Paolo Pesaresi

Paolo Pesaresi
University of Milan | UNIMI · Department of Life Sciences

Professor

About

91
Publications
16,496
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
5,569
Citations
Additional affiliations
March 2015 - present
University of Milan
Position
  • Professor (Associate)
January 2009 - February 2015
University of Milan
Position
  • Professor (Assistant)
December 2005 - December 2008
Parco Tecnologico Padano
Position
  • Group Leader

Publications

Publications (91)
Preprint
The chloroplast proteome is a dynamic mosaic of plastid- and nuclear-encoded proteins. Plastid protein homeostasis is maintained through the balance between de novo synthesis and proteolysis. Intracellular communication pathways, including the plastid-to-nucleus signalling and the protein homeostasis machinery, made of stromal chaperones and protea...
Article
Chloroplast biogenesis requires a tight communication between nucleus and plastids. By retrograde signals, plastids transmit information about their functional and developmental state to adjust nuclear gene expression, accordingly. GENOMES UNCOUPLED 1 (GUN1), a chloroplast-localized protein integrating several developmental and stress-related signa...
Article
Full-text available
Truncated antenna size of photosystems and lower leaf chlorophyll content has been shown to increase photosynthetic efficiency and biomass accumulation in microalgae, cyanobacteria and higher plants grown under high-density cultivation conditions. Here, we have asked whether this strategy is also applicable to a major crop by characterising the bar...
Article
Full-text available
Protein-protein interactions (PPIs) contribute to regulate many aspects of cell physiology and metabolism. Protein domains involved in PPIs are important building blocks for engineering genetic circuits through synthetic biology. These domains can be obtained from known proteins and rationally engineered to produce orthogonal scaffolds, or computat...
Article
Full-text available
During a plant’s life cycle, plastids undergo several modifications, from undifferentiated pro-plastids to either photosynthetically-active chloroplasts, ezioplasts, chromoplasts or storage organelles, such as amyloplasts, elaioplasts and proteinoplasts. Plastid proteome rearrangements and protein homeostasis, together with intracellular communicat...
Article
Fungicide use is one of the core elements of intensive agriculture because it is necessary to fight pathogens that would otherwise cause large production losses. Oomycete and fungal pathogens are kept under control using several active compounds, some of which are predicted to be banned in the near future owing to serious concerns about their impac...
Article
Full-text available
The 45S rRNA genes (rDNA) are amongst the largest repetitive elements in eukaryotic genomes. rDNA consists of tandem arrays of rRNA genes, many of which are transcriptionally silenced. Silent rDNA repeats may act as 'back-up' copies for ribosome biogenesis and have nuclear organization roles. Through Cas9-mediated genome editing in the Arabidopsis...
Article
Full-text available
The 45S rRNA genes (rDNA) are amongst the largest repetitive elements in eukaryotic genomes. rDNA consists of tandem arrays of rRNA genes, many of which are transcriptionally silenced. Silent rDNA repeats may act as ‘back-up’ copies for ribosome biogenesis and have nuclear organization roles. Through Cas9-mediated genome editing in the Arabidopsis...
Article
Full-text available
Grapevine (Vitis vinifera L.) is a crop of major economic importance. However, grapevine yield is guaranteed by the massive use of pesticides to counteract pathogen infections. Under temperate-humid climate conditions, downy mildew is a primary threat for viticulture. Downy mildew is caused by the biotrophic oomycete Plasmopara viticola Berl. & de...
Article
Full-text available
GUN1 (genomes uncoupled 1), a chloroplast-localized pentatricopeptide repeat (PPR) protein with a C-terminal small mutS-related (SMR) domain, plays a central role in the retrograde communication of chloroplasts with the nucleus. This flow of information is required for the coordinated expression of plastid and nuclear genes, and it is essential for...
Article
Full-text available
Barley (Hordeum vulgare) has been widely used as a model crop for studying molecular and physiological processes such as chloroplast development and photosynthesis. During the second half of the 20th century, mutants such as albostrians led to the discovery of the nuclear-encoded, plastid-localized RNA polymerase and the retrograde (chloroplast-to-...
Article
Plastid genes in higher plants are transcribed by at least two different RNA polymerases, the plastid-encoded RNA polymerase (PEP), a bacteria-like core enzyme whose subunits are encoded by plastid genes ( rpoA , rpoB , rpoC1 and rpoC2 ), and the nuclear-encoded plastid RNA polymerase (NEP), a monomeric bacteriophage-type RNA polymerase. Both PEP a...
Article
Full-text available
Although light is essential for photosynthesis, when in excess, it may damage the photosynthetic apparatus, leading to a phenomenon known as photoinhibition. Photoinhibition was thought as a light-induced damage to photosystem II; however, it is now clear that even photosystem I may become very vulnerable to light. One main characteristic of light...
Article
Correct chloroplast development and function require coordinated expression of chloroplast and nuclear genes. This is achieved through chloroplast signals that modulate nuclear gene expression in accordance with the chloroplast’s needs. Genetic evidence indicates that GUN1, a chloroplast‐localized pentatricopeptide‐repeat (PPR) protein with a C‐ter...
Article
Full-text available
Indole-3-acetic acid (IAA) is a major plant hormone that affects many cellular processes in plants, bacteria, yeast, and human cells through still unknown mechanisms. In this study, we demonstrated that the IAA-treatment of two unrelated bacteria, the Ensifer meliloti 1021 and Escherichia coli, harboring two different host range plasmids, influence...
Preprint
Full-text available
Correct chloroplast development and function require coordinated expression of chloroplast and nuclear genes. This is achieved through chloroplast signals that modulate nuclear gene expression in accordance with the chloroplast needs. Genetic evidence indicates that GUN1, a chloroplast-localized pentatricopeptide-repeat (PPR) protein with a C-termi...
Article
During the next decade it will be necessary to develop novel combinations of management strategies to sustainably increase crop production and soil resilience. Improving agricultural productivity, while conserving and enhancing biotic and abiotic resources, is an essential requirement to increase global food production on a sustainable basis. The r...
Article
Fruits protect the developing seeds of angiosperms and actively contribute to seed dispersion. Furthermore, fruit and seed development are highly synchronized and require exchange of information between the mother plant and the developing generations. To explore the mechanisms controlling fruit formation and maturation, we performed a transcriptomi...
Article
Full-text available
Main conclusion: AtPPR4-mediated trans-splicing of plastid rps12 transcripts is essential for key embryo morphogenetic events such as development of cotyledons, determination of provascular tissue, and organization of the shoot apical meristem (SAM), but not for the formation of the protodermal layer. Members of the pentatricopeptide repeat (PPR)...
Article
Full-text available
The drought–stress response in plant involves the cross-talk between abscisic acid (ABA) and other phytohormones, such as jasmonates and ethylene. The auxin indole-3-acetic acid (IAA) plays an integral part in plant adaptation to drought stress. Investigation was made to see how the main auxin IAA interacted with other plant hormones under water st...
Article
Full-text available
DEAD-box RNA helicases (DBRHs) modulate RNA secondary structure, allowing RNA molecules to adopt the conformations required for interaction with their target proteins. RH50 is a chloroplast-located DBRH that co-localizes and is co-expressed with GUN1, a central factor in chloroplast-to-nucleus signaling. When combined with mutations that impair pla...
Article
Full-text available
Biogenesis of chloroplasts in higher plants is initiated from proplastids, and involves a series of processes by which a plastid able to perform photosynthesis, to synthesize amino acids, lipids, and phytohormones is formed. All plastid protein complexes are composed of subunits encoded by the nucleus and chloroplast genomes, which require a coordi...
Article
Full-text available
The GENOMES UNCOUPLED 1 (GUN1) gene has been reported to encode a chloroplast-localized pentatricopeptide-repeat protein, which acts to integrate multiple indicators of plastid developmental stage and altered plastid function, as part of chloroplast-to-nucleus retrograde communication. However, the molecular mechanisms underlying signal integration...
Article
Regulation of photosynthetic electron transport provides efficient performance of oxygenic photosynthesis in plants. During the last fifteen years, the molecular bases of various photosynthesis short-term regulatory processes have been elucidated, however the wild type-like phenotypes of mutants lacking of State Transitions, Non Photochemical Quenc...
Article
Developmental or metabolic changes in chloroplasts can have profound effects on the rest of the plant cell. Such intracellular responses are associated with signals that originate in chloroplasts and convey information on their physiological status to the nucleus, which leads to large-scale changes in gene expression (retrograde signalling). A scre...
Article
Plants need a tight regulation of photosynthetic electron transport for survival and growth under environmental and metabolic conditions. For this purpose, the linear electron transport (LET) pathway is supplemented by a number of alternative electron transfer pathways and valves. In Arabidopsis, cyclic electron transport (CET) around photosystem I...
Article
In recent years, peptide aptamers have emerged as novel molecular tools that have attracted the attention of researchers in various fields of basic and applied science, ranging from medicine to analytical chemistry. These artificial short peptides are able to specifically bind, track, and inhibit a given target molecule with high affinity, even mol...
Article
Full-text available
Fruits are an important evolutionary acquisition of angiosperms, which afford protection for seeds and ensure their optimal dispersal in the environment. Fruits can be divided into dry or fleshy. Dry fruits are the more ancient and provide for mechanical seed dispersal. In contrast, fleshy fruits develop soft tissues in which flavor compounds and p...
Article
The oxygen-evolving complex of eukaryotic photosystem II (PSII) consists of four extrinsic subunits, PsbO (33 kDa), PsbP (23 kDa), PsbQ (17 kDa) and PsbR (10 kDa), encoded by seven nuclear genes, PsbO1 (At5g66570), PsbO2 (At3g50820), PsbP1 (At1g06680), PsbP2 (At2g30790), PsbQ1 (At4g21280), PsbQ2 (At4g05180) and PsbR (At1g79040). Using Arabidopsis i...
Article
During plant photosynthesis, photosystems I (PSI) and II (PSII), located in the thylakoid membranes of the chloroplast, use light energy to mobilize electron transport. Different modes of electron flow exist. Linear electron flow is driven by both photosystems and generates ATP and NADPH, whereas cyclic electron flow (CEF) is driven by PSI alone an...
Article
Full-text available
Perturbations in organellar gene expression (OGE) and the thylakoid redox state (TRS) activate retrograde signaling pathways that adaptively modify nuclear gene expression (NGE), according to developmental and metabolic needs. The prors1-1 mutation in Arabidopsis down-regulates the expression of the nuclear gene Prolyl-tRNA Synthetase1 (PRORS1) whi...
Article
Full-text available
As an essential macroelement for all living cells, phosphorus is indispensable in agricultural production systems. Natural phosphorus reserves are limited, and it is therefore important to develop phosphorus-efficient crops. A major quantitative trait locus for phosphorus-deficiency tolerance, Pup1, was identified in the traditional aus-type rice v...
Article
A lack of individual plastid ribosomal proteins (PRPs) can have diverse phenotypic effects in Arabidopsis thaliana, ranging from embryo lethality to compromised vitality, with the latter being associated with photosynthetic lesions and decreases in the expression of plastid proteins. In this study, reverse genetics was employed to study the functio...
Article
Quantification of chlorophyll (Chl) fluorescence is a versatile tool for analysing the photosynthetic performance of plants in a non-intrusive manner. A pulse-amplitude modulated fluorometer was combined with a CNC router for the automated measurement of the effective quantum yield of photosystem 2 (Φ2) of Arabidopsis thaliana plants. About 90 000...
Article
Phosphorylation is the most common post-translational modification found in thylakoid membrane proteins of flowering plants, targeting more than two dozen subunits of all multiprotein complexes, including some light-harvesting proteins. Recent progress in mass spectrometry-based technologies has led to the detection of novel low-abundance thylakoid...
Article
Chloroplasts as descendents of a cyanobacterial endosymbiont have retained, during evolution, their own genome together with the gene expression machinery, including the translation apparatus. Therefore, chloroplast protein synthesis is not only a key process in organello biogenesis and maintenance, but it also represents the major regulatory step...
Chapter
Nitrogen nutrition is one of the major factors that limit growth and production of crop plants. It affects many processes, such as development, architecture, flowering, senescence, and photosynthesis. Although the improvement in technologies for protein study and the widening of gene sequences have made possible the study of the plant proteomes, on...
Article
Full-text available
Chloroplasts, the green differentiation form of plastids, are the sites of photosynthesis and other important plant functions. Genetic and genomic technologies have greatly boosted the rate of discovery and functional characterization of chloroplast proteins during the past decade. Indeed, data obtained using high-throughput methodologies, in parti...
Data
Energy distribution between PSI and PSII measured as the fluorescence emission ratio at 730 nm and 685 nm (F730/F685). (0.04 MB DOC)
Data
Insertion alleles of At4g27800 and their effects on splice variant expression. (A) T-DNA insertions in the At4g27800 locus. The different coding sequences of the three splice variants are depicted as grey boxes. The respective 5′ and 3′ UTRs are shown in white. Introns are indicated as thin lines. Splice variants At4g27800.1 (TAP38) and At4g27800.3...
Article
Full-text available
Author Summary Plants are able to adapt photosynthesis to changes in light levels by adjusting the activities of their two photosystems, the structures responsible for light energy capture. During a process called state transitions, a part of the photosynthetic complex responsible for light harvesting (the photosynthetic antennae) becomes reversibl...
Article
Full-text available
Optimal photosynthetic performance requires that equal amounts of light are absorbed by photosystem II (PSII) and photosystem I (PSi), which are functionally linked through the photosynthetic electron transport chain. However, photosynthetic organisms must cope with light conditions that lead to the preferential stimulation of one or the other of t...
Article
Full-text available
Nitrogen nutrition is one of the major factors that limit growth and production of crop plants. It affects many processes, such as development, architecture, flowering, senescence and photosynthesis. Although the improvement in technologies for protein study and the widening of gene sequences have made possible the study of the plant proteomes, onl...
Article
Full-text available
A novel peptidasome PreP is responsible for degradation of targeting peptides and other unstructured peptides in mitochondria and chloroplasts. Arabidopsis thaliana contains two PreP isoforms, AtPreP1, and AtPreP2. Here we have characterized single and double prep knockout mutants. Immunoblot analysis of atprep1 and atprep2 mutants showed that both...
Article
Full-text available
Flowering plants control energy allocation to their photosystems in response to light quality changes. This includes the phosphorylation and migration of light-harvesting complex II (LHCII) proteins (state transitions or short-term response) as well as long-term alterations in thylakoid composition (long-term response or LTR). Both responses requir...
Data
Data on protein identification by LC-ESI-MS/MS and bioinformatic analysis. Table shows the sequence of the peptides identified by MS/MS and the statistical information related to peptides, proteins and alignment analyses
Data
Details of the protein sequences assigned to spot 53. File shows in detail the sequences of the PEPCase and UB proteins that were identified analyzing the spot 53 by LC-ESI-MS/MS, as well as the sequence alignment analysis to verify the presence of the domain involved in monoubiquitination of the enzyme.
Article
Full-text available
Two homologous plastocyanin isoforms are encoded by the genes PETE1 and PETE2 in the nuclear genome of Arabidopsis thaliana. The PETE2 transcript is expressed at considerably higher levels and the PETE2 protein is the more abundant isoform. Null mutations in the PETE genes resulted in plants, designated pete1 and pete2, with decreased plastocyanin...
Article
Full-text available
Reduction of the plastoquinone (PQ) pool is known to activate phosphorylation of thylakoid proteins. In the Arabidopsis thaliana mutants psad1-1 and psae1-3, oxidation of photosystem I (PSI) is impaired, and the PQ pool is correspondingly over-reduced. We show here that, under these conditions, the antenna protein Lhca4 of PSI becomes a target for...
Article
During photosynthesis, two photoreaction centers located in the thylakoid membranes of the chloroplast, photosystems I and II (PSI and PSII), use light energy to mobilize electrons to generate ATP and NADPH. Different modes of electron flow exist, of which the linear electron flow is driven by PSI and PSII, generating ATP and NADPH, whereas the cyc...
Article
Signals originating from chloroplasts and mitochondria modulate nuclear gene expression (retrograde signalling). Relevant signals are derived from the pool of reactive oxygen species or generated by changes in redox state, flux through the tetrapyrrole biosynthetic pathway, or rates of organelle protein synthesis. In addition, multiple interactions...
Article
Full-text available
PSI-E is part of the stromal side of photosystem I (PSI). In Arabidopsis thaliana, the two nuclear genes PsaE1 and PsaE2 code for PSI-E, and transcripts of PsaE1 are markedly more abundant than PsaE2 transcripts. Stable null alleles of the two PsaE genes, psae1-3 and psae2-1, were identified and characterised. The psae2-1 mutant exhibited wild-type...
Chapter
The completion of the genome sequence of the small weed plant Arabidopsis thaliana (The Arabidopsis genome initiative 2000), and more recently of rice (Goff et al. 2002; Yu et al. 2002, 2005), has greatly changed the face of plant biology. Knowing the exact sequence and location of all the genes of a given organism is the first step towards underst...
Article
Full-text available
Arabidopsis thaliana mutants prors1-1 and -2 were identified on the basis of a decrease in effective photosystem II quantum yield. Mutations were localized to the 5'-untranslated region of the nuclear gene PROLYL-tRNA SYNTHETASE1 (PRORS1), which acts in both plastids and mitochondria. In prors1-1 and -2, PRORS1 expression is reduced, along with pro...
Article
Full-text available
Illumination changes elicit modifications of thylakoid proteins and reorganization of the photosynthetic machinery. This involves, in the short term, phosphorylation of photosystem II (PSII) and light-harvesting (LHCII) proteins. PSII phosphorylation is thought to be relevant for PSII turnover, whereas LHCII phosphorylation is associated with the r...