
Bistatic MIMO radar for near field source
localization using PARAFAC

P. R. Singh, Y. Wang and P. Chargé

In this letter, we present a near field targets localization method using
PARAFAC decomposition with a bistatic MIMO system. PARAFAC
has the interesting properties of uniqueness in the decomposition of
tensor constructed from the received signal and automatic pairing of
emitter and receiver directional vectors of a bistatic MIMO radar, which
allow the estimation of the parameters of each source individually.
Furthermore, the proposed method provides very good estimation
performance, because it doesn’t require the approximation of the
directional vectors contrary to the most existing techniques.

Introduction: Ground penetration radar and indoor localization are some
typical applications of near field source localization. For a near field
source, we need to estimate its range and Direction of Arrival (DOA) to
perform its localization. The most existing methods use an approximated
model to overcome the nonlinearity of the arguments of the elements
of the directional vectors [8, 6, 5], which allows to greatly reduce the
computational time but sacrifices precision.

A few decades ago, tensor decomposition techniques like Canonical
Decomposition and Parallel Factor analysis (PARAFAC) were developed
to solve psychometric and chemometric problems [10, 11]. These
are similar concepts which were independently proposed for different
applications. Unlike matrix decomposition, the tensor decomposition is
unique and has attracted a lot of interests [1]. Another advantage of
PARAFAC is its automatic pairing of directional vectors [3], which
allows to isolate the contribution of each source and estimate its
parameters independently from the other sources.

For a near field source, its spatial coordinates provide the minimum
and necessary information for its localization. Thus, this letter focuses
on the joint estimation of the abscissa and ordinate of targets using
PARAFAC with a bistatic MIMO system. The novelty of this method
is that it avoids the approximation of near field received and transmit
directional vectors, which in return provides better precision.

Signal Model: Assume a bistatic MIMO radar with Uniform
Linear Array (ULA) of 2M + 1 transmitting and 2N + 1 receiving
omnidirectional antennas, separated by inter-element spacing of dt and
dr respectively. The center of the transmitter and receiver arrays is taken
as the reference point (O) as shown in Fig. 1.
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Fig. 1. Bistatic MIMO radar configuration

Let the abscissa and ordinate of the pth target be xp and yp
respectively, where p∈ [1, 2, 3, · · · , P ]. Let d represent the distance from
the centers of transmitter and receiver arrays to the reference point.
Furthermore, to simplify the model, we assume that the two arrays are
aligned.

By taking any L samples of the received signal from the output of the
matched filters, a three-dimensional tensor (Y) can be created [3].

Let the directional vectors of receiver and transmitter be A∈
C(2N+1)×P and B ∈C(2M+1)×P respectively and the signal that
contains the reflection coefficients and Doppler shifts of the targets
be C ∈CL×P [4]. A= [a1,a2, · · · ,aP ], B = [b1, b2, · · · , bP ] and

C = [c1, c2, · · · , cP ]. In terms of A, B and C, Y can be written as
Y =

∑P
p=1 ap ◦ bp ◦ cp +W , where ◦ denotes the outer product and

W ∈C(2N+1)×(2M+1)×L is an Additive White Gaussian Noise tensor
with zero mean. For a near field target situation, bp and ap can be

written as bp =

[
e
j 2π
λ
δt(−M,p) , · · · , 1, · · · , ej

2π
λ
δt(M,p)

]T
and ap =[

e
j 2π
λ
δr(−N,p) , · · · , ej

2π
λ
δr(N,p)

]T
, where λ is the wavelength of the

carrier and, δt(m,p) and δr(n,p) are, respectively, the path differences with
respect to the centers of the receiver and the transmitter arrays, given by

δt(m,p) =
√

(xp + d−mdt)2 + y2
p −

√
(xp + d)2 + y2

p (1)

δr(n,p) =
√

(xp − d− ndr)2 + y2
p −

√
(xp − d)2 + y2

p (2)

where m∈ [−M, · · · , 0, 1, · · · ,M ] and n∈ [−N, · · · , 0, 1, · · · , N ].

Proposed position estimation method: For the estimation of the location
of the targets, an estimate of Â, B̂ and Ĉ is required, which can be
obtained by decomposing Y using a fast algorithm given in [7].

In the following, we propose exact and approximated model based
methods to recover target coordinates from Â and B̂.

Objective function minimization

Let â(n,p) and b̂(m,p) be the elements of Â and B̂ respectively.
It is known that the canonical decomposition of a 3-way tensor is
unique up to a scaling and a permutation of the components [9].
Therefore, we may find that the estimates |â(n,p)| and |b̂(m,p)|
are not equal to unity and there may exist an angular rotation
per column. However, the middle rows of A and B have zero
argument and every element has unity modulus. Therefore, to get rid
of that scaling on the estimated matrices, the following operations
are required: Â= Âdiag

{
1/â(0,1), 1/â(0,2), · · · , 1/â(0,P )

}
and B̂ =

B̂ diag
{
1/b̂(0,1), 1/b̂(0,2), · · · , 1/b̂(0,P )

}
, where â(0,p) and b̂(0,p) are

the middle elements of the pth columns of Â and B̂ respectively.
The following cost function can be used to recover (x̂p, ŷp) from Â

and B̂.

(x̂p, ŷp) = argmin
(xp,yp)

(
‖âp − a(xp, yp)‖2F +

∥∥b̂p − b(xp, yp)
∥∥2

F

)
(3)

where âp and b̂p are the pth columns of Â and B̂ respectively.
Newton’s optimization method can be used to solve (3).

Approximated model

In terms of range and angle, (1) and (2) can be rewritten as
δt(m,p) =

(√
ρ2
tp

+m2d2
t − 2mdt ρtp cos

(
θtp
)
− ρtp

)
and δr(n,p) =(√

ρ2
rp

+ n2d2
r − 2ndr ρrp cos

(
θrp
)
− ρrp

)
respectively.

For a near field situation, the second-order Taylor expansion is usually
used to approximate δt(m,p) and δr(n,p) [8, 6, 5]. By ignoring the higher
order terms, we obtain

2π

λ
δt(m,p) ≈mωtp +m2 φtp (4)

2π

λ
δr(n,p) ≈ nωrp + n2 φrp (5)

where ωtp =−
2πdt

λ
cos
(
θtp
)
, ωrp =−

2πdr

λ
cos
(
θrp
)
, φtp =

πd2
t

λρtp
sin2

(
θtp
)

and φrp =
πd2
r

λρrp
sin2

(
θrp
)
.

The directional vectors for approximated model can be written

as ãp =
[
ej(−Nωrp+(−N)2φrp ), · · · , 1, · · · , ej(Nωrp+(N)2φrp )

]T
and

b̃p =
[
ej(−Mωtp+(−M)2φtp ), · · · , 1, · · · , ej(Mωtp+(M)2φtp )

]T
.

In this signal model, θtp , θrp , ρtp and ρrp are related. In fact, any two
out of these four parameters can be used to obtain the coordinates. Here,
we have used the angles of arrival and departure, which can be recovered
from the above model as mentioned below.

Inspired by [2], let ăp = JN ãp � ã∗
p and b̆p = JM b̃p � b̃∗p where

� is the Hadamard product operator and JN ∈C(2N+1)×(2N+1)
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and JM ∈C(2M+1)×(2M+1) are the exchange matrices with all anti-
diagonal elements equal to 1, otherwise 0.

ăp =
[
e2j N ωrp , · · · , e2j ωrp , 1, e−2j ωrp , · · · , e−2j N ωrp

]T
and

b̆p =
[
e2j M ωtp , · · · , e2j ωtp , 1, e−2j ωtp , · · · , e−2j M ωtp

]T
show

that ăp and b̆p do not depend on φrp and φtp respectively. Therefore,

ωrp and ωtp can be estimated as ω̂rp = 1
4N

∑2N
n=1 ∠

(
ăp(n)

ăp(n+1)

)
and

ω̂tp = 1
4M

∑2M
m=1 ∠

(
b̆p(m)

b̆p(m+1)

)
, where ∠(•) stands for the angle (or

argument) of the complex number. Furthermore, the angles of arrival
and departure can be computed by θ̂rp = cos−1

[
− λ

2πdr
ω̂rp

]
and

θ̂tp = cos−1
[
− λ

2πdt
ω̂tp

]
respectively.

Finally, to obtain the position of the target in terms of
Cartesian coordinates, the following relations can be used: x̃p =

d sin
(
θ̂rp + θ̂tp

)
/ sin

(
θ̂rp − θ̂tp

)
and ỹp =

∣∣∣(x̃p + d) tan
(
θ̂tp

)∣∣∣,
which can be derived by applying basic trigonometry on Fig. 1.

Simulation results: Consider a bistatic MIMO radar with following
simulation parameters, M = 2, N = 3 and L= 100.

Fig. 2 shows the estimated positions with exact and approximated
models at 5 dB SNR forK = 100 Monte-Carlo iterations by taking d= λ
and dt = dr = λ/4.

−1.5 −1 −0.5 0 0.5 1

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

x-axis (λ)

y
-a
x
is

(λ
)

Targets (P = 3)

Exact model
Approx model

Fig. 2 Estimated positions when d= λ, dt = dr = λ/4,M = 2,N = 3, L=
100, K = 100 , P = 3 and SNR = 5 dB

The estimates using approximation show some deviation from the
nominal position of the targets, which is no longer true when using the
exact model. This deviation can also be observed in Table 1, which is
constructed by calculating the coordinates from the approximated model
in a noiseless situation.

Table 1: Coordinates recovered from the approximated model,
without noise

x (λ) y (λ) x̃ (λ) ỹ (λ)

−1.25 1.25 −1.2421 1.3009

−0.5 1.5 −0.4946 1.5908

0.5 1.25 −0.5388 1.3253

The approximated model method presents ambiguity when the inter-
element spacing is greater than λ/4. But for the exact model, we have
no such problem, which is shown in Fig. 3 with K = 100, d= 2λ and
dt = dr = λ/2.

The simulation results show that the proposed method has high
precision due to the use of exact model and works as well for λ/4 and λ/2
inter-element spacing unlike conventional approximated model methods,
for which λ/4 is the upper limit of the inter-element spacing.

Conclusion: This letter proposes an accurate exact model based method
to estimate the position of the targets in near field region with a bistatic
MIMO radar system. The proposed method uses factor analysis to
estimate the components and then precisely locates the targets in terms
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Fig. 3 Estimated positions when d= 2λ, dt = dr = λ/2, M = 2, N = 3,
L= 100, K = 100 , P = 5 and SNR = 5 dB

of Cartesian coordinates. Thanks to the automatic pairing property of
PARAFAC, no extra efforts are required to pair the directional vectors of
emitter and receiver, which is often an issue with the methods suggested
for a bistatic MIMO system. Another benefit of the proposed method over
other approximated model methods is that it works even for inter-sensor
spacing of λ/2.
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