracy of the depth map [22]) but they do not cover the whole estimated image, due to visual occlusions. The portion of the image \(F_{t,m} \) that can be recovered (i.e., not occluded) by the neighbor frames is \(\rho(F_{t,m} | \chi) \). The remaining occluded pixels covers a portion \(1 - \rho(F_{t,m} | \chi) \) of the image \(F_{t,m} \) and are recovered by inpainting techniques [23].

C. Navigation-Aware Rate-Distortion Model

We now propose a novel rate-distortion model for our multiview video navigation framework. Recall that only a subset of the compressed images captured by all cameras is transmitted to the server, which should be able to serve any client requests. This is equivalent to offer to the client the possibility to efficiently reconstruct any camera view at any time instant. If the frame \(F_{t,m}^{K} \) (i.e., the key-frame) is available at the decoder, the distortion is directly dependent on the source rate \(R_{t,m}^{K} \). The distortion function is evaluated from the general expression of the RD function
of an intra-coded frame with high-rate assumption [24]:

\[d(R^K_{t,m}) = \mu_I \sigma_I^2 2^{-2R^K_{t,m}} \]

(3)

where \(\sigma_I^2 \) is the spatial variance of the frame and \(\mu_I \) is a constant depending on the source distribution. This model has been chosen because it is quite simple and yet accurate. However, our packet scheduling framework is general and other source rate-distortion functions could be used. We assume that all key frames are encoded at the same rate, i.e., \(R^K_{t,m} = R^K, \forall \{t, m\} \), to target an almost constant quality of the scene across space and time, in such a way that a smooth interactive system can be offered to the user in ideal conditions. This translates to having the encoding rate for all key views when image content is similar in different views. The model presented in the following can however be easily extended to a multi-rate encoding system.

If the key version of \(F_{t,m} \) is missing at decoder but a WZ or P versions are available, the frame \(F_{t,m} \) is reconstructed also at the distortion \(d(R^K) \) as long as their rate has been chosen accordingly to Eq. (2) and side information is available. In the remaining case in which neither the key nor the WZ or P versions of \(F_{t,m} \) is received, this frame is reconstructed through DIBR using the key frames available at the decoder, as explained above. The part of the image that can be reconstructed from neighbor frames, i.e., \(\rho(F_{t,m} | \chi) \), has a distortion equal to the distortion of key frames, namely, \(d(R^K) \). The remaining part corresponding to occlusions is recovered with inpainting techniques at a distortion \(d_{max} \). This results in an overall distortion of the reconstructed image given of \(\rho(F_{t,m} | \chi) \cdot d(R^K) + (1 - \rho(F_{t,m} | \chi))d_{max} \).

We denote by the operator \(\mathcal{I}(F) = 1 \) the availability of frame \(F \) at the decoder, and by \(\mathcal{I}(F) = 0 \) its absence. The frame \(F \) is either the key version \(F^K_{t,m} \) of \(F_{t,m} \), its WZ version \(F^{WZ}_{t,m} \) or its P version \(F^P_{t,m} \). Finally, we can write the distortion of frame \(F_{t,m} \) at decoder as

\[
D_{t,m}(R^K | \chi) =
\begin{cases}
\mu_I \sigma_I^2 2^{-2R^K} & \text{if } \mathcal{I}(F^K_{t,m}) = 1 \\
\rho(F_{t,m} | \chi) \cdot \mu_I \sigma_I^2 2^{-2R^K} + (1 - \rho(F_{t,m} | \chi)) \cdot d_{max} & \text{otherwise.}
\end{cases}
\]

(4)

Note that the overall distortion does not depend on the coding rates of the P and WZ frames, as those are set in a conservative way according to Eq. (2).
The interactivity offered to clients is captured by the camera popularity \(P_t \), the portion of clients that can request the view \(F_t \). Each encoded frame \(F_{t,m} \) has a popularity \(P_{t,m} \), with \(\sum_m P_{t,m} = 1 \), which it is defined as the probability that an interactive user requests frame \(F_{t,m} \). Furthermore, the probability for a user to navigate from frame \(F_{t,m} \) to frame \(F_{t+1,l} \) is denoted by \(w_{m,l}^t \), with \(\sum_l w_{m,l}^t = 1 \). The expected distortion experienced by interactive users navigating in the 3D scene acquired at time \(t \) is given by

\[
\sum_{m=1}^{M} P_{t,m} D_{t,m}(R^K|\chi).
\]

(5)

Beyond the popularity-weighted distortion, another important metric in 3D interactive services is the smoothness of the navigation, i.e., the quality variation experienced during the navigation. Varying quality while changing view can result in an annoying degradation in quality of experience. The smoothness of the navigation is given by

\[
\sum_{m=1}^{M} \sum_{l=1}^{M} w_{m,l}^t P_{t-1,l} D_{t-1,l}(R^K|\chi) - D_{t,m}(R^K|\chi).
\]

(6)

It is worth noting that, we consider a novel rate-distortion model for interactive navigation, which is able to combine the overall distortion from Eq. (5) and the smoothness experienced by users while navigating, given by Eq. (6).

IV. Packet Scheduling Optimization

We now describe the problem of rate-distortion optimal packet scheduling for multiview camera systems. First, we describe the transmission process considered in our work, then we propose a new problem formulation based on the rate-distortion model described above.

A. Transmission policy

Each image acquired at a given time instant from a particular camera is packetized into multiple data units (DUs) (one per encoded version), and stored in the camera buffer. The DUs representing the key versions contain texture and depth information about the 3D scene, while WZ or P versions only contain the encoded texture information, since they are not used to reconstruct missing views. We consider a channel with successive time slots \(\tau \), each one of duration \(\Delta \tau \) and each one being a transmission opportunity. At each \(\tau \), the scheduler decides the best set of DUs to schedule, that is the set of DUs that will optimize the navigation of the
users while satisfying bandwidth constraints. Lossless transmissions are considered, such that
scheduled packets are eventually available at the server. Let represent each image $F_{t,m}$ by a
generic image F_l, where we have dropped the subscript (t, m) in favor of a general subscript l, for the sake of clarity. The image F_l is acquired at time $T_{A,l}$ and expires at time $T_{TS,l}$. We then define the set of candidates for being sent at time τ as the set of acquired images that do not expire before the transmission is completed, i.e., $\mathcal{L} = \{F_l \; s.t. \; T_{A,l} \leq \tau, \tau + \Delta \tau < T_{TS,l}\}$. The different encoded versions of views in \mathcal{L} are candidate DUs for being scheduled. However, we impose the following scheduling policies: i) only one DU among WZ, P, and key versions of the same image can be scheduled; ii) a WZ or P version is scheduled only if some SI image has already been scheduled. Finally, since both the channel conditions and content models may vary over time, leading to different scheduling policies at different transmission opportunities, the scheduling policy is updated periodically at each new transmission opportunity τ.

B. Problem Formulation

The objective is now to select the best transmission policy, in order to minimize the distortion and the distortion variations under channel constraints, content dynamics, and client interactivity behavior. We define a scheduling policy at time τ as $\pi = [\pi_1, \pi_2, \ldots, \pi_{|\mathcal{L}|}]^T$ where $\pi_l = [\pi_{l,1}, \pi_{l,2}, \pi_{l,3}]$, and $\pi_{l,1}, \pi_{l,2}, \pi_{l,3}$ are the scheduling policy of respectively the key, WZ, and the P DU of F_l. A policy binary $\pi_{l,i}$ defines transmission of the key, WZ, and the P DU of F_l, for $i = 1, 2,$ and 3, respectively. In other words, $\pi_{l,i} = 1$ means that the associated DU is sent at the current transmission opportunity τ. We can then express our optimization problem.

\footnote{π depends on the time τ at which the policy is optimized but, for sake of clarity, we omit this dependency in the notation.}
as follows

Problem 1:

\[
\min_{\pi} D_\pi = \sum_{l:T_{h,1} \leq \tau \leq T_{T_3}} P_l D_l(\pi|\chi) + \lambda \left\{ \sum_{j:T_{h,j} = T_{h,1}-1} w_{ji} P_j |D_j(\pi|\chi) - D_l(\pi|\chi)| \right\} \\
\text{s.t.} \sum_{l} \pi_{l,1} R(l)^{K} + \pi_{l,2} R(l)^{WZ} + \pi_{l,3} R(l)^{P} \leq C_T \tag{7a}
\]
\[
\sum_{i} \pi_{l,i} \leq 1, \ \forall l \tag{7b}
\]
\[
\pi_{l,2}^{T} \leq \sum_{F_m \in N(F_l)} \pi_{m,1} \tag{7c}
\]
\[
\pi_{l,3}^{T} \leq \sum_{F_m \in N_T(F_l)} \pi_{m,1} \tag{7d}
\]

where the objective function is composed of the expected distortion, defined in Eq. (5), and the smoothness of the navigation, defined in Eq. (6), experienced by interactive users while navigating the 3D scene. If \(\pi_l = 1 \) or \(F_l \in \chi \), then \(I(F_l) = 1 \), where \(I(F_l) \) is the availability of frame \(F_l \) at the decoder. We have denoted by \(\lambda \) the multiplier that allows to assign the appropriate weight to quality variations in the objective metric, as already adopted in similar optimization problems [19]. Eq. (7b) imposes the bandwidth constraint due to the network conditions at the current transmission opportunity, Eq. (7c) imposes that at most one encoded version of an image is scheduled, and Eq. (7d) and Eq. (7e) force a dependent frame to be scheduled if and only if at least one side information key frame is available at the decoder. Finally, \(\chi \) is the set of DUs already available at the decoder side and it represents the results of past scheduled decisions.

V. Trellis-Based Scheduling Algorithm

The above scheduling optimization problem is challenging due to the inter-dependency and the redundancy that subsist among candidate DUs. The *coding-dependence* is imposed by the coding structure and it is such that a WZ or P frame can be decoded only if at least one side information key frame can also be decoded. The *reward-dependence* is rather coming from the correlation among neighboring key frames. Since a scheduled key frame can reconstruct missing frames, the exact reward of scheduling a key DU is not known a priori, but it depends on the scheduling policy of the correlated DUs.
Because of coding- and reward-dependence, the optimization in Eq. (7) cannot be solved by conventional optimization frameworks. Solutions proposed in [1], [2] could be adopted in the case of coding-dependence, but they do not address the reward-dependence. Although a formal scheduling optimization has been posed for redundant DUs in [25], computational complexity remains an open issue. A viable solution for reward-dependent DUs is the trellis-based algorithm proposed in [5], where branches in the trellis are pruned to reduce the complexity. However, this pruning applies only among key frames DUs and not among key and dependent candidate frames that are considered in this work. Thus, the solving method to optimize the scheduling policy in multiview systems is still a very challenging problem.

Here, we propose a trellis-based solution that allows to reach optimality while reducing at the same time the computational complexity of a complex full search solution. The heterogeneity of the DUs enables us to include our scheduling rules in the construction of the trellis. These rules provide an elegant structure to decouple reward-dependent DUs (key frames) from the reward-independent ones (dependent frames), thereby significantly reducing the computation complexity.

A. Trellis Construction

We start from an initial state \(S_0 \), characterized by the initial set of candidate DUs. We then construct a trellis, as depicted in Fig. 2, where each branch is an action (i.e., the scheduling of a DU). Each action \(a \) has a cost given by the size of the scheduled DU and a reward in terms of distortion gain \(\delta(a) \), derived as the difference in the objective function \(D_\pi \) in Eq. (7c) with and without the DU corresponding to the scheduling action \(a \). Each node in the trellis is a state. The state \(S_{i,k} \) is the \(k \)-th node corresponding to the \(i \)-th DU that has been scheduled. It is defined by the set of feasible actions that can be taken at node \(S_{i,k} \) (i.e., set of possible DUs to schedule at \(S_{i,k} \)) \(A(S_{i,k}) \) and by the remaining channel bandwidth \(C(S_{i,k}) \), evaluated as the channel bandwidth \(C_\tau \) minus the sum of the transmission costs corresponding to the decisions taken along the path from \(S_0 \) to \(S_{i,k} \). Note that \(A(S_{i,k}) = A^p(S_{i,k}) \cup A^k(S_{i,k}) \), where \(A^p(S_{i,k}) \) and \(A^k(S_{i,k}) \) are the set of dependent and key candidate DUs, respectively. An action \(a \in A(S_{i,k}) \) taken from the state \(S_{i,k} \) leads to a successor state \(S_{i+1,j} \). The DU scheduled by \(a \) is removed from the set of candidates DUs for the future states. In the successor states, also DUs corresponding to the same image but at different encoding versions are removed from the set of candidate DUs, to respect the constraint provided in Eq. (7c) of Problem 1. We denote by
Figure 2. Example of the trellis construction at time τ in which the initial set of candidates at the initial state S_0 is $A(S_0) = \{F_{1K}, F_{2K}^{WZ}, F_{3W}, F_{4P}, F_{5P}\}$. The channel bandwidth allows to schedule two key frames or one key frame and two WZ or P frames. Black circle nodes denote states with non-null set of candidates or non-zero remaining channel bandwidth, while green square nodes represent final states from which no further action is taken. The frame label provided on each branch going from $S_{i-1,y}$ to $S_{i,x}$ indicates the action taken from $S_{i-1,y}$ that leads to $S_{i,x}$.

$P(S_{i+1,k'}|S_{i,k}, a)$ the probability of arriving in state $S_{i+1,k'}$ by taking action a from state $S_{i,k}$. In our case, given the action a the future state is deterministically evaluated by the remaining candidate DUs and the channel bandwidth. This means that among all future states, only one will be such that $P(S_{i+1,k'}|S_{i,k}, a) = 1$ and 0 for the remaining states.

Each state $S_{i,k}$ is further characterized by the value function $V_\pi(S_{i,k})$ under a scheduling policy π, which represents the reward when starting from state $S_{i,k}$ and following the policy π thereafter. In our problem, π is the set of actions taken from $S_{i,k}$ and thereafter. If at state $S_{i,k}$ the remaining channel bandwidth is zero or the set of candidates is null, $S_{i,k}$ is a final state, and no further actions can be taken. The value function for a final state is always null, i.e., $V_\pi(S_{j,k}) = 0$ [26]. Finally, the full-path going from S_0 to a final state, which leads to the maximum total reward, corresponds to the best set of DUs to be scheduled. From the Bellman’s optimality equations, the best full-path can be found by backward induction from every final
\[V_{\pi}^*(S_{i,k}) = \max_{a \in A(S_{i,k})} \left\{ \delta(a) + \sum_{k'} V_{\pi}^*(S_{i+1,k'}) P(S_{i+1,k'}|S_{i,k},a) \right\}. \] (8)

Such a problem however suffers from large computational complexity, namely the trellis construction is exponentially complex. In order to reduce the complexity, we impose the following two rules in the trellis construction.

Rule 1: If the action \(a \) corresponds to the scheduling of a dependent frame, then key frames cannot be scheduled in any successor state.

The first rule avoids to construct redundant paths with the same reward and cost. Recall that the order of the actions does not matter as all selected DUs will be scheduled in the same transmission opportunity at time \(\tau \) and none of the candidate DUs expires in the current transmission interval. For example, in Fig. 2, scheduling DU \(F_1^K \) and then DU \(F_3^{WZ} \) leads to the state \(S_{2,2} \), which is the same state that can be reached by scheduling DU \(F_3^{WZ} \) first and DU \(F_1^K \) afterwards. That state is reached with the same cost and reward in both cases.

Rule 1 is equivalent to choosing first the key frames to be scheduled, before any other frame versions. It reduces redundancy among branches without loss of optimality, but more importantly, it permits to separate reward-dependent DUs from reward-independent ones. We can then state the second rule.

Rule 2: If the action \(a \) corresponds to scheduling a WZ or P frame at state \(S_{i,k} \), then \(a \) and all successor states/actions are replaced by a single no action branch, leading to a final state \(S_{i+1,k'}^O \) with \(C(S_{i+1,k'}) = C(S_{i,k}), A(S_{i+1,k'}) = A(S_{i,k}) \) and with state value function \(\hat{V}_{\pi}^*(S_{i+1,k'}) \), which corresponds to the optimal value function that can be reached by feasible scheduling of DUs in \(A^p(S_{i,k}) \).

Because of the separation of WZ/P sub-paths from key ones imposed by Rule 1, once a WZ/P sub-path starts, the optimal value function can be found by choosing the best set of reward-independent DUs in \(A^p(S_{i,k}) \). This problem can be written as follows:

Problem 2:

Init: Let \(A^p(S_{i,k}) \) be the set of candidate WZ or P DUs at state \(S_{i,k} \). The set of candidate DUs is defined as the acquired frames that do not expire within the current
transmission slot and that satisfy constraints provided in Eq. (7c), Eq. (7d), and Eq. (7e) in Problem 1. Let c_l and $\delta(a_l)$ be the transmission cost and reward, respectively, of DU $F_l \in \mathcal{A}^p(S_{i,k})$. Let $C(S_{i,k})$ be the available BW.

Solve:

$$\hat{V}_\pi(S_{i,k}) : \max_{\sum_{l \in T} c_l \leq C(S_{i,k})} \sum_{l \in T} \delta(a_l)$$

Equation (9)

Problem 2 can be solved by DP programming. It is actually as knapsack problem [27] as shown in the following. Let $\mathcal{A}^p_{1:j}(S_{i,k}) \subset \mathcal{A}^p(S_{i,k})$ be the set of the first j listed candidate DUs in $\mathcal{A}^p(S_{i,k})$. Let define $D[j, w]$ as $D[j, w] = \max_{T \subseteq \mathcal{A}^p_{1:j}(S_{i,k})} \sum_{l \in T} \delta(a_l)$ s.t. $\sum_{l \in T} c_l \leq w$, where c_l is the cost of the DU a_l. This means that $D[j, w]$ is the best cumulative reward obtained from selecting the best DUs among $\mathcal{A}^p_{1:j}(S_{i,k})$ whose transmission cost sums up to w. Since all DUs in $\mathcal{A}^p(S_{i,k})$ are reward-independent, we can claim that

$$D[j, w] = \max\{D[j - 1, w], D[j - 1, w - c_j] + \delta(a_j)\}. \quad (10)$$

Thus, $D[|\mathcal{A}^p(S_{i,k})|, C(S_{i,k})]$ is the solution to the Problem 2 and the iterative equation (10) allows to solve the optimization problem in Eq. (9) as dynamic programming problem (e.g., knapsack 0-1 problem) with a computational complexity of $O(|\mathcal{A}^p(S_{i,k})| C(S_{i,k}))$.

Figure 3. Equivalent trellis-based solution. Only key frames can be scheduled at black nodes. A no action taken from state $S_{i,k}$ leads to a final state $S_{i+1,k}^O$. At each final state, WZ or P can be scheduled following Problem 2.
The trellis construction in Fig. 2 can then be replaced by the one in Fig. 3, where initial branches are constructed only for key actions and final states can be reached by taking no action from state $S_{i,k}$. In this case, if $A^p(S_{i,k})$ is not null and $C(S_{i,k}) > 0$, the successor final state $S_{i+1,k'}^O$ has a value function $\tilde{V}_{\pi^*}(S_{i+1,k'})$ resulting from Problem 2, which evaluates the best scheduling for dependent DUs among the ones in $A(S_{i+1,k'}) = A^p(S_{i,k})$. The proof of optimality of our solving method with a modified trellis is provided below.

B. Proof of Optimality

Recalling that $A(S_{i,k}) = A^p(S_{i,k}) \cup A^k(S_{i,k})$, from Eq. (8) we have

$$V_{\pi^*}(S_{i,k}) = \max_{a \in A(S_{i,k})} \left\{ \delta(a) + \sum_{k'} V_{\pi^*}(S_{i+1,k'}) P(S_{i+1,k'}|S_{i,k}, a) \right\}$$

$$= \max \left\{ \max_{a \in A^k(S_{i,k})} \left\{ \delta(a) + \sum_{k'} V_{\pi^*}(S_{i+1,k'}) P(S_{i+1,k'}|S_{i,k}, a) \right\}, \right.$$

$$\left. \max_{a \in A^p(S_{i,k})} \left\{ \delta(a) + \sum_{k'} V_{\pi^*}(S_{i+1,k'}) P(S_{i+1,k'}|S_{i,k}, a) \right\} \right\}$$

$$= \max \{ V_{\pi^*}^k(S_{i,k}), V_{\pi^*}^p(S_{i,k}) \}$$

(11)

where $V_{\pi^*}^k(S_{i,k})$ and $V_{\pi^*}^p(S_{i,k})$ represent the value function of state $S_{i,k}$ under the best policy π^*, characterized by the scheduling of only key frames and WZ/P frames, respectively. The decomposition allows to distinguish the best action taken at state $S_{i,k}$ as a key (max $\{ V_{\pi^*}^k(S_{i,k}), V_{\pi^*}^p(S_{i,k}) \}$ = $V_{\pi^*}^k(S_{i,k})$) or a WZ or P frame (max $\{ V_{\pi^*}^k(S_{i,k}), V_{\pi^*}^p(S_{i,k}) \}$ = $V_{\pi^*}^p(S_{i,k})$). The state value function $V_{\pi^*}^k(S_{i,k})$ assumes that a key frame is scheduled from state $S_{i,k}$, thus Rule 2 does not apply to this set of possible actions. On the contrary, $V_{\pi^*}^p(S_{i,k})$ is the state value function under the policy of scheduling a WZ or P frames in state $S_{i,k}$ and in all future states, from Rule 1. We now focus on $V_{\pi^*}^p(S_{i,k})$ and expand it as follows

$$V_{\pi^*}^p(S_{i,k}) = \max_{a \in A^p(S_{i,k})} \left\{ \delta(a) + \sum_{k'} P(S_{i+1,k'}|S_{i,k}, a) V_{\pi^*}(S_{i+1,k'}) \right\}$$

$$= \max_{a \in A^p(S_{i,k})} \left\{ \delta(a) + \sum_{k'} P(S_{i+1,k'}|S_{i,k}, a) \left(\max_{a' \in A(S_{i+1,j})} \left\{ \delta(a') + \sum_{k''} P(S_{i+2,k''}|S_{i+1,k'}, a') V_{\pi^*}(S_{i+2,m}) \right\} \right) \right\}$$

(12)
Noting that $\mathcal{A}(S_{i+1,j}) = \mathcal{A}^p(S_{i+1,j})$ because of Rule 1, the above expression is equivalent to

$$V_{\pi^*}^p(S_{i,k}) = \max_{a \in \mathcal{A}^p(S_{i,k}), a' \in \mathcal{A}^p(S_{i+1,j})} \left\{ \delta(a) + \delta(a') + \sum_{k''} P(S_{i+2,k''}|S_{i,k}, a, a') V_{\pi^*}^p(S_{i+2,m}) \right\}$$

$$= \max_{a, a' \in \mathcal{A}^p(S_{i,k}), a \neq a'} \left\{ \delta(a) + \delta(a') + \sum_{k''} P(S_{i+2,k''}|S_{i,k}, a, a') V_{\pi^*}^p(S_{i+2,m}) \right\}$$

(13)

where we have used the property that $\mathcal{A}^p(S_{i+1,j}) = \mathcal{A}^p(S_{i,k}) \setminus a$ because of the coding independence among P and WZ DUs. Denoting by I the maximum number of actions that can be taken from $S_{i,k}$ under the best policy π^* and expanding Eq. (13) till the final state we get

$$V_{\pi^*}^p(S_{i,k}) = \max_{a \in \mathcal{A}^p(S_{i,k})} \left\{ \sum_{q=1}^{I} \delta(a_q) + \sum_{k'} P(S_{i+I,k'}|S_{i,k}, a) V_{\pi^*}^p(S_{i+I,k'}) \right\}$$

$$= \max_{a \in \mathcal{A}^p(S_{i,k})} \left\{ \sum_{q=1}^{I} \delta(a_q) \right\}$$

(14)

where $a = [a_1, a_2, \ldots a_I]$ is the action vector and the last equality holds since all final states in the original trellis are set to 0. This means that $V_{\pi^*}^p(S_{i,k})$ corresponds to the gain achieved by solving the optimization problem in Eq. (9), namely $V_{\pi^*}^p(S_{i,k}) = \tilde{V}_{\pi^*}(S^{O}_{i+1,j})$, with $S^{O}_{i+1,j}$ being the state that can be reached from $S_{i,k}$ by taking no actions. Then, Eq. (11) is equivalent to

$$V_{\pi^*}(S_{i,k}) = \max \left\{ V_{k}^h(S_{i,k}), \tilde{V}_{\pi^*}(S^{O}_{i+1,j}) \right\}$$

(15)

This proves that Rule 2 permits to reach optimality. □

We have described above a novel trellis-based solution to optimize the problem in Eq. (7). To simplify the computational complexity of the solution, that would be otherwise exponential, we have proposed two scheduling rules. These allow to decouple the actions of scheduling key (reward-dependent) frames from WZ/P (reward-independent) frames. From this novel decomposition, we can then reduce any WZ/P sub-path in the trellis to an equivalent final state whose state value function is the solution of a simple knapsack 0−1 optimization problem.

VI. SIMULATION RESULTS

A. Simulation Setup

We provide now simulation results for a multi-camera scenario where data have to be sent to a central server over a bottleneck channel. We start the scheduling optimization at $\tau = 1$ and set the
following transmission opportunities every Δt. Each transmission opportunity is characterized by a channel rate C_r. At this new scheduling opportunity, a new optimization is performed over the successive time slot. We proceed similarly till the end of the simulation, which in our case corresponds to the expiration time of the last frame of the video sequence.

Our simulations are carried out with the “Ballet” video sequence [28], which consists of $N_f = 100$ frames, at a resolution of $S_R = 768 \times 1024$ pixel/frame and $F_R = 15$ frames per second. The total number of camera is 8. Since “Ballet” is a quite static video sequence where the spatial correlation model does not substantially change over time and the temporal correlation is extremely large, we also created a synthetic 16-views sequence with a more dynamic correlation model to test our algorithm over a more challenging scenario. In this synthetic sequence, the spatial correlation model substantially changes every 20 frames. In practice this corresponds to a moving obstacle in the scene, or to moving cameras. For both sequences, we study the performance of our algorithms in different configurations, for different camera setups, different users’ behavior and for different dynamics of the channel bandwidth.

The image correlation used in decoding and reconstruction of the different frames is characterized by two parameters, namely ρ_S and ρ_T. We denote by ρ_S the number of spatially correlated cameras and we assume that each view is correlated to at most $\rho_S/2$ neighbor views, if available, on both the left and the right sides. The correlation in time is denoted by ρ_T, which corresponds to the number of correlated images in the same camera view. Both ρ_T and ρ_S represent the maximum number of correlated images in the time and space domain, respectively. The control parameters ρ_T and ρ_S take different values in our simulations in order to study the behavior of the scheduler for different neighborhood, as defined in Eq. (1). Then, the actual level of correlation ρ experienced in each single frame depends on the video content. It is computed as the portion of image that can be reconstructed by each image in the neighborhood. We refer the reader to [29] for further details on the construction of the correlation values.

The network scenarios considered in our simulations are characterized by either static or dynamic channels. The former means that the channel bandwidth is constant over the entire streaming session, while the latter consider a dynamic behavior of the channel. In this case, we model the channel as a 2-state Markov model where bad and good states identifies two different values for the available channel bandwidth. We denote by p the transition probability, i.e., the probability of change state, in the Markov model. For each video sequence a realization
of the dynamic channel is considered and the scheduling performance is evaluated for that specific channel realization. This is iterated for 100 loops to compute average performance with channel dynamics. We further study two models for user interactivity, namely static or dynamic multiview navigation. In the case of static navigation, we assume that the view transition probability \(w_{jl} = 0 \), for \(j \neq l \) and \(w_{jj} = 1 \). We also consider a uniform camera popularity, i.e., \(P_l = 1/M \), with \(M \) being the number of camera views. This scenario emulates a static scene where there is no a peak of interest in specific view and no interest in changing viewpoints. On the other hand, dynamic navigation is the scenario in which the navigation path evolves over time, to follow changes in the scene or change of preferences for users. From a given frame \(F_{t,m} \) the user can navigate to neighboring views with probability \(w_{m,l} \). In particular, users most likely select views more on the right (left) if the scene is moving to the right (left). As a result, the camera popularity for the first acquired frames is \(1/M \), while for all successive instants the popularity is derived from the transition probabilities, i.e., \(P_{t,m} = \sum_l P_{t-1,l} w_{lm} \).

The performance results are given by the average quality, computed as PSNR averaged over the views, with the average weighted by the camera popularity\(^3\). This leads to an average PSNR value for each acquisition time. Alternatively, we also provide the popularity-weighted PSNR values averaged both in time and in space. In case of dynamic channel settings, the latter metric is also averaged over the 100 simulated loops, while the PSNR over time is provided for a representative realization rather than the behavior averaged over the loops. This allows to better observe the quality oscillations experienced by users. Note that, even if some frames are decoded at high quality, the average PSNR of the reconstructed scene might be in the low PSNR range in challenging transmission conditions.

Finally, we compare the proposed algorithm to three baseline algorithms: two scheduling strategies (“BL, Cont=0” and “BL, Cont=1”) for a pre-selected coding and camera selection strategy, our previous scheduling solution (“Toni et al.” [5]) where a simplistic coding is considered and no dynamic navigation path is taken into account, and the well known “RaDiO” algorithm [1]. In particular, “BL, Cont=0” considers an a priori camera selection and a coding strategy optimized based on the spatial correlation that exists between views at the beginning of the sequence. This means that we consider a pre-selected coding structure and camera priority

\(^3\)The camera popularity evolves over time for dynamic navigation paths, while it is constant for static navigation paths.
order; at every transmission opportunity, we schedule the sufficient number of DUs to reach the channel bandwidth. In practice, we have considered the camera selection algorithm in [3] and we have extended it to a coding and camera selection algorithm such that we can have a fair comparison with our algorithm. The second baseline method, “BL, Cont=1”, is an improved version of the previous one, where we assume that the coding and camera selection is updated at every acquired frame. This means that the selection constantly considers an updated and correct correlation model, but it neglects the channel information in the optimization of the packet scheduling. Finally, the packet scheduling optimization “Toni et al.” uses a correlation-aware packet scheduling optimization that is refined at every transmission; the camera popularity is considered in the optimization but there is no consideration of the navigation path and quality variations, and only key frames are used as candidate DUs. The last baseline algorithm that we have implemented is the “RaDiO” one, whose scheduling optimization has been extended to multiview streaming. We have considered that each frame candidate for being scheduled is a DU. Each DU has its own policy vector (deciding if sending the DU and in which encoded version) and the optimal scheduling strategy is evaluated iterating the optimization over each considered DU, following the same procedure as in [1].

In the following, the PSNR of the reconstructed scene is first evaluated from the rate-distortion model described in Sec. III-C. Later, we validate our findings by experiments with actual reconstruction of the video frames at the decoder.

B. Average distortion minimization

We first look at the behavior of the scheduling strategies in the case of dynamic channels when the objective function does not consider quality variations, i.e., \(\lambda = 0 \) in Eq. (7). For the sake of clarity, we first compare our scheduling algorithm with “BL” and “Toni et al.” baseline algorithms. Then, we provide a comparison with the “RaDiO” method. In Fig. 4, we depict the popularity-weighted PSNR (averaged over the views) as a function of the frame index for both Synthetic and Ballet sequence. The navigation path is static but the channel is dynamic, with \(p = 0.8 \). For the Synthetic sequence, we have the channel states defined as \(C = \{2, 1\} \), which means that the available bandwidth is two times (one time) the transmission cost of a key frame in good (bad) channel conditions, while for the Ballet sequences the channel states are \(C = \{1.5, 1\} \). The results are averaged over several simulations, each one considering a
Figure 4. Temporal PSNR evolution for different scheduling algorithms ($\rho_S = 4, \rho_T = 1$, static navigation path and dynamic channel, $p = 0.8$).

Figure 5. View popularity $P_{t,m}$ for the Synthetic video sequence with dynamic navigation.

specific realization of the channel. For each realization, all algorithms are tested in order to have a fair comparison among them. For both video sequences, the variations of the channel leads to a substantially varying PSNR over time. This is one of the main motivation for taking into account the variations of the quality in the objective function (i.e., $\lambda \neq 0$) as shown in the following subsection. Despite these variations, we still have that the proposed algorithm outperforms baseline algorithms in most of the time slots, as it can be observed from the average
PSNR values. We can also observe that, for the Synthetic sequence, the gain is larger than the gain achieved by the Ballet sequence. This is mainly due to the fact that the Ballet sequence is highly correlated both in time and space and the correlation is very uniform in both dimensions. This makes the streaming scenario less challenging. Hence, there is less room for improvement by our algorithm. On the contrary, the Synthetic sequence has many obstacles in the scene, thus non-optimal scheduling substantially affects the experienced quality.

Finally, we also study the performance of different algorithms in a scenario in which the channel is static while the navigation path is dynamic. In Fig. 5, we depict the simulated frame popularity resulting from a dynamic navigation path. It simulates a scenario in which the subject of interest constantly move from left to right and back. The same type of navigation is used for both sequences. In Fig. 6, the mean PSNR (popularity-weighted average over views) is provided as function of the frame index for both sequences and for $\rho_S = 4, \rho_T = 1$. In both cases, we observe the gain obtained by our algorithm that constantly updates the optimal scheduling to the dynamic navigation path. This is deduced by comparing the proposed algorithm and the “Toni et al.”, which also refines the scheduling policy at each transmission opportunity, with the BL algorithms, which have a static scheduling optimization. Since the algorithm “Toni et al.” also
tracks camera popularity variations, it is able to perform quite well in the considered scenario, but still it suffers from a simplistic coding scheme.

For the sake of completeness we also provide a comparison with the “RaDIO” algorithm for the Ballet sequence with the following settings: $T_A = 1$, $T_D = 3$, $C = 1.5$, $\rho_S = 4$, static channel and dynamic navigation path (see Fig. 7). A static channel and a dynamic navigation with the same model as above are considered. We also simulated other settings and we obtained similar results. Thus, for brevity here we only provide one simulated setting. The results are shown for two different levels of temporal correlation ρ_T. Due to the iterative solving method, the “RaDIO” method has a reduced complexity, but does guarantee optimality [1]. This leads to a loss of performance with respect to the algorithm proposed in this paper that reaches the optimal scheduling policy.

With the above results, we have shown that the proposed algorithm outperforms competitor scheduling ones, but it still suffers of large quality variations over time. In the following, we study the effect of including quality variations in the objective function for the proposed algorithm. Baseline algorithms are not investigated in the following. As shown above, even when the proposed algorithm aims at minimizing only the weighted distortion, the baseline algorithms cannot compete with our solution. The main reason is that no information about
C. Quality variations minimization

We are now interested in the behavior of the optimal scheduling policy when the objective function minimizes both the expected distortion and the expected variations of the quality over the navigation paths. Thus, in the following we study the performance of schedulers of both the average (popularity-weighted) quality and the variance of the quality. The variation of the quality is evaluated as in Eq. (7), which computes a popularity-weighted variance.

Fig. 8 depicts both expected quality and variance as function of the optimization parameter λ, which trades off average quality and quality variations in the objective function of Eq. (7), for $T_A = 4$, $T_D = 1$, $\rho_S = 2$, and different levels of temporal correlation for the Synthetic sequence. A static channel and a dynamic navigation according to the model of Fig. 5 are used in these simulations. As expected, the larger λ, the more the variance becomes crucial in the optimization; the quality variations get smaller at the price of a reduced average quality. Similar trends can be observed for the Ballet sequence.

Figure 8. Average PSNR and quality variance vs. optimization parameter λ for Synthetic sequence for our scheduling algorithm ($T_A = 4$, $T_D = 1$, $\rho_S = 2$, static channel and dynamic navigation path).
Figure 9. Average PSNR as function of the frame index over the most likely navigation path for Ballet sequence ($\rho_T = 0, \rho_S = 2, T_A = 1, T_D = 3, C = 1.5$, static channel and dynamic navigation path).

To give a better understanding about the impact of a reduced variance, we have evaluated the temporal evolution of the quality over the most likely navigation path that starts from view 4 or view 6 (see Fig. 9). It is worth noting that the quality perceived with $\lambda = 0$ is subject to important fluctuations over time. The larger λ, the less these fluctuations till the case of $\lambda = 0.6$, where the quality variations are the smallest in these simulations. It is worth noting that limiting the variations might result in keeping the average quality constant at a low value. However, this is still expected to lead to a quality of experience that is better than a highly varying image quality. The case of Synthetic sequence is provided in Fig. 10 in the setting of $T_s = 1, T_A = 4, T_D = 1, \rho_S = 2, \rho_T = 1$, static channel, and dynamic navigation path. In the figure we show the quality over the most likely navigation path when starting from different views. It can be observed that reducing the quality variations experienced over the navigation path does not always lead to a large quality. Starting from View 1 and View 4, the most likely path will be forced to remain at a low-quality level but constant, allowing other paths to be constant at high quality level.

To give more intuitions on the distortion-variance tradeoff in different challenging scenarios, we now show the behavior of different navigation paths. In particular, we consider a uniform navigation, where each user have the same probability of displaying the current view, or switching
to the left or right view. In this case the camera popularity is $1/M$ for all views at each time instant. We then consider a non-uniform navigation, where each user has a probability p of displaying the current view and $(1-p)/2$ of switching to left or right view. Finally, we denote by directional navigation the dynamic navigation considered before and shown in Fig. 5. We have simulated these different navigation paths and observed the performance have been simulated and carried out results are provided in Fig. 11 for the Synthetic sequence, with $T_A = 4, T_D = 1, \rho_S = 2, \rho_T = 1$, and a static channel ($C = 2$). We can observe that the uniform navigation has a
constant distortion-variance point for $\lambda > 0$. Moreover, the directional navigation as well as the non-uniform navigation with $p = 0.6$ also has a limited reduction of the mean variance when λ ranges from 0.4 to 0.6. This is also given by the fact that a more directional navigation path reduces the degree of freedom in the optimization, since some views are clearly dominant in the possible switching from interactive users. A larger gain with increasing λ is observed for the non-uniform navigation with $p = 0.3$, where there is more randomness about users’ interactivity.

Finally, in Fig. 12, we provide the distortion experienced at each image in views and time, to show how this distortion changes depending on the possible navigation paths. Results are provided for both the Synthetic and Ballet sequences, with $T_A = 4$, $T_D = 1$, $\rho_S = 2$, $\rho_T = 1$, $\lambda = 0.6$, a directional navigation path, and a static channel with $C = 1.5$ and $C = 3$ for Ballet and Synthetic sequences, respectively. We can see that the lowest distortion region follows the zig-zag behavior of the camera popularity (depicted in Fig. 5), as a consequence of the optimization of the popularity-weighted distortion in our scheduling algorithm.

To conclude, we validate our results by comparing our model-based results with experimental results. Note that in the above model-based results, we evaluate the average distortion (or the associated PSNR) from the model in Eq. (4), while in the experimental results, the distortion is evaluated after actual reconstruction of the Ballet sequence from the received frames. In
Figure 12. Distortion experienced per image, for each view and each time instant ($T_A = 4$, $T_D = 1$, $\rho_S = 2$, $\rho_T = 1$, $\lambda = 0.6$, static channel and dynamic directional navigation).

Figure 13. Average quality vs expected quality variance for the Ballet sequence ($T_A = 1$, $T_D = 3$, $\rho_S = 4$, $\rho_T = 1$, static channel and static navigation path).
Fig. 13, the distortion as a function of the mean variance is provided for the Ballet sequence and two different bandwidths when $T_A = 1$, $T_D = 3$, $\rho_S = 4$, $\rho_T = 0$ and both the channel and navigation paths are static. For both model-based and experimental results, the lower the channel bandwidth the lower the quality, as expected since less views can be scheduled at each transmission opportunity for smaller channels. More interestingly, by increasing λ up to 0.6 we can minimize the expected quality variance at the price of a reduced average quality. However, while we experience a substantial reduction of the quality variance, the penalty in terms of average quality is most of the time marginal for both the model-based and experimental results. Furthermore, we observe that the qualitative behavior of the model-based results is similar to the experimental ones, validating the model considered in our paper.

Finally, we note that the experienced PSNR in the experimental results ranges between 19.5 dB and 23 dB, which are very low PSNR values. This is mainly due to the fact that the system is highly constrained with very low bandwidth and while some images are received at very low quality in favor of some other more important scheduled frames, as shown in Table I and Table II. Table I compares the average PSNR to the PSNR experienced over the most likely path (MLP) for the Ballet sequence in the scenarios of $\rho_s = 2$, $\rho_t = 0$, and dynamic navigation path (directional navigation). Different channel bandwidth values are considered in the case of static channel. For all values of bandwidth C, the MLP PSNR is always higher than the average one; we also see that, by relaxing the constraints imposed in the optimization (i.e., increasing the bandwidth), the quality increases. Finally, although fixing the optimization parameter $\lambda = 0.6$ reduces the mean PSNR with respect to $\lambda = 0$, the quality over the MLP is not necessarily penalized. This is a consequence of the fact that large λ values imposed in the optimization leads to a scheduling strategy that reduces the oscillations and if possible maintain a constant (and high) quality value over the MLP. Similar conclusions can be carried out from Table II, where different navigation paths have been considered.

VII. CONCLUSIONS

We have investigated coding and scheduling strategies of redundant correlated sources in a multicamera system. In particular, we have proposed a novel rate-distortion model able to take into account the correlation level among cameras for different coding structures. Based on this rate-distortion function, we have proposed a dynamic packet scheduling algorithm, which
opportunistically optimizes the transmission policy based on the channel capacity and source correlation. The best scheduling policy minimizes the popularity-weighted distortion while also reducing the distortion variations along most likely navigation paths experienced by potential interactive users. Because of the reward and coding dependency that subsists among frames, conventional solving methods cannot be adopted in our work. We have then proposed a novel trellis-based solving method that is able to decouple dependent and independent DUs in the trellis construction. This allows to reduce the computational complexity while preserving the optimality of the scheduling policy. Simulation results have demonstrated the gain of the proposed method compared to classical resource allocation techniques. This gain is due to the ability of the proposed algorithm to dynamically adapt the transmission strategy (and the coding structure accordingly) to both the level of correlation experienced by each camera and the interactivity level experienced by potential users. We have also shown that the proposed scheduling optimization is able to reduce the variations over the navigation path when the objective function is appropriately designed.
REFERENCES

