Pascal Fua

Pascal Fua
École Polytechnique Fédérale de Lausanne | EPFL · CVLAB - Computer Vision Laboratory

PhD Computer Science

About

786
Publications
239,064
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
53,706
Citations
Citations since 2017
229 Research Items
31480 Citations
201720182019202020212022202301,0002,0003,0004,0005,0006,000
201720182019202020212022202301,0002,0003,0004,0005,0006,000
201720182019202020212022202301,0002,0003,0004,0005,0006,000
201720182019202020212022202301,0002,0003,0004,0005,0006,000
Introduction
Pascal Fua is a computer vision professor at EPFL. His research interests include shape modeling and motion recovery from images, analysis of microscopy images, and Augmented Reality. He has (co)authored over 300 publications in refereed journals and conferences. He is an IEEE Fellow and has been an Associate Editor of IEEE journal Transactions for Pattern Analysis and Machine Intelligence. He often serves as program committee member, area chair, and program chair of major vision conferences and has cofounded three spinoff companies.
Additional affiliations
September 2002 - October 2015
École Polytechnique Fédérale de Lausanne
Position
  • Professor (Full)
September 1996 - present
March 1992 - present
SRI International
Position
  • Computer Scentist
Education
June 1989
Université Paris-Sud 11
Field of study
  • Computer Science
June 1984
École Polytechnique
Field of study
  • Mathematics

Publications

Publications (786)
Article
While road obstacle detection techniques have become increasingly effective, they typically ignore the fact that, in practice, the apparent size of the obstacles decreases as their distance to the vehicle increases. In this paper, we account for this by computing a scale map encoding the apparent size of a hypothetical object at every image locatio...
Preprint
Diffusion models generating images conditionally on text, such as Dall-E 2 and Stable Diffusion, have recently made a splash far beyond the computer vision community. Here, we tackle the related problem of generating point clouds, both unconditionally, and conditionally with images. For the latter, we introduce a novel geometrically-motivated condi...
Chapter
Unsupervised self-rehabilitation exercises and physical training can cause serious injuries if performed incorrectly. We introduce a learning-based framework that identifies the mistakes made by a user and proposes corrective measures for easier and safer individual training.
Article
High-temperature latent heat thermal energy storage with metallic alloy phase change materials (PCMs) utilize the high latent heat and high thermal conductivity to gain a competitive edge over existing sensible and latent storage technologies. Novel macroporous latent heat storage units can be used to enhance the limiting convective heat transfer b...
Article
Persistent Homology (PH) has been successfully used to train networks to detect curvilinear structures and to improve the topological quality of their results. However, existing methods are very global and ignore the location of topological features. In this paper, we remedy this by introducing a new filtration function that fuses two earlier appro...
Preprint
Vision transformers have emerged as powerful tools for many computer vision tasks. It has been shown that their features and class tokens can be used for salient object segmentation. However, the properties of segmentation transformers remain largely unstudied. In this work we conduct an in-depth study of the spatial attentions of different backbon...
Article
Full-text available
Relating behavior to brain activity in animals is a fundamental goal in neuroscience, with practical applications in building robust brain-machine interfaces. However, the domain gap between individuals is a major issue that prevents the training of general models that work on unlabeled subjects. Since 3D pose data can now be reliably extracted fro...
Preprint
Full-text available
Given enough annotated training data, 3D human pose estimation models can achieve high accuracy. However, annotations are not always available, especially for people performing unusual activities. In this paper, we propose an algorithm that learns to detect 3D keypoints on human bodies from multiple-views without any supervision other than the cons...
Preprint
Full-text available
Whereas the ability of deep networks to produce useful predictions on many kinds of data has been amply demonstrated, estimating the reliability of these predictions remains challenging. Sampling approaches such as MC-Dropout and Deep Ensembles have emerged as the most popular ones for this purpose. Unfortunately, they require many forward passes a...
Preprint
Full-text available
Multi-task learning is central to many real-world applications. Unfortunately, obtaining labelled data for all tasks is time-consuming, challenging, and expensive. Active Learning (AL) can be used to reduce this burden. Existing techniques typically involve picking images to be annotated and providing annotations for all tasks. In this paper, we sh...
Preprint
Recent approaches to drape garments quickly over arbitrary human bodies leverage self-supervision to eliminate the need for large training sets. However, they are designed to train one network per clothing item, which severely limits their generalization abilities. In our work, we rely on self-supervision to train a single network to drape multiple...
Chapter
Most recent 6D object pose estimation methods, including unsupervised ones, require many real training images. Unfortunately, for some applications, such as those in space or deep under water, acquiring real images, even unannotated, is virtually impossible. In this paper, we propose a method that can be trained solely on synthetic images, or optio...
Chapter
Unsigned Distance Fields (UDFs) can be used to represent non-watertight surfaces. However, current approaches to converting them into explicit meshes tend to either be expensive or to degrade the accuracy. Here, we extend the marching cube algorithm to handle UDFs, both fast and accurately. Moreover, our approach to surface extraction is differenti...
Preprint
Full-text available
Data augmentation has proven its usefulness to improve model generalization and performance. While it is commonly applied in computer vision application when it comes to multi-view systems, it is rarely used. Indeed geometric data augmentation can break the alignment among views. This is problematic since multi-view data tend to be scarce and it is...
Preprint
Full-text available
Multi-view approaches to people-tracking have the potential to better handle occlusions than single-view ones in crowded scenes. They often rely on the tracking-by-detection paradigm, which involves detecting people first and then connecting the detections. In this paper, we argue that an even more effective approach is to predict people motion ove...
Article
In this paper we propose an unsupervised feature extraction method to capture temporal information on monocular videos, where we detect and encode subject of interest in each frame and leverage contrastive self-supervised (CSS) learning to extract rich latent vectors. Instead of simply treating the latent features of nearby frames as positive pairs...
Preprint
While road obstacle detection techniques have become increasingly effective, they typically ignore the fact that, in practice, the apparent size of the obstacles decreases as their distance to the vehicle increases. In this paper, we account for this by computing a scale map encoding the apparent size of a hypothetical object at every image locatio...
Preprint
Existing data-driven methods for draping garments over posed human bodies, despite being effective, cannot handle garments of arbitrary topology and are typically not end-to-end differentiable. To address these limitations, we propose an end-to-end differentiable pipeline that represents garments using implicit surfaces and learns a skinning field...
Preprint
Simulating realistic sensors is a challenging part in data generation for autonomous systems, often involving carefully handcrafted sensor design, scene properties, and physics modeling. To alleviate this, we introduce a pipeline for data-driven simulation of a realistic LiDAR sensor. We propose a model that learns a mapping between RGB images and...
Chapter
Many biological and medical tasks require the delineation of 3D curvilinear structures such as blood vessels and neurites from image volumes. This is typically done using neural networks trained by minimizing voxel-wise loss functions that do not capture the topological properties of these structures. As a result, the connectivity of the recovered...
Article
Full-text available
This paper describes a pipeline for automatically generating level of detail (LOD) models (digital twins), specifically LOD2 and LOD3, from free-standing buildings. Our approach combines structure from motion (SfM) with deep-learning-based segmentation techniques. Given multiple-view images of a building, we compute a three-dimensional (3D) planar...
Chapter
There are many approaches to weakly-supervised training of networks to segment 2D images. By contrast, existing approaches to segmenting volumetric images rely on full-supervision of a subset of 2D slices of the 3D volume. We propose an approach to volume segmentation that is truly weakly-supervised in the sense that we only need to provide a spars...
Chapter
The human annotations are imperfect, especially when produced by junior practitioners. Multi-expert consensus is usually regarded as golden standard, while this annotation protocol is too expensive to implement in many real-world projects. In this study, we propose a method to refine human annotation, named Neural Annotation Refinement (NeAR). It i...
Article
Full-text available
We present a method for segmenting cracks in images of masonry buildings damaged by earthquakes. Existing methods of crack detection fail to preserve the continuity of cracks, and their performance deteriorates with imprecise training labels. We address these problems by adapting an approach previously proposed for reconstructing roads in aerial im...
Preprint
Unsupervised self-rehabilitation exercises and physical training can cause serious injuries if performed incorrectly. We introduce a learning-based framework that identifies the mistakes made by a user and proposes corrective measures for easier and safer individual training. Our framework does not rely on hard-coded, heuristic rules. Instead, it l...
Article
Full-text available
Deep learning-based approaches to delineating 3D structure depend on accurate annotations to train the networks. Yet in practice, people, no matter how conscientious, have trouble precisely delineating in 3D and on a large scale, in part because the data is often hard to interpret visually and in part because the 3D interfaces are awkward to use. I...
Preprint
Many biological and medical tasks require the delineation of 3D curvilinear structures such as blood vessels and neurites from image volumes. This is typically done using neural networks trained by minimizing voxel-wise loss functions that do not capture the topological properties of these structures. As a result, the connectivity of the recovered...
Preprint
Full-text available
The human annotations are imperfect, especially when produced by junior practitioners. Multi-expert consensus is usually regarded as golden standard, while this annotation protocol is too expensive to implement in many real-world projects. In this study, we propose a method to refine human annotation, named Neural Annotation Refinement (NeAR). It i...
Preprint
Full-text available
Shape priors have long been known to be effective when reconstructing 3D shapes from noisy or incomplete data. When using a deep-learning based shape representation, this often involves learning a latent representation, which can be either in the form of a single global vector or of multiple local ones. The latter allows more flexibility but is pro...
Preprint
Full-text available
Supervised approaches to 3D pose estimation from single images are remarkably effective when labeled data is abundant. Therefore, much of the recent attention has shifted towards semi and (or) weakly supervised learning. Generating an effective form of supervision with little annotations still poses major challenges in crowded scenes. However, sinc...
Preprint
Full-text available
Most recent 6D object pose estimation methods, including unsupervised ones, require many real training images. Unfortunately, for some applications, such as those in space or deep under water, acquiring real images, even unannotated, is virtually impossible. In this paper, we propose a method that can be trained solely on synthetic images, or optio...
Article
Curvilinear structures frequently appear in microscopy imaging as the object of interest. Crystallographic defects, i.e dislocations, are one of the curvilinear structures that have been repeatedly investigated under transmission electron microscopy (TEM) and their 3D structural information is of great importance for understanding the properties of...
Preprint
Full-text available
The Skinned Multi-Person Linear (SMPL) model can represent a human body by mapping pose and shape parameters to body meshes. This has been shown to facilitate inferring 3D human pose and shape from images via different learning models. However, not all pose and shape parameter values yield physically-plausible or even realistic body meshes. In othe...
Preprint
Deep learning-based approaches to delineating 3D structure depend on accurate annotations to train the networks. Yet, in practice, people, no matter how conscientious, have trouble precisely delineating in 3D and on a large scale, in part because the data is often hard to interpret visually and in part because the 3D interfaces are awkward to use....
Preprint
Full-text available
Relating animal behaviors to brain activity is a fundamental goal in neuroscience, with practical applications in building robust brain-machine interfaces. However, the domain gap between individuals is a major issue that prevents the training of general models that work on unlabeled subjects. Since 3D pose data can now be reliably extracted from m...
Preprint
Prior work on human motion forecasting has mostly focused on predicting the future motion of single subjects in isolation from their past pose sequence. In the presence of closely interacting people, however, this strategy fails to account for the dependencies between the different subject's motions. In this paper, we therefore introduce a motion p...
Preprint
Recent work modelling 3D open surfaces train deep neural networks to approximate Unsigned Distance Fields (UDFs) and implicitly represent shapes. To convert this representation to an explicit mesh, they either use computationally expensive methods to mesh a dense point cloud sampling of the surface, or distort the surface by inflating it into a Sig...
Preprint
Full-text available
A fundamental goal in neuroscience is to understand the relationship between neural activity and behavior. For example, the ability to extract behavioral intentions from neural data, or neural decoding, is critical for developing effective brain machine interfaces. Although simple linear models have been applied to this challenge, they cannot ident...
Preprint
Full-text available
State-of-the-art methods for self-supervised sequential action alignment rely on deep networks that find correspondences across videos in time. They either learn frame-to-frame mapping across sequences, which does not leverage temporal information, or assume monotonic alignment between each video pair, which ignores variations in the order of actio...
Preprint
We propose a method for unsupervised reconstruction of a temporally-consistent sequence of surfaces from a sequence of time-evolving point clouds. It yields dense and semantically meaningful correspondences between frames. We represent the reconstructed surfaces as atlases computed by a neural network, which enables us to establish correspondences...
Article
Full-text available
Thanks to recent advancements in image processing and deep learning techniques, visual surface inspection in production lines has become an automated process as long as all the defects are visible in a single or a few images. However, it is often necessary to inspect parts under many different illumination conditions to capture all the defects. Tra...
Article
While supervised object detection and segmentation methods achieve impressive accuracy, they generalize poorly to images whose appearance significantly differs from the data they have been trained on. To address this when annotating data is prohibitively expensive, we introduce a self-supervised detection and segmentation approach that can work wit...
Preprint
Full-text available
Curvilinear structures frequently appear in microscopy imaging as the object of interest. Crystallographic defects, i.e., dislocations, are one of the curvilinear structures that have been repeatedly investigated under transmission electron microscopy (TEM) and their 3D structural information is of great importance for understanding the properties...
Preprint
Persistent Homologies have been successfully used to increase the performance of deep networks trained to detect curvilinear structures and to improve the topological quality of the results. However, existing methods are very global and ignore the location of topological features. In this paper, we introduce an approach that relies on a new filtrat...
Article
Full-text available
Katircioglu I, Rhodin H, Spörri J, Salzmann M, Fua P. Human Detection and Segmentation via Multi-view Consensus. 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, QC, Canada, 2021, pp. 2855-2864. https://dx.doi.org/10.1109/ICCV48922.2021.00285
Preprint
Full-text available
Shape optimization is at the heart of many industrial applications, such as aerodynamics, heat transfer, and structural analysis. It has recently been shown that Graph Neural Networks (GNNs) can predict the performance of a shape quickly and accurately and be used to optimize more effectively than traditional techniques that rely on response-surfac...
Preprint
Full-text available
CAD modeling typically involves the use of simple geometric primitives whereas recent advances in deep-learning based 3D surface modeling have opened new shape design avenues. Unfortunately, these advances have not yet been accepted by the CAD community because they cannot be integrated into engineering workflows. To remedy this, we propose a novel...
Article
Modern methods for counting people in crowded scenes rely on deep networks to estimate people densities in individual images. As such, only very few take advantage of temporal consistency in video sequences, and those that do only impose weak smoothness constraints across consecutive frames. In this paper, we advocate estimating people flows across...
Article
Full-text available
Markerless three-dimensional (3D) pose estimation has become an indispensable tool for kinematic studies of laboratory animals. Most current methods recover 3D poses by multi-view triangulation of deep network-based two-dimensional (2D) pose estimates. However, triangulation requires multiple synchronized cameras and elaborate calibration protocols...
Preprint
Full-text available
Geometric Deep Learning has recently made striking progress with the advent of continuous Deep Implicit Fields. They allow for detailed modeling of watertight surfaces of arbitrary topology while not relying on a 3D Euclidean grid, resulting in a learnable parameterization that is unlimited in resolution. Unfortunately, these methods are often unsu...
Preprint
There are many approaches that use weak-supervision to train networks to segment 2D images. By contrast, existing 3D approaches rely on full-supervision of a subset of 2D slices of the 3D image volume. In this paper, we propose an approach that is truly weakly-supervised in the sense that we only need to provide a sparse set of 3D point on the surf...
Preprint
Full-text available
State-of-the-art semantic or instance segmentation deep neural networks (DNNs) are usually trained on a closed set of semantic classes. As such, they are ill-equipped to handle previously-unseen objects. However, detecting and localizing such objects is crucial for safety-critical applications such as perception for automated driving, especially if...
Preprint
We introduce a novel approach to unsupervised and semi-supervised domain adaptation for semantic segmentation. Unlike many earlier methods that rely on adversarial learning for feature alignment, we leverage contrastive learning to bridge the domain gap by aligning the features of structurally similar label patches across domains. As a result, the...
Article
We propose a novel, connectivity-oriented loss function for training deep convolutional networks to reconstruct network-like structures, like roads and irrigation canals, from aerial images. The main idea behind our loss is to express the connectivity of roads, or canals, in terms of disconnections that they create between background regions of the...
Preprint
We propose a method for the unsupervised reconstruction of a temporally-coherent sequence of surfaces from a sequence of time-evolving point clouds, yielding dense, semantically meaningful correspondences between all keyframes. We represent the reconstructed surface as an atlas, using a neural network. Using canonical correspondences defined via th...
Article
Eigendecomposition of symmetric matrices is at the heart of many computer vision algorithms. However, the derivatives of the eigenvectors tend to be numerically unstable, whether using the SVD to compute them analytically or using the Power Iteration (PI) method to approximate them. This instability arises in the presence of eigenvalues that are cl...
Preprint
Eigendecomposition of symmetric matrices is at the heart of many computer vision algorithms. However, the derivatives of the eigenvectors tend to be numerically unstable, whether using the SVD to compute them analytically or using the Power Iteration (PI) method to approximate them. This instability arises in the presence of eigenvalues that are cl...
Preprint
Reconstructing 3D shape from 2D sketches has long been an open problem because the sketches only provide very sparse and ambiguous information. In this paper, we use an encoder/decoder architecture for the sketch to mesh translation. This enables us to leverage its latent parametrization to represent and refine a 3D mesh so that its projections mat...
Preprint
Full-text available
6D pose estimation in space poses unique challenges that are not commonly encountered in the terrestrial setting. One of the m