A new Dondice Marcus Er. 1958 (Gastropoda: Nudibranchia) from the Mediterranean Sea reveals interesting insights into the phylogenetic history of a group of Facelinidae taxa

GIULIA FURFARO ${ }^{1,2^{*}}$ \& PAOLO MARIOTTINI ${ }^{1}$
${ }^{1}$ Department of Science, University of "Roma Tre", Viale G. Marconi 446, I-00146 Rome, Italy.
${ }^{2}$ Department of Biological and Environmental Sciences and Technologies - DiSTeBA, University of Salento, Via Prov.le Lecce - Monteroni, 73100 Lecce, Italy.
*Corresponding author: giulia.furfaro@unisalento.it phone: +39.0657336359,orcid.org/0000-0001-8184-2266

Abstract

The diversity of Mediterranean nudibranchs has yet to be thoroughly studied: new species are constantly described, and molecular approaches have revealed some cryptic species. A new facelinid species has been discovered based on specimens collected from the Tyrrhenian Sea (Mediterranean Sea). Integrative results of molecular analyses and of anatomical investigations support the description of Dondice trainitoi sp. nov. The characteristic chromatic body pattern and the black epithelium covering the masticatory jaws allow an unambiguous identification of the new taxon. Preliminary phylogenetic analyses based on multi-locus molecular markers (nuclear H3 gene and mitochondrial markers 16 S rDNA and COI) surprisingly revealed paraphyly of the genus Dondice and the need of further studies including more taxa assigned to the currently accepted family Facelinidae. Furthermore, following an integrative taxonomy approach, considerations on the ecological behaviour characterizing most of the species involved in this study provide useful insights for understanding the evolutionary history of this facelinid group.

Key words: Integrative Taxonomy, nudibranch, Facelinidae, Heterobranchia, Tyrrhenian Sea

Introduction

Nudibranch diversity has fascinated amateurs and scientists for decades and is still far from being fully understood. New elusive and rare species have been revealed by recent studies (Evertsen \& Bakken 2013;Colucci et al. 2015; Trainito et al. 2017) and cryptic species have been discovered, challenging traditional morphological species determination (Churchill et al. 2014; Furfaro et al. 2016a, 2018b; Korshunova et al. 2017). Several studies investigating nudibranchs with molecular approaches (DNA barcoding, species delimitation analyses, phylogenetic inference) helped in detecting such hidden diversity, all over the world.

In 2014, during a scientific SCUBA dive on a wreck in the central Tyrrhenian Sea (Mediterranean Sea), two specimens were found which could not be assigned to any known Mediterranean heterobranch species. Their morphology recalled the facelinid Dondice banyulensis Portmann \& Sandmeier, 1960, with some important differences. Within Nudibranchia, the Facelinidae Bergh, 1889 is one of the most speciose families, showing a great diversity with 34 currently accepted genera (Facelinidae, MolluscaBase 2018a). Focusing on different eolid families, recent molecular works questioned the monophyly of Facelinidae (Gosliner et al. 2007; Carmona et al. 2015), but phylogenetic relationships among the members of the family are still unresolved.

The genus Dondice Marcus, 1958 belongs to the Facelinidae family and was originally described as " a facalanine with simple jaws, unarmed penis, and produced foot corners" (Marcus Er. 1958) on the basis of Brazilian specimens of Caloria occidentalis (Engels, 1925), which Marcus established as type species of the new genus. Currently, the genus Dondice includes four species (Gofas 2004): D. banyulensis, D. galaxiana Millen \& Hermosillo, 2012, D. occidentalis Engel, 1925 and D. parguerensis Brandon \& Cutress, 1985. Dondice banyulensis is the only species of Dondice occurring in the Mediterranean Sea, while the other taxa show an Eastern Pacific and a Western

Atlantic Ocean distribution. Millen \& Hermosillo provisionally placed D. galaxiana in the genus Dondice, because of some peculiarities shared with D. occidentalis (i.e. cerata in arches with multiple rows, a separate and unstalked penial gland and the unarmed penis). Neither further systematic assessment, nor molecular data were produced for this species whose taxonomical position must still be considered uncertain. Dondice occidentalis, the type species of the genus, was described by Engel (1925) from specimens living in Montego Bay, Jamaica. To date, its geographical distribution includes Brazil (Sao Paulo), North Carolina, USA, many spots of the Caribbean Sea (seaslug forum: http://www.seaslugforum.net/find/dondocci) and Canary islands (OPK: https://opistobranquis.info/en/guia/ nudibranchia/cladobranchia/aeolidioidea/dondice-occidentalis/). Dondice parguerensis is another questioned species: morphologically similar to D. occidentalis, it differs from it by coloration, size, number of ceratal groups, larval development and primarily by different preys [Cassiopea Péron \& Lesueur, 1810 (Cnidaria, Scyphozoa) for D. parguerensis and hydroids (Cnidaria) for D. occidentalis] (Brandon \& Cutress 1985; Gonzalez et al. 2013). Anyway, these two Dondice species were molecularly analysed by Gonzalez et al. (2013) revealing a very low genetic divergence at the 16 S mitochondrial molecular marker and no differences at all at the nuclear H 3 marker. This unexpected result raised doubts about the validity of the specimens included in the aforementioned work and/or about the validity of the morphological features used as diagnostic for the species and this controversy has yet to be resolved.

In this study we tested the identification of the hypothetical Mediterranean new species, based on external morphology, with a molecular DNA barcoding approach. Furthermore, to investigate the monophyly of the genus Dondice, we include members belonging to other genera historically considered close to Dondice genus or, accordingly to previous studies, molecularly related to it. In particular, we included in the definitive dataset members of the genera Babakina Roller, 1973, Cratena Bergh, 1864, Dicata Schmekel, 1967, Facelina Alder \& Hancock, 1855, Favorinus Gray, 1850, Godiva Macnae, 1954 and Phyllodesmium Ehrenberg, 1831. We explored the systematics of the genus Dondice and all the possibly evolutionary related genera, following an Integrative Taxonomic method, by comparing results obtained by different molecular and morphological analyses. In particular, by using anatomical data and a multilocus molecular approach with the nuclear H3 gene and the two mitochondrial markers 16 S rRNA and COI, we here: i) describe the new taxon Dondice trainitoi sp. nov., from the Central Mediterranean Sea; ii) unravel the diversity of the Mediterranean species; iii) explore the phylogenetic relationships among the genus Dondice and other related genera.

Materials and Methods

Individuals, egg spawns and the hydroids on which they were feeding were documented in situ with high definition photographs. Each collected specimen was photographed, measured, preserved in 95% ethanol (EtOH) and deposited as a voucher at the Department of Science of the Roma Tre University. The holotype MNHN IM-2000-33722 and the paratypes MNHN IM-2000-33723 and MNHN IM-2000-33724 were deposited at the Muséum national d'histoire naturelle (MNHN, Paris, France); other paratypes (RM3_1101, RM3_1102 and RM3_621) and additional specimens (RM3_1034-RM3_1036, RM3_1153, RM3_1536, RM3_1537, RM3_1540 and RM3_1541) are stored at Department of Science, University of Roma Tre, Italy.

Molecular analyses

DNA was extracted from ten individuals belonging to the family Facelinidae (Table 1) from a small piece of tissue, by using the 'salting out' procedure as described in Aljanabi \& Martinez (1997). The analysed dataset consisted of a total of 134 sequences, of which 22 newly produced and the remaining retrieved from GenBank, from 47 individuals belonging to 32 different species, including the out group (Table 1). Amplifications were performed by PCR using universal primers: 16Sar-L and 16Sbr-H (Palumbi et al. 2001) for the 16S rRNA fragment, LCO1490 and HCO2198 (Folmer et al. 1994) for the barcode fragment of the Cytocrome Oxidase subunit I (COI), and H3AD-F and H3BD-R (Colgan et al. 1998) for the nuclear Histone 3 (H3) marker. PCR conditions were the same for the three molecular markers and included: 5 min of initial DNA denaturation step at $94^{\circ} \mathrm{C} ; 35$ cycles of $94^{\circ} \mathrm{C} / 30 \mathrm{~s}$ (DNA denaturation step), $46-50^{\circ} \mathrm{C} / 60 \mathrm{~s}$ (annealing step), $72^{\circ} \mathrm{C} / 60 \mathrm{~s}$ (elongation step); and 7 min of final extension at $72^{\circ} \mathrm{C}$ (Furfaro et al. 2016b). All amplicons were sequenced at the European Division of Macrogen Inc. (Amsterdam, The Netherlands). Sequences from each DNA strain were assembled and edited with Staden Package 2.0.0b9 (Staden et al.

TABLE 1. Species name, collection localities, Voucher ID, sequence accession numbers of the specimens analysed and references.

SPECIES	LOCALITY	VOUCHER	H3	16S	COI	REFERENCES
Aeolidiella alderi (Cocks, 1852)	Italy	ZSMMol20012341	HQ616795	HQ616766	HQ616729	$\begin{aligned} & \text { Carmona et al. } \\ & 2011 \end{aligned}$
Aeolidiella sanguinea (Norman, 1877)	France (Atlantic Ocean)	MNCN/ADN51932	JX087600	JX087538	JX087466	$\begin{aligned} & \text { Carmona et al. } \\ & 2013 \end{aligned}$
Babakina anadoni (Ortea, 1979)	Brazil	MNRJ10893	HQ616775	HQ616709	HQ616746	$\begin{aligned} & \text { Carmona et al. } \\ & 2011 \end{aligned}$
Babakina anadoni (Ortea, 1979)	Galicia, Spain (Atlantic Ocean)	MNCN15.05/46704	HQ616796	HQ616730	HQ616767	$\begin{aligned} & \text { Carmona et al. } \\ & 2011 \end{aligned}$
Babakina indopacifica Gosliner, GonzalezDuarte \& Cervera, 2007	Luzon, Batangas, Philippines	CASIZ177458	HM162587	HM162678	HM162754	Pola \& Gosliner 2010
Cratena peregrina (Gmelin, 1791)	Sabaudia, Latium, Italy	RM3_319	LS483293	LS483282	LS483272	Present study
Dicata odhneri Schmekel, 1967	Ballanera, Algesiras, Spain	BAU2674	LT596569	LT596549	LT596560	Furfaro et al. 2016a
Dicata odhneri Schmekel, 1967	Andalusia, Spain (Mediterranean Sea)	MNCN15.05/53692	----------	HQ616739	HQ616773	$\begin{aligned} & \text { Carmona et al. } \\ & 2011 \end{aligned}$
Dondice banyulensis Sandmeier, 1960	Djerba, Tunisia	RM3_129	LS483284	LS483274	LS483267	Present study
Dondice banyulensis Sandmeier, 1960	Argentario, Tuscany, Italy	RM3_356	LS483285	LS483275	LS483268	Present study
Dondice banyulensis Sandmeier, 1960	Sant'Agostino, Latium, Italy	RM3_290	LS483286	LS483276	LS483269	Present study
Dondice banyulensis Sandmeier, 1960	----------	Db_60	----	GQ403751	GQ403773	Wagele et al. 2010
Dondice occidentalis (Engel, 1925)	Exuma, Bahamas	LACM177715	KC526529	KC526510	----------	Gonzalez et al. 2013
Dondice occidentalis (Engel, 1925)	----------	LACM2003-41.5	JQ699394	JQ699482	JQ699570	Churchill C.K.C. et al. 2013
Dondice occidentalis (Engel, 1925)	Exuma, Bahamas	D252	KC526527	KC526518	--------	$\begin{aligned} & \text { Gonzalez et al. } \\ & 2013 \end{aligned}$
Dondice occidentalis (Engel, 1925)	Jamaica	JG61	KC526534	KC526512	----------	$\begin{aligned} & \text { Gonzalez et al. } \\ & 2013 \end{aligned}$

....Continued next page

TABLE 1. (Continued)

SPECIES	LOCALITY	VOUCHER	H3	16S	COI	REFERENCES
Dondice parguerensis Brandon \& Cutress, 1985	La Parguera, Puerto Rico	LACM177705	KC526535	KC526520	---------	Gonzalez et al. Dondice trainitoi sp.nov.
Civitavecchia, Dondice trainitoi sp.nov.	Latium, Italy	RM3_425				
Cacelinavecchia, annulicornis	RM3_596	LS483287	LS483277	LS483270	Present study	
(Chamisso \& Italy						

TABLE 1. (Continued)

SPECIES	LOCALITY	VOUCHER	H3	16S	COI	REFERENCES
Phyllodesmium hyalinum Ehrenberg, 1831		Phy.orig.	--------	GQ403756	GQ403778	Wagele et al. 2a10
Phyllodesmium jakobsenae Wägele, 2004	Batangas, Philippines	CASIZ 177576	HQ010456	HQ010524	HQ010489	 Gosliner 2011
Phyllodesmium Gosliner, 2009	Batangas, Philippines	CASIZ 180384	HQ010478	HQ010544	HQ010508	 Ghosliner 2011
Phyllodesmium koehleri Burghardt, Schrödl \& Wägele, 2008	Batangas, Philippines	CASIZ 177693	HQ010462	HQ010530	HQ010494	
Phyllodesmium lizardensis	Batangas, Burghardt, Schrödl \& Wägele, 2008	Philippines	CASIZ 180382	HQ010474	HQ010540	HQ010505

2000). BLASTN (Altschul et al. 1990) search was conducted in the GenBank database to confirm the identity of the sequenced fragment and to exclude contamination. Consensus sequences of each individual were aligned together with GenBank (https://www.ncbi.nlm.nih.gov/nucleotide/) sequences using the Muscle algorithm implemented in MEGA 6.0 (Tamura et al. 2013). The number of COI base differences per site from averaging over all sequence pairs between groups were calculated. Mean p-distances between species were calculated on the COI dataset (including the outgroup) with the use of the program MEGA 6.0. The Automatic Barcode Gap Discovery (ABGD, available at http://wwwabi.snv.jussieu.fr/public/abgd/) was carried out to detect the so-called "barcode gap" in the distribution of pairwise distances calculated in a sequence alignment (Puillandre et al. 2012a, 2012b). The ABGD analysis was performed on the COI ingroup dataset using the Kimura two-parameter (K2p) model and the following settings: a prior for the maximum value of intraspecific divergence between 0.001 and $0.1,30$ recursive steps within the primary partitions defined by the first estimated gap, and a gap width of 0.1 . The analysis involved 43 COI sequences (588 bp , base pairs of nucleotides), 4716 S sequences (413 bp) and 44 sequences (294 bp) of the nuclear

H3, in the final dataset. We used Gblocks 0.91 b (Castresana 2000; Talavera \& Castresana 2007) to eliminate poorly aligned positions or hyper-divergent regions of the multiple sequence alignment of the 16 S rDNA (resulting 16 S dataset of 363 bp). We used less stringent options such as 'allow gap positions (with half) within the final blocks'. For each gene alignment, the best evolutionary model was selected in JModel Test 0.1 (Posada 2008) according to the Bayesian Information Criterion (BIC). Single genes and concatenated datasets (H3, 16S and COI markers) were analysed using Bayesian Inference (BI) and Maximum likelihood (ML) methods implementing the models selected by JModel Test for each gene. BI analyses were carried out with MrBayes 3.2.6 (Ronquist et al. 2012) with four Markov-chains of five million generations each, sampled every 1000 generations. Consensus trees were calculated on trees sampled after a burnin of 25%. ML searches were performed using GARLI 0.96 (Zwickl 2006) with a starting tree topology generated by the ML stepwise-addition algorithm. Nodal support was assessed by means of 1000 bootstrap replicates. Nodes in the resulting phylogenetic trees with Bayesian posterior probabilities (PP) $\geq 0.96 \%$ and bootstrap values (BS) $\geq 90 \%$ were considered 'highly' supported, nodes with PP of $0.90-0.95 \%$ and BS of 80$89 \%$ were considered 'moderately' supported (lower support values were considered not significant). We carried out molecular analyses described above, on different datasets (not shown) in order to optimize the definitive dataset by including only taxa with a significant phylogenetic signal within this heterogeneous family group. The definitive in-group consisted of Facelinidae species belonging to the genera Babakina, Cratena, Dicata, Facelina, Favorinus, Godiva, Phyllodesmium and members of the families Aeolidiidae Gray, 1827 and Flabellinidae Bergh, 1889. Tritonia striata Haefelfinger, 1963 was used as the out-group for the molecular analyses, because of the basal placement within Cladobranchia showed by the genus Tritonia Cuvier, 1798 as proposed by Pola \& Gosliner (2010).

Morphological analyses

Anatomical observations were conducted on the buccal apparatus and on the reproductive system to assess the status of these commonly used diagnostic morphological characters. The buccal apparatus of D. trainitoi $\mathbf{~ s p}$. nov. specimens ($\mathrm{n}=3$) was analyzed by using both optical and Scanning Electronic Microscopies (SEM). Buccal masses were removed and dissolved in a $10 \% \mathrm{NaOH}$ solution for radulae and jaws extraction. Radulae and jaws were rinsed in water, dried, and mounted for examination by optical microscopy as reported in Furfaro et al. (2016b). To obtain high resolution SEM images, dissected radulae were dehydrated in $100 \% \mathrm{EtOH}$ through a graded series (50-70-90-95-100\% EtOH), critical point-dried in a Balzer Union CPD 030 unit, gold coated in an Emitech K550 unit, and finally examined by using the field emission SEM column of the Dualbeam (FIB/SEM) Helios Nanolab (FEI Company, Eindhoven, The Netherlands) at the LIME (Electron Microscopy Interdepartmental Laboratory, University Roma Tre), with secondary electrons and an operating voltage of 5 kV . The reproductive system (from two individuals each, three in the case of the new species) of D. trainitoi sp. nov., D. banyulensis and Godiva quadricolor (Barnard, 1927) respectively were observed and studied under a dissecting microscope.

Results

The first records of the new taxon D. trainitoi sp. nov. occurred on the June 11th 2014, during a scuba dive at 30-40 m depth on the "Asia" wreck (1 mile off Riva di Traiano Harbour, Civitavecchia, Central Tyrrhenian Sea, Mediterranean, $42^{\circ} 03^{\prime} 15^{\prime} \mathrm{N}, 11^{\circ} 47^{\prime} 45^{\prime} \mathrm{E}$). Two years later, two new findings took place in the same locality and seasonal period (June 4th and August 28th 2016). During the years 2017 and 2018, several individuals were observed grazing on hydroids attached to the same wreck. New records occurred at "Liburna" another wreck located about 100 m far from the "Asia" ($42^{\circ} 01^{\prime} 47^{\prime}$ " $\left.\mathrm{N}, 11^{\circ} 48^{\prime} 31^{\prime \prime} \mathrm{E}\right)$. This last finding occurred on hydroids at the same bathymetric range. Picture of one individual belonging to this new species was taken from Portofino promontory in Punta del Faro $\left(44^{\circ} 17^{\prime} 53^{\prime \prime} \mathrm{N}, 9^{\circ} 13^{\prime} 47^{\prime \prime} \mathrm{E}\right)$ (Liguria, Italy) on the May 30th 2018. On the August 13th of the same year, two individuals (RM3_1540 and RM3_1541) have been found in Procida Island near Naples ($40^{\circ} 45^{\prime} 02.6^{\prime \prime} \mathrm{N}, 14^{\circ} 01^{\prime} 31.6^{\prime \prime} \mathrm{E}$) (Campania, Italy). Molecular and morphological analyses were performed on the new species (Fig. 1) and on specimens from other related taxa. The final dataset, comprising all the specimens involved in this study, is reported in Table 1.

Molecular analyses

The ABGD analysis highlighted a barcoding gap between 1% and 5% of genetic distances at the COI mitochondrial marker in the in-group (Fig. 2). Genetic p-distances (of the COI dataset) among species analysed, excluding the out-group, were also calculated and results obtained are shown in Table 2. The resulting concatenated alignment
TABLE 2. Mean COI p-distances between species included in molecular analyses.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
1-D. banyulensis	-																														
2-D. trainitoi	18\%	-																													
sp. nov.																															
3-D. occidentalis	19\%	15\%	-																												
4- G. quadricolor	18\%	20\%	18\%	-																											
5-P. karenae	19\%	19\%	19\%	20\%	-																										
6-P. colemani	21\%	19\%	20\%	18\%	20\%	-																									
7-P. jakobsenae	19\%	19\%	20\%	18\%	20\%	21\%	-																								
8 - P. opalescens	19\%	20\%	21%	18\%	20\%	22%	20\%	-																							
9-P. hyalinum	20\%	20\%	19\%	17\%	19\%	21\%	8\%	21\%	-																						
$10-\mathrm{P}$. horridum	17\%	18\%	16\%	18\%	18\%	18\%	19\%	17\%	20\%	-																					
11 - P. briareum	17\%	18\%	19\%	18\%	21\%	17\%	18\%	21\%	18\%	18\%	-																				
12 - P. crypticum	18\%	19\%	21\%	19\%	19\%	18\%	17\%	18\%	15\%	19\%	19\%	-																			
$13-\mathrm{P}$.	18\%	19\%	19\%	16\%	19\%	18\%	14\%	19\%	14%	17\%	19\%	14\%	-																		
tuberculatum																															
14 - P. parangatum	21\%	22\%	20\%	19\%	19\%	20\%	19\%	19\%	21\%	20\%	22\%	17\%	18\%	-																	
15-P. koehleri	19\%	21\%	18\%	18\%	20\%	18\%	15\%	20\%	15\%	18\%	19\%	16\%	14\%	20\%	-																
16 - P. lizardensis	20\%	20\%	19\%	19\%	21\%	19\%	14\%	21\%	16\%	20\%	20\%	17\%	13\%	18\%	12\%	-															
17 - P. poindimiei	18\%	17\%	16\%	18\%	17\%	19\%	20\%	17\%	20\%	16\%	20\%	22%	19\%	20\%	20\%	22\%	-														
$18-\mathrm{P}$.	21\%	20\%	17\%	17\%	19\%	18\%	19\%	18\%	20\%	17\%	20\%	22\%	18\%	21\%	21\%	21\%	14\%	-													
macphersonae																															
19 - P. rudmani	20\%	19\%	20\%	19\%	18\%	17\%	13\%	18\%	15\%	17\%	18\%	15\%	13\%	19\%	13\%	14\%	19\%	21\%	-												
20-D. odhneri	19\%	17\%	19\%	16\%	21\%	20\%	19\%	20\%	18\%	17\%	20\%	18\%	17\%	21\%	20\%	18\%	20\%	20\%	18\%	-											
21-F. branchialis	20\%	19\%	19\%	20\%	22%	20\%	21\%	23\%	22\%	20\%	22%	22\%	20\%	21\%	20\%	20\%	19\%	21\%	20\%	20\%	-										
22 - F. bostoniensis	19\%	21\%	19\%	20\%	21\%	21\%	21\%	21\%	19\%	16\%	21\%	22\%	20\%	23\%	17\%	18\%	19\%	20\%	19\%	19\%	19\%	-									
23-F. annulicornis	21\%	21\%	21%	20\%	21\%	22%	18\%	21\%	20\%	19\%	20\%	21\%	20\%	22%	21\%	23\%	22%	20\%	21\%	20\%	22\%	20\%	-								
24 - F. rubrovitata	17\%	17\%	19\%	19\%	18\%	20\%	18\%	21\%	17\%	17\%	16\%	18\%	18\%	23\%	18\%	20\%	18\%	18\%	18\%	19\%	19\%	15\%	17\%	-							
25-C. peregrina	18\%	20\%	20\%	22\%	20\%	22\%	24\%	21\%	25\%	20\%	21\%	22\%	22\%	25\%	22\%	23\%	20\%	22\%	23\%	22\%	18\%	20\%	21\%	16\%	-						
26 - B. anadoni	20\%	21\%	19\%	19\%	20\%	20\%	18\%	19\%	20\%	19\%	20\%	21\%	20\%	22\%	20\%	20\%	20\%	20\%	20\%	18\%	20\%	20\%	22%	19\%	20\%	-					
27 - B. indopacifica	21\%	22\%	20\%	19\%	21\%	18\%	21\%	21\%	20\%	17\%	21\%	20\%	20\%	20\%	21%	20\%	20\%	19\%	21\%	18\%	19\%	21\%	20\%	20\%	20\%	16\%	-				
28 - A. sanguinea	20\%	18\%	18\%	19\%	18\%	19\%	19\%	20\%	20\%	18\%	19\%	20\%	19\%	19\%	21%	20\%	19\%	20\%	19\%	18\%	20\%	20\%	19\%	19\%	19\%	17\%	18\%	-			
29 - A. alderi	20\%	20\%	19\%	19\%	20\%	20\%	22%	20\%	20\%	17\%	20\%	21\%	19\%	20\%	19\%	21\%	20\%	19\%	20\%	17\%	20\%	19\%	20\%	20\%	19\%	17\%	16\%	14\%	-		
$30-$ F. affinis	19\%	20\%	20\%	20\%	21\%	19\%	21\%	22%	22\%	19\%	20\%	22%	21\%	23\%	22\%	23\%	21\%	19\%	21\%	19\%	20\%	20\%	21\%	20\%	19\%	19\%	19\%	17\%	19\%	-	
31-T. striata	21\%	22\%	20\%	22\%	20\%	23\%	20\%	24\%	19\%	21\%	22%	20\%	22%	21\%	23\%	22%	23\%	22%	20\%	20\%	21\%	22\%	21\%	20\%	24\%	22%	19\%	22\%	23\%	24%	-

consisted of 1245 different positions with TIM2ef +G , TPM3uf $+\mathrm{I}+\mathrm{G}$ and $\mathrm{TrN}+\mathrm{I}+\mathrm{G}$ as the best model of evolution for $\mathrm{H} 3,16 \mathrm{~S}$ and COI respectively. The concatenated and partitioned Bayesian inference and Maximum Likelihood analyses were congruent to each other and showed higher statistical support values than single genes analyses. The resulting topology (Fig. 2) highlighted a well-supported monophyletic clade ($\mathrm{BI}=1$; $\mathrm{ML}=99$) grouping all species belonging to Phyllodesmium Ehrenberg, 1831. This monophyletic group is clustered ($\mathrm{BI}=0.98$; $\mathrm{ML}=69$) with a grade composed by G. quadricolor, the type species of Godiva, as sister ($\mathrm{BI}=0.79$; $\mathrm{ML}=\mathrm{ns}$) to a clade with three Dondice species: D. occidentalis, the type species of the genus Dondice, showing no genetic differences to D. parguerensis ($\mathrm{BI}=1$; $\mathrm{ML}=98$), and D. trainitoi $\mathbf{s p}$. nov. which is a well-supported clade ($\mathrm{BI}=1 ; \mathrm{ML}=100$). Dondice banyulensis is sister, with high statistical support ($\mathrm{BI}=1 ; \mathrm{ML}=100$), to the clade including Phyllodesmium, Godiva and other Dondice species, revealing the genus Dondice as non-monophyletic. The latter highly supported monophyletic big group clustered with another clade ($\mathrm{BI}=0.93$; $\mathrm{ML}=52$) composed by Babakina anadoni $(\mathrm{Ortea}, 1979)$ and B. indopacifica Gosliner, Gonzalez-Duarte \& Cervera, 2007 (BI=0.99; ML=70) sister to Dicata odhneri Schmekel, 1967 (BI=0.59; $\mathrm{ML}=<50$), and altogether sister to two Aeolidiella species ($\mathrm{BI}=0.94$; $\mathrm{ML}=<50$). Flabellina affinis (Gmelin, 1791) is sister to all the species mentioned above ($\mathrm{BI}=0.97 ; \mathrm{ML}=60$). The big clade which includes members of Aeoliidae, Facelinidae and Flabellinidae families is grouped ($\mathrm{BI}=0.97$; $\mathrm{ML}=<50$) with a clade $(\mathrm{BI}=1 ; \mathrm{ML}=90)$ composed by four other Facelinidae species. More in detail this clade is composed by Facelina bostoniensis (Couthouy, 1838) and F. rubrovittata (Costa A., 1866) ($\mathrm{BI}=1$; $\mathrm{ML}=95$), sister to Cratena peregrina (Gmelin, 1791) $(\mathrm{BI}=0.67 ; \mathrm{ML}=<50)$ and with F. annulicornis (Chamisso \& Eysenhardt, 1821) as the sister to all of them. Favorinus branchialis (Rathke, 1806) showed a basal placement $(\mathrm{BI}=1 ; \mathrm{ML}=100)$ resulting as the sister to all other eolids reported above.

Morphological analyses

Results from optical and SEM microscopical examinations of the masticatory system of D. trainitoi sp. nov. are shown in figures 3 and 4. Pictures and drawings of the reproductive systems are depicted in figure 5.

TAXONOMY

Family FACELINIDAE Bergh, 1890

Genus Dondice Marcus, Er. 1958

Dondice trainitoi sp. nov. (Figures 1 A-F)

Zoobank: urn:lsid:zoobank.org:act:5072B304-A2F2-4AB0-A0EF-6DF26EC0242B

Holotype: MNHN IM-2000-33722, 10 mm in length, Riva di Traiano, Civitavecchia, Latium, Italy, Mediterranean Sea, August 03 2017, 28 m depth, $42^{\circ} 03^{\prime} 15^{\prime}$ 'N, $11^{\circ} 47^{\prime} 45^{\prime}$ 'E.

Paratypes: paratype MNHN IM-2000-33723, 5 mm in length, Riva di Traiano, Civitavecchia, Latium, Italy, Mediterranean Sea, June 11 2016, 30 m depth; paratype MNHN IM-2000-33724, 5 mm long, Riva di Traiano, Civitavecchia, Latium, Italy, Mediterranean, June 04 2016, 32 m depth; paratype RM3_1101, 8 mm in length; paratype RM3_1102, 11 mm in length, Riva di Traiano, Civitavecchia, Latium, Italy, Mediterranean Sea, August 03 2017, 30 m depth; paratype RM3_621, 16 mm in length, Riva di Traiano, Civitavecchia, Latium, Italy, Mediterranean Sea, August 25 2016, 30 m depth. All type material sampled at the "Asia" wreck on hydroids.

Etymology: The species name is after Egidio Trainito, expert in nudibranch biology and Mediterranean marine biodiversity, underwater photographer and good friend of the authors.

Holotype morphological description: The body is slender, with a narrow foot. The anterior part of the foot is bilabiate and extended into well-defined propodial tentacles. The elongate body is translucent cream, with bright white spots along the border of the foot, oral foot corners and tail. A characteristic iridescent light blue band is present on the tail, along the dorsum and the head where it bifurcates into two lines ending at the half part of the oral tentacles. Two other lateral lines of the same iridescent color are present dorsally, starting from the lateral part of the head below the rhinophores, becoming narrower and lighter through the body and terminating in the tail joining the dorsal band. A typical black pigment covering the mandibles is clearly visible through the epithelium. The cerata
are translucent cream with a digestive gland that is yellowish in the basal portion but becoming gradually orange in the sub terminal part. The upper part of the cerata has a brightly yellowish ring larger in the anterior part than in the back where it is tapered. At the base of the rhinophores, the head is diaphanous, allowing the dark eyes to be seen (Figs 1A, C-E).

FIGURE 1 Dondice trainitoi sp. nov. (A) Specimen from Portofino promontory ($\left.44^{\circ} 17{ }^{\prime} 53^{\prime \prime} \mathrm{N}, 9^{\circ} 13^{\prime} 47^{\prime \prime} \mathrm{E}\right)$ photographed in situ by Michele Solca and not collected. (B) In laboratory photograph of the holotype (Voucher MNHN IM-2000-33722) from 'Asia' wreck ($42^{\circ} 03^{\prime} 15^{\prime} \mathrm{N}, 11^{\circ} 47^{\prime} 45^{\prime}$ 'E). (C) Specimen from 'Asia' wreck ($42^{\circ} 03^{\prime} 15^{\prime} \mathrm{N}, 11^{\circ} 47^{\prime} 45^{\prime}{ }^{\prime} \mathrm{E}$) photographed in situ by Jonathan Vulcano and not collected. (D) Cephalic portion of the paratype MNHN IM-2000-33724. (E) Lateral view of the paratype MNHN IM-2000-3372. (F) Egg mass of the paratype MNHN IM-2000-33723. Scale bar $=2 \mathrm{~mm}(\mathrm{~B}),=1 \mathrm{~mm}(\mathrm{D})$

FIGURE 2 The Bayesian tree portrays the phylogenetic relationships based on the H3+16S+COI combined dataset. Numbers at nodes are Bayesian posterior probability (BI, left) and ML bootstrap support (BS, right), respectively. The histogram in the upper left part results from the ABGD analysis at the COI barcoding region showing the distribution of the pairwise estimated genetic distances (K2p) in intraspecific (left, light grey) and interspecific (right, dark grey) comparisons.

The rhinophores are lamellate with ten dish-shaped annulations and end with a cylindrical tip (Fig. 1D). The basal portion and the narrow posterior furrow of the rhinophores are smooth. In their upper portion, there is a brightly white/yellowish stripe that is wider in the anterior than in the posterior part. The oral tentacles are longer than the rhinophores, cylindrical and slender with a bright band in the same color of the apical portion of the rhinophores. The notum showed four clusters of cerata composed by two rows, with the exception of the last group that has only one row of small cerata. There is one precardiac cluster with 22 cerata, two median groups with 16 and 14 cerata respectively, and the posterior one with a single row of 5 cerata. The cerata are slender and cylindrical, light orange, and with a yellow ring which is expanded in the front part and jointed in the rear (Fig. 1). The head is slender. The anus is cleioproct, located within the first post-hepatic arch.

Internal anatomy: Three specimens, including the paratype MNHN IM-2000-33724 (Fig. 1D), were examined. The masticatory jaws are covered with a typical black epithelium (Fig. 1E). The underlying chitinous jaws are visible from the muscular lips (Fig. 3A). These structures are pale yellowish and characterized by 16 well-developed, triangular denticles per each side (Figs 3B-D). The radular formula is $8-12 \times(0.1 .0)$ (Figs 4A-D). The rachidian tooth has a median cusp, bearing one denticle for each side, and it has 4-5 triangular denticles on each side of the cusp (Figs 4E, F). The reproductive system (Fig. 5) is diaulic. The genital openings are on the right side of the body, between the first and the second group of cerata (Fig. 5B). The long tubular ampulla runs the length of the female gland mass and the hermaphroditic duct then bifurcates into the oviduct and the vas deferens (Figs 5D-F). The male gland terminates into the globular and unarmed penis (Fig. 5F). The penial bulb is smooth and muscular externally.

The vagina is connected to an ovoidal receptaculum seminis and to the convoluted duct of the female gland mass. The female gland mass is white and complex, with a central rounded and a lateral tortuous mass (Fig. 5F).

FIGURE 3 Optical (A, B, C) and SEM (D) images of the masticatory jaws of the buccal apparatus of Dondice trainitoi sp. nov. at different magnification levels. Scale bar $=100 \mu \mathrm{~m}(\mathrm{~A}, \mathrm{~B}),=40 \mu \mathrm{~m}(\mathrm{C}),=10 \mu \mathrm{~m}(\mathrm{D})$

Distribution: Currently, this species is known from the Latium coast (Civitavecchia), type locality, and from Portofino Marine Protected Area (MPA) (Gulf of Genoa, Liguria) and Procida island (Naples, Campania) which are to date respectively the northernmost and the southernmost distribution sites. In particular, most of the findings took place on the 'Asia' and the near 'Liburna' wrecks, located near the harbour of Civitavecchia where this sea
slug is really abundant (with a total of 15-20 individuals observed per each dive). Four years after the first finding in Civitavecchia, about seven individuals were observed from Portofino MPA, while only two specimens were photographed and collected from Procida Island. The specimens were found feeding on colonies of hydroids covering the artificial substrate, made of torn nets from fishing trawlers, wrapping both wrecks, or on colonies of hydroids in a Coralligenous rocky bottom, from June to early September. The geographic distributions of the species is reported in Figure 6.

FIGURE 4 Optical (A-C, E) and SEM (D, F) images of the radula of Dondice trainitoi sp. nov. at different magnification levels. (A-D) Radula. (E, F) Rachidian tooth. Scale bar $=100 \mu \mathrm{~m}(\mathrm{D}),=20 \mu \mathrm{~m}(\mathrm{~F})$.

Remarks: The morphological variability shown by living animals (Fig. 1) consisted in the body length of the specimens (ranging from 8 to 15 mm), rhinophores with usually 10 or 12 (range 6-17) dish-shaped annulations and the notum with 4 or 5 clusters of cerata. The precardiac cluster of cerata could have up to 24 cerata, the two median clusters up to 18 cerata each one and the posterior one with a single row of maximum 6 cerata. The new species shows 15% mean p-distance at the COI with D. occidentalis and 18% with the Mediterranean D. banyulensis. It also differs morphologically from the three formerly known congeners (Table 3). Dondice trainitoi sp. nov. can be

FIGURE 5 Reproductive system of D. trainitoi sp. nov. (A) Picture in situ (B) female and male genital openings of the living specimen (voucher RM3_1536) (C-E) pictures from specimens dissected at different steps (F) schematic drawing of the reproductive system. Scale bar: 1 mm . Abbreviations: am=ampulla, $\mathrm{fg}=$ female gland, $\mathrm{mg}=\mathrm{male} \mathrm{gland}, \mathrm{p}=\mathrm{penis}, \mathrm{sr}=\mathrm{seminal}$ receptacle.

FIGURE 6 Geographical distribution of the Mediterranean D. trainitoi sp. nov. with the red stars indicating the collection localities. 1 = Punta del Faro, Portofino promontory, Liguria ($44^{\circ} 17^{\prime} 53^{\prime}$ 'N, $9^{\circ} 13^{\prime} 47^{\prime}$ 'E), $2=$ 'Asia' wreck, Civitavecchia, Latium ($42^{\circ} 03^{\prime} 15^{\prime}{ }^{\prime} \mathrm{N}, 11^{\circ} 47^{\prime} 45^{\prime} \mathrm{E}$), $3=$ Procida Island, Naples ($40^{\circ} 45^{\prime} 02.6^{\prime} \mathrm{N}, 14^{\circ} 01^{\prime} 31.6^{\prime \prime} \mathrm{E}$).
distinguished from D. banyulensis by the presence of the black pigment covering the jaws and forming two black patches clearly visible at the cephalic portion. The only other species which shares this very typical character is the D. occidentalis 'sensu Marcus Er.' (1958), who described a specimen from Cananèia (San Paolo, Brazil) which '...differs from the Jamaican specimens in some details. The black pigmented epithelium covering the jaws of our species is very striking, even in living slugs, but apparently is wanting in the Jamaican material as Engel does not mention it.' (Marcus Er. 1958). Dondice occidentalis 'sensu Marcus' however, has '... a median red stripe along the head and a stripe along each side' (see the Brazilian specimen photographed by Lindner A. 2014, page 48) that clearly differs from the white ones characterizing D. trainitoi $\mathbf{~ s p}$. nov. Dondice galaxiana is morphologically entirely different from D. trainitoi $\mathbf{~ s p}$. nov., in fact it has rhinophores with large dish-shaped annulations, the cerata are clustered on raised cushions and its body has rhomboid-shaped patches on the dorsum between the cerata. These features are completely lacking in the new species. Dondice parguerensis is morphologically similar to D. occidentalis but differing from it for its particular diet which consists of Cassiopea sp. and by the epithelium covering the jaws that is brown amber (Brandon \& Cutress 1985) and not dark or black as in D. occidentalis.

Specimens of the new species were observed and photographed in situ feeding on a reddish/orange hydroid belonging to the family Campanulariidae Johnston, 1836. The egg mass is a white lace coiled around the hydroid (Fig. 1F). Interestingly, as known for other facelinid species, D. trainitoi sp. nov., when disturbed, autotomized its cerata to distract potential predators.

Discussion

The Facelinidae family is characterized by members showing heterogeneous morphotypes leading to several controversies and to a confused taxonomy. In the last decade, with the advent of molecular techniques, the monophyly of this eolid family was also questioned since many phylogenetic works (Gosliner et al. 2007; Carmona et al. 2015) have revealed contrasting relationships occurring between members historically assigned to the Facelinidae family highlighting the need to deepen the study this group of molluscs. The new species was here analysed and described by both morphological and molecular approaches and revealed to be strongly related to D. occidentalis,
the type species of the genus Dondice. Furthermore the new species seems to be morphologically more similar to the Brazilian specimens of D. occidentalis described by Marcus Er. (1958) than to the ones originally described by Engel (1925) as Caloria occidentalis from Jamaica. In fact, the Mediterranean D. trainitoi sp. nov. shares with the Brazilian morphotype of D. occidentalis, the black pigment covering the masticatory jaws, anyhow a recent picture of a Brazilian specimen (Lindner 2014) showed some striking differences between the two species supporting their validity, as reported in Table 3.

FIGURE 7 Reproductive system of G. quadricolor, voucher RM3_792. (A-C) pictures from specimens dissected at different steps (D) schematic drawing of the reproductive system. Scale bar: 1 mm . Abbreviations: $\mathrm{am}=a \mathrm{mpulla}, \mathrm{fg}=\mathrm{female}$ gland, $\mathrm{md}=$ male duct, $\mathrm{p}=$ penis, $\mathrm{pr}=$ prostate, $\mathrm{ps}=$ penis spine, $\mathrm{sr}=$ seminal receptacle.

To investigate interactions between species also by molecular methods, phylogenetic relationships of Dondice species and other related taxa were explored. Molecular approaches have confirmed the Facelinidae family as nonmonophyletic. In particular, Dondice, Godiva and Phyllodesmium genera are grouped in a monophyletic clade with

FIGURE 8 Reproductive system of D. banyulensis, voucher RM3_197. (A-C) pictures from specimens dissected at different steps (D) schematic drawing of the reproductive system. Scale bar: -1 mm . Abbreviations: am=ampulla, dmd=distal male duct, $\mathrm{p}=$ penis, $\mathrm{pmd}=$ proximal male duct, $\mathrm{sr}=$ seminal receptacle, $\mathrm{v}=$ =vagina
a strong statistical support but with the genus Dondice as paraphyletic. In fact, D. trainitoi sp. nov. shows a close relationship with the clade composed by the type-tax on D. occidentalis and D. parguerensis (whose validity as a species remains not clear) but D. banyulensis appears, with high statistical support $(\mathrm{BI}=1 ; \mathrm{ML}=100)$, as the sister species of a clade including the abovementioned Dondice species, G. quadricolor and all the Phyllodesmium taxa (Fig. 2) supporting the paraphyly of the genus. To investigate these unexpected molecular evidences, we have analysed members of Godiva and Dondice genera by morphological and anatomical comparison, together with indications obtained by ecological knowledge, in an integrated taxonomic view. Consequently, in order to examine the diagnostic characters used in the past to assign species (Figs 7, 8), we have performed anatomical analyses on G. quadricolor and D. banjulensis which have a critical role in the molecular topology obtained, (specimens collected during this study and stored at the collection of the Roma Tre University) (see figure captions for the vouchers). Since Marcus Er. (1958) stated that the main morphological feature distinguishing the two genera was the male copulatory organ, unarmed in Dondice but armed and with a terminal hook in Godiva, we confirmed the presence of the armed penis in G. quadricolor (Fig. 7D) and the unarmed penis in D. banyulensis (Fig. 8). Interestingly, Ed
TABLE 3. Morphological comparison among species belonging to Dondice genus,

	Body colour	Cerata colour	Cerata distribution	Rhinophores	Foot anterior border	Radular formula	Jaws colour	Gonopore	Anus	Penial glands
Dondice banyulensis Sandmeier, 1960	Rather clear transparent orange. Deep thick opaque orange covers upper half of rhinophores, head in front of rhinophores, anterior border of the basis of oral tentacles, foot tentacles, forms a sub-apical ring beneath the top of cerata. Upper half of oral tentacles opaque white. Median opaque white line from the anterior border of oral tentacles to end of tail. On either sides a white opaque line from the oral tentacles to the tail connecting the basal region of cerata groups. An incomplete white line on the notum between the median and the lateral ones. Edge of foot lined with bluish iridescent opaque white	A narrow brown vein becomes dark red beneath the very small cnidosac	5 groups horseshoe shaped	Lamellate along the entire length	Foot corners tentaculiform	$18 \times 0.1 .0$	Dark red	On the right beneath the first group of cerata	On the r i g h t inside the second group of cerata	Absent
Dondice galaxiana Hermosillo, 2012	Translucent cream with rhomboid shaped-patches on the dorsum between the cerata. The center of each rhombus is light opaque cream surrounded by a light brown band and contains four equidistant bright turquoise spots forming a square. Near them a larger dark olive-black spot. On the rest of the body random bright white spots. Sides with reddish brown patches and light cream patches with dark brown spots	Light pinkish brown with sub-terminal brown band and dark reddish brown cores. Surface covered with random white spots	1 pericardic group, 2-3 posterior and a row of 2-3 cerata	Short with cylindrical tip, $\quad 6-7$ dish shaped annulations	2 tentacles 1 mm length	$\begin{aligned} & 15-16 \\ & 0.1 .0 \end{aligned}$	Covered with black melanophores in the epithelium	On the right side anterior of the precardic group of cerata	Within the arch of the first posterior group of cerata	Present
	.. Continued next page									

TABLE 3. (Continued)

	Body colour	Cerata colour	Cerata distribution	Rhinophores	Foot anterior border	Radular formula	Jaws colour	Gonopore	Anus	Penial glands
Dondice occidentalis Engel, 1925	Completely lost the colours, and looked very transparent, yellowish-white; everywhere the internal organs shone through clearly	No colour description	7 groups	5-7 rings	2 long up to 5 mm	0.1.0	Dark	Onthe right side between the two first arches somewhat behind the hind limbs of the first of these two	On the right side in the interspace between the limbs of the second pair of transverse pairs	Present
Dondice occidentalis sensu Marcus Er. 1958	White, with red markings. A median red stripe along the head and a stripe along each side that extends from the tentacle base dorsally to the genital pores, ventrally to the cerata, and caudally to the tail tip. Liver brown or reddish. In the skin white refractive elements	Under the cnidosacs, brilliantly white or pink, the cerata bear an orange-red ring	6 groups	15-18 rings	2 tentacles 2,5 mm length	$21 \times 0.1 .0$	$\begin{aligned} & \text { C o vered } \\ & \text { by black } \\ & \text { epithelium } \end{aligned}$	On the right side under the first arch of cerata	In the center of thesecond arch of cerata	Present
Dondice parguerensis Brandon \& Cutress, 1985	Translucid white; tips of rhinophores, foot tentacles and buccal tentacles refractive white. A white snow line longitudinally and not continuously along the back from the head, between the eyes, up to the tail. Similar lines along the sides circle each group of cerata and join on the tail	Brown terminations of digestive glands inside the cerata. Cnidosac white translucid	2 precardic groups, 4 postcardic e 1 isolated	5 annulations	2 tentacles shorter than buccal tentacles	$15 \times 0.1 .0$	Amber	On the right side between first and second group of cerata	Un der first group of pericardic cerata	Present

TABLE 3. (Continued)

	Body colour	Cerata colour	Cerata distribution	Rhinophores	Foot anterior border	Radular formula	Jaws colour	Gonopore	Anus	Penial glands
Dondice trainitoi sp.nov.	Translucent cream, with brightly white spots along the border of the foot, the oral foot corners and along the tail. A characteristic iridescent light blue band goes from the tail along the dorsum and the head where it bifurcates into two lines ending at the half part of the oral tentacles. Two other lateral lines of the same iridescent colour go dorsally through the body terminating in the lateral part of the head	Light orange, with a yellowish band, expanded in the front part, joins barely in the rear	4 (5) groups, 1 pericardic, 2 postcardic and 1 posterior row	Lamellate with usually 10 or 12 (6-17) dish-shaped annulations ending with a cylindrical tip	Well defined propodial tentacles	$\begin{array}{ll} 8-12 & x \\ 0.1 .0 & \end{array}$	Black pigment covering the mandibles visible through the epithelium	On the right side between the first and the second group of cerata	On the right side in the middle of the second group of cerata	Present
Godiva quadricolor (Barnard, 1927)	Head pale orange above, with two white streaks from the tentacles to the bases of the rhinophores; tentacles and rhinophores of the same colour as head, with the tips sulphur yellow. Rest of body translucent white, the tail with a narrow median stripe of orange bordered by opaque (faintly blue) white, stomach and intestines showing through the skin a dull blue	Papillae dark brown with a purplish tinge, towards the end a band of bright orange and one of ultramarine blue separated by a narrow band of dark brown, apex sulphur yellow, the ground colour is also sprinkled lightly with sulphur yellow dots just below the orange band	Papillae fusiform in 5 groups, about 30 to 40 in the first, 30 in the second, 25 in the third, 20 in the fourth, and 12 to 15 in the fifth, the outer ones short, the innermost longest (5 to 6 mm . in the preserved state)	Rhinophores slender, simple in life, but wrinkled and seemingly annulate in the preserved specimen	Antero-lateral angles of foot produced, tentaculiform			On the right side immediately below the first group of cerata	On the right side in the middle of the second group of cerata	Absent

> band
munds (1964) in its work on eolid Mollusca from Jamaica carried out an anatomical comparison of the diagnostic reproductive features of D. banyulensis with the ones observed in D. occidentalis and G. quadricolor and concluding that D. banyulensis was more likely to belong to Godiva rather than to Dondice genus, in line with the systematic hypothesis suggested by our molecular results. In our opinion, the absence or presence of the penial hook could not be considered as diagnostic at the genus level as indeed suggested by other authors (Macnae 1954; Rudman 1980). Furthermore, considering the fact that Phyllodesmium and Dondice species are characterized by an unarmed penis (Moore \& Gosliner 2014) as well as all the species showing a basal placement in the phylogenetic tree (with the exclusion of the Facelina ones) we can infer that this particular anatomical feature has evolved independently in G. quadricolor.

Our results could suggest unifying the three genera Phyllodesmium, Dondice and Godiva under the single genus Phyllodesmium, due to the morphological similarities and the molecular affinities. An important ethological feature could support this hypothesis: the capability to autotomize groups of cerata under stress conditions. This particular skill is shared by all of the Phyllodesmium species, by D. occidentalis, D. trainitoi sp. nov. and interestingly by G. quadricolor. It is missing instead in D. banyulensis, confirming its basal placement within the evolutionary history of the group. Anyhow, considering that G. quadricolor did not show a stable position in all the trees recovered from analyses performed on alternative datasets (not shown), we maintain a conservative approach not altering the classification of these three genera (Dondice, Godiva and Phyllodesmium).

Acknowledgements

We are grateful to Prof. Andrea Di Giulio (Rome, Italy) and Dr. Maurizio Muzzi (Rome, Italy) for providing us high-resolution FIB/SEM images. We specially thank Egidio Trainito (Porto San Paolo, Italy) for having critically revised the manuscript helping in improving it. We thank Prof. Stefano Piraino (Lecce, Italy) for hydroid identification. We are deeply indebted to Michele Solca (Milan, Italy) for providing important data and underwater photo of the ligurian specimens and to Jonathan Vulcano (Civitavecchia, Italy) for providing photograph of one specimen from Civitavecchia. We are indebted to Stefano Terribile and Francesco Ruggeri of the "Gruppo Nasim" Diving Center (Rome, Italy) for their collaboration during sampling. We wish to thank the Roma Tre University for financial support (PhD school of Department of Science of University of Roma Tre, CAL/2017). The authors wish to thank the two anonymous referees for reviewing the manuscript and greatly helping to improve it.

References

Aljanabi, S.M. \& Martinez, I. (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Research, 25 (22), 4692-4693. https://doi.org/10.1093/nar/25.22.4692
Altschul, S.F., Gish, W., Miller, W., Myers, E.W. \& Lipman, D.J. (1990) Basic local alignment search tool. Journal of molecular biology, 215, 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
Bergh, R. (1892) System der Nudibranchiaten Gasteropoden. Malacologische Untersuchungen, Band 3. In Semper, C. (ed.), Reisen im Archipel der Philippinen. Zweiter Theil. Wissenschaftliche Resultate. Wiesbaden, 18, 995-1168. https://doi.org/10.5962/bhl.title. 11225
Brandon, M. \& Cutress, C.E. (1985) A new Dondice (Opisthobranchia: Favorinidae), predator of Cassiopea in southwest Puerto Rico. Bulletin of Marine Science, 36, 139-144.
Carmona, L., Gosliner, T.M., Pola, M. \& Cervera, J.L. (2011) A molecular approach to the phylogenetic status of the aeolid genus Babakina Roller, 1973 (Nudibranchia). Journal of Molluscan Studies, 77 (4), 417-422. https://doi.org/10.1093/mollus/eyr029
Carmona, L., Pola, M., Gosliner, T.M. \& Cervera, J.L. (2013) A tale that morphology fails to tell: a molecular phylogeny of Aeolidiidae (Aeolidida, Nudibranchia, Gastropoda). PLoS ONE, 8 (5), e63000. https://doi.org/10.1371/journal.pone. 0063000
Carmona, L., Pola, M., Gosliner, T.M. \& Cervera, J.L. (2015) Burnaia Miller, 2001 (Gastropoda, Heterobranchia, Nudibranchia): a facelinid genus with an Aeolidiidae's outward appearance. Helgoland Marine Research, 69 (3), 285-291. https://doi.org/10.1007/s10152-015-0437-4
Castresana, J. (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution, 17, 540-552.
https://doi.org/10.1093/oxfordjournals.molbev.a026334
Cella, K., Carmona, L., Ekimova, I., Chichvarkhin, A., Schepetov, D. \& Gosliner, T.M. (2016) A Radical Solution: The Phylogeny of the Nudibranch Family Fionidae. PLoS ONE, 11 (12), e0167800. https://doi.org/10.1371/journal.pone.0167800
Churchill, C.K., Alejandrino, A., Valdés, Á. \& Foighil, D.Ó. (2013) Parallel changes in genital morphology delineate cryptic diversification of planktonic nudibranchs. In Proceedings of the Royal Society of London B (Vol. 280, No. 1765, p. 20131224). The Royal Society B, 280, 20131224. [published 22 August 2013] https://doi.org/10.1098/rspb.2013.1224
Churchill, C.K., Valdés, Á. \& Foighil, D.Ó. (2014) Molecular and morphological systematics of neustonic nudibranchs (Mollusca: Gastropoda: Glaucidae: Glaucus), with descriptions of three new cryptic species. Invertebrate Systematics, 28 (2), 174-195. https://doi.org/10.1071/IS13038
Colgan, D.J., McLauchlan, A., Wilson, G.D.F., Livingston, S.P., Edgecombe, G.D., Macaranas, J., Cassis, G. \& Gray, M.R. (1998) Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution. Australian Journal of Zoology, 46 (5), 419-437. https://doi.org/10.1071/ZO98048
Colucci, G., Strafella, R., Trainito, E. \& Doneddu, M. (2015) First record of the genus Dermatobranchus van Hasselt, 1824, in the Mediterranean Sea (Nudibranchia: Arminidae). Mediterranean Marine Science, 16 (2), 331-333. https://doi.org/10.12681/mms. 1195
Edmunds, M. (1964) Eolid Mollusca from Jamaica, with descriptions of two new genera and three new species. Bulletin of Marine Science, 14 (1), 1-32.
Engel, H. (1925) Westindische opisthobranchiate Mollusken. I. Aeolidiadae Bijdr Dierk, 24, 33-80. https://doi.org/10.1163/26660644-02401005
Evertsen, J. \& Bakken, T. (2013) Diversity of Norwegian sea slugs (Nudibranchia): new species to Norwegian coastal waters and new data on distribution of rare species. Fauna Norvegica, 32, 45-52. https://doi.org/10.5324/fn.v32i0.1576
Folmer, O., Black, M., Hoeh, W., Lutz, R. \& Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294-299.
Furfaro, G., Mariottini, P., Modica, M.V., Trainito, E., Doneddu, M. \& Oliverio, M. (2016a) Sympatric sibling species: the case of Caloria elegans and Facelina quatrefagesi (Gastropoda: Nudibranchia). Scientia Marina, 80 (4), 511-520. https://doi.org/10.3989/scimar.04479.09A
Furfaro, G., Picton, B., Martynov, A. \& Mariottini, P. (2016b) Diaphorodoris alba Portmann \& Sandmeier, 1960 is a valid species: molecular and morphological comparison with D. luteocincta (M. Sars, 1870) (Gastropoda: Nudibranchia). Zootaxa, 4193 (2), 304-316. https://doi.org/10.11646/zootaxa.4193.2.6
Furfaro, G., De Matteo, S., Mariottini, P. \& Giacobbe, S. (2018a) Ecological notes of the alien species Godiva quadricolor (Gastropoda, Nudibranchia) occurring in Faro Lake (Italy). Journal of Natural History, 52 (11-12), 645-657. https://doi.org/10.1080/00222933.2018.1445788
Furfaro, G., Salvi, D., Mancini, E. \& Mariottini, P. (2018b) A multilocus view on Mediterranean aeolid nudibranchs (Mollusca): Systematics and cryptic diversity of Flabellinidae and Piseinotecidae. Molecular Phylogenetics and Evolution, 118, 13-22. https://doi.org/10.1016/j.ympev.2017.09.001
Gofas, S. (2004) Dondice Marcus (1958). In: MolluscaBase (2017), Accessed through: World Register of Marine Species. Available from: http://www.marinespecies.org/aphia.php?p=taxdetails\&id=138005 (accessed 23 October 2017)
Gonzalez, L., Hanson, D. \& Valdés, Á. (2013) Molecular divergence between two sympatric species of Dondice (Mollusca: Nudibranchia) with distinct feeding specializations. Journal of the Marine Biological Association of the United Kingdom, 93 (07), 1887-1893. https://doi.org/10.1017/S0025315413000465
Gosliner, T.M., Gonzalez-Duarte, M.M. \& Cervera, J.L. (2007) Revision of the systematics of Babakina Roller, 1973 (Mollusca: Opisthobranchia) with the description of a new species and a phylogenetic analysis. Zoological Journal of the Linnean Society, 151 (4), 671-689. https://doi.org/10.1111/j.1096-3642.2007.00331.x
Korshunova, T.A., Martynov, A.V., Bakken, T. \& Picton, B.E. (2017) External diversity is restrained by internal conservatism: New nudibranch molluse contributes to the cryptic species problem. Zoologica Scripta, 46, 683-692 https://doi.org/10.1111/zsc. 12253
Lindner, A. (2014) Livro Vida marinha de Santa Catarina. Trindade Caixa Postal 476 88010-970. Editora da UFSC Campus Universitário, Florianópolis, Santa Catarina, 128 pp.
Macnae, W. (1954) On some eolidacean nudibranchiate molluscs from South Africa. Annals of the Natal Museum, 13 (1), $1-50$.
Marcus, Er. (1958) On western Atlantic opisthobranchiate gastropods. American Museum Novitiates, 1906, 1-82.
Millen, S. \& Hermosillo, A. (2012) Three new species of Aeolid Nudibranchs (Opisthobranchia) from the Pacific Coast of Mex-
ico, Panama, and the Indopacific, with a redescription and redesignation of a fourth species. Veliger, 51 (3), 145-164.
MolluscaBase (2018a) Facelinidae Bergh, 1889. Accessed through: World Register of Marine Species. Available from: http:// www.marinespecies.org/aphia.php?p=taxdetails\&id=191 (accessed 15 February 2018)
MolluscaBase (2018b) Godiva Macnae, 1954. World Register of Marine Species. Available from: http://www.marinespecies. org/aphia.php?p=taxdetails\&id=225512 (accessed 15 February 2018)
Moore, E.J. \& Gosliner, T.M. (2011) Molecular phylogeny and evolution of symbiosis in a clade of Indopacific nudibranchs. Molecular Phylogenetics and Evolution, 58 (1), 116-123. https://doi.org/10.1016/j.ympev.2010.11.008
Moore, E. \& Gosliner, T. (2014) Additions to the genus Phyllodesmium, with a phylogenetic analysis and its implications to the evolution of symbiosis. The Veliger, 51, 237-251.
Palumbi, S., Martin, A., Romano, S., Mc Millan, W.O., Stice, L. \& Grabowski, G. (2001) The simple fool's guide to PCR. Version 2.0. Department of Zoology and Kewalo Marine Laboratory, University of Hawaii, Honolulu, ???? pp. [please cite the total page number]
Pola, M. \& Gosliner, T.M. (2010) The first molecular phylogeny of cladobranchian opisthobranchs (Mollusca, Gastropoda, Nudibranchia). Molecular Phylogenetics and Evolution, 56, 931-941. https://doi.org/10.1016/j.ympev.2010.05.003
Posada, D. (2008) jModelTest: Phylogenetic Model Averaging. Molecular Biology and Evolution, 25 (7), 1253-1256. https://doi.org/10.1093/molbev/msn083
Puillandre, N., Lambert, A., Brouillet, S. \& Achaz, G. (2012a) ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology, 21, 1864-1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x
Puillandre, N., Modica, M.V., Zhang, Y., Sirovich, L., Boisselier, M.C., Cruaud, C., Holford, M. \& Samadi, S. (2012b) Largescale species delimitation method for hyperdiverse groups. Molecular Ecology, 21, 2671-2691. https://doi.org/10.1111/j.1365-294X.2012.05559.x
Ronquist, F., Teslenko, M., Van der Mark, P., Ayres, D.L., Darling, A., Höhna, L.B., Liang, L., Suchard, M.A. \& Huelsenbeck, J.P. (2012) MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Systematic Biology, 61 (3), 539-542. https://doi.org/10.1093/sysbio/sys029
Rudman, W.B. (1980) Aeolid opisthobranch molluscs (Glaucidae) from the Indian Ocean and the south-west Pacific. Zoological journal of the Linnean Society, 68 (2), 139-172. https://doi.org/10.1111/j.1096-3642.1980.tb01923.x
Staden, R., Beal, K.F. \& Bonfield, J.K. (2000) The Staden package, 1998. Methods in Molecular Biology, 132, 115-130. https://doi.org/10.1385/1-59259-192-2:115
Talavera, G. \& Castresana, J. (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology, 56, 564-577. https://doi.org/10.1080/10635150701472164
Tamura, K., Stecher, G., Peterson, D., Filipski, A. \& Kumar, S. (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, 30, 2725-2729. https://doi.org/10.1093/molbev/mst197
Thompson, T.E. \& Brown, G.H. (1984) Biology of Opisthobranch Molluscs. Vol. II. Ray Society, London, 230 pp.
Trainito, E., Mas, G., Fernández, R., Camassa, B. \& Doneddu, M. (2017) First record of Lomanotus barlettai García-Gomez, Lopes-Gonzalez \& García, 1990 (Gastropoda: Heterobranchia: Nudibranchia) from the Adriatic Sea: remarkable range extension in the Mediterranean Sea. Studia Marina, 30 (1), 28-33.
Wägele, H., Raupach, M.J., Burghardt, I., Grzymbowski, Y. \& Händeler, K. (2010) Solar powered sea slugs (Opisthobranchia, Gastropoda, Mollusca): Incorporation of photosynthetic units: A key character enhancing radiation? In: Glaubrecht, M. (Ed.), Evolution in Action. Springer, Berlin and Heidelberg, pp. 263-282. https://doi.org/10.1007/978-3-642-12425-9_13
WoRMS Editorial Board (2018) World Register of Marine Species. VLIZ. Available from: http://www.marinespecies.org (accessed 15 February 2018)
Zwickl, D.J. (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. dissertation, The University of Texas at Austin, Austin, Texas, 115 pp .

