Parag Khanna

Parag Khanna
KTH Royal Institute of Technology | KTH · Division of Robotics, Perception and Learning (RPL) EECS

About

13
Publications
1,705
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
69
Citations

Publications

Publications (13)
Preprint
Full-text available
To facilitate human-robot interaction and gain human trust, a robot should recognize and adapt to changes in human behavior. This work documents different human behaviors observed while taking objects from an interactive robot in an experimental study, categorized across two dimensions: pull force applied and handedness. We also present the changes...
Article
To facilitate human-robot interaction (HRI), we aim for robot behavior that is efficient, transparent, and closely resembles human actions. Signal Temporal Logic (STL) is a formal language that enables the specification and verification of complex temporal properties in robotic systems, helping to ensure their correctness. STL can be used to genera...
Conference Paper
Full-text available
Human-robot collaboration (HRC) relies on smooth and safe interactions. In this paper, we focus on the human-to-robot handover scenario, where the robot acts as a taker. We investigate the feasibility of detecting the intention of a human-to-robot handover action through the analysis of electroencephalogram (EEG) signals. Our study confirms that te...
Preprint
Full-text available
Handovers are basic yet sophisticated motor tasks performed seamlessly by humans. They are among the most common activities in our daily lives and social environments. This makes mastering the art of handovers critical for a social and collaborative robot. In this work, we present an experimental study that involved human-human handovers by 13 pair...
Preprint
Full-text available
Handovers frequently occur in our social environments, making it imperative for a collaborative robotic system to master the skill of handover. In this work, we aim to investigate the relationship between the grip force variation for a human giver and the sensed interaction force-torque in human-human handovers, utilizing a data-driven approach. A...
Preprint
Full-text available
Despite great advances in what robots can do, they still experience failures in human-robot collaborative tasks due to high randomness in unstructured human environments. Moreover, a human's unfamiliarity with a robot and its abilities can cause such failures to repeat. This makes the ability to failure explanation very important for a robot. In th...
Article
Full-text available
This paper is devoted to the control and identification of a manipulator with three anti-parallelogram joints in series, referred to as X-joints. Each X-joint is a tensegrity one-degree-of-freedom mechanism antagonistically actuated with cables and springs in parallel. As compared to manipulators built with simple revolute joints in series, manipul...

Network

Cited By