Paolo Andreini

Paolo Andreini

About

37
Publications
4,273
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
473
Citations

Publications

Publications (37)
Article
Full-text available
Escherichia coli is a benchmark organism, which has been deeply studied by the scientific community for decades, obtaining a vast amount of metabolic and genetic data. Among these data, estimates of the translation speed of ribosomes over their genome are available. These estimates are based on Ribo-Seq profiles, where the abundance of a particular...
Chapter
This paper aims to study the potentialities of incorporating recursive layers into Generative Adversarial Networks (GANs). Drawing inspiration from biological systems, in which feedback connections are prevalent, different studies investigated their impact on artificial neural networks. These studies have shown that feedback connections improve per...
Chapter
Skin cancer is a serious public health problem with a sharply increasing incidence in recent years, which has a major impact on quality of life and can be disfiguring or even fatal. Deep learning techniques can be used to analyze dermoscopic images, resulting in automated systems that can improve the clinical confidence of the diagnosis – also avoi...
Chapter
Recently, deep learning methods have had a tremendous impact on computer vision applications, from image classification and semantic segmentation to object detection and face recognition. Nevertheless, the training of state-of-the-art neural network models is usually based on the availability of large sets of supervised data. Indeed, deep neural ne...
Article
Full-text available
In recent years, the Ribosome profiling technique (Ribo–seq) has emerged as a powerful method for globally monitoring the translation process in vivo at single nucleotide resolution. Based on deep sequencing of mRNA fragments, Ribo–seq allows to obtain profiles that reflect the time spent by ribosomes in translating each part of an open reading fra...
Article
Full-text available
Deep learning is widely applied in bioinformatics and biomedical imaging, due to its ability to perform various clinical tasks automatically and accurately. In particular, the application of deep learning techniques for the automatic identification of glomeruli in histopathological kidney images can play a fundamental role, offering a valid decisio...
Article
MicroRNAs (miRNAs) are short non-coding RNAs engaged in cellular regulation by suppressing genes at their post-transcriptional stage. Evidence of their involvement in breast cancer and the possibility of quantifying the their concentration in the blood has sparked the hope of using them as reliable, inexpensive and non-invasive biomarkers. While di...
Article
Full-text available
In this paper, we use Generative Adversarial Networks (GANs) to synthesize high-quality retinal images along with the corresponding semantic label-maps, instead of real images during training of a segmentation network. Different from other previous proposals, we employ a two-step approach: first, a progressively growing GAN is trained to generate t...
Article
Full-text available
Multi-organ segmentation of X-ray images is of fundamental importance for computer aided diagnosis systems. However, the most advanced semantic segmentation methods rely on deep learning and require a huge amount of labeled images, which are rarely available due to both the high cost of human resources and the time required for labeling. In this pa...
Article
Full-text available
The automatic segmentation of the aorta can be extremely useful in clinical practice, allowing the diagnosis of numerous pathologies to be sped up, such as aneurysms and dissections, and allowing rapid reconstructive surgery, essential in saving patients’ lives. In recent years, the success of Deep Learning (DL)-based decision support systems has i...
Preprint
Full-text available
Multi-organ segmentation of X-ray images is of fundamental importance for computer aided diagnosis systems. However, the most advanced semantic segmentation methods rely on deep learning and require a huge amount of labeled images, which are rarely available due to both the high cost of human resources and the time required for labeling. In this pa...
Article
Background Timely recognition of malignant melanoma (MM) is challenging for dermatologists worldwide and represents the main determinant for mortality. Dermoscopic examination is influenced by dermatologists’ experience and fails to achieve adequate accuracy and reproducibility in discriminating atypical nevi (AN) from early melanomas (EM). Object...
Article
Providing pixel–level supervisions for scene text segmentation is inherently difficult and costly, so that only few small datasets are available for this task. To face the scarcity of training data, previous approaches based on Convolutional Neural Networks (CNNs) rely on the use of a synthetic dataset for pre–training. However, synthetic data cann...
Conference Paper
Full-text available
Binding site identification allows to determine the function-ality and the quaternary structure of protein–protein complexes. Variousapproaches to this problem have been proposed without reaching a viablesolution. Representing the interacting peptides as graphs, a correspon-dence graph describing their interaction can be built. Finding the maxi-mum...
Article
Background and objectives: Deep learning models and specifically Convolutional Neural Networks (CNNs) are becoming the leading approach in many computer vision tasks, including medical image analysis. Nevertheless, the CNN training usually requires large sets of supervised data, which are often difficult and expensive to obtain in the medical fiel...
Preprint
Providing pixel-level supervisions for scene text segmentation is inherently difficult and costly, so that only few small datasets are available for this task. To face the scarcity of training data, previous approaches based on Convolutional Neural Networks (CNNs) rely on the use of a synthetic dataset for pre-training. However, synthetic data cann...
Chapter
The absence of large scale datasets with pixel–level supervisions is a significant obstacle for the training of deep convolutional networks for scene text segmentation. For this reason, synthetic data generation is normally employed to enlarge the training dataset. Nonetheless, synthetic data cannot reproduce the complexity and variability of natur...
Chapter
Early diagnosis of skin lesions is essential for the positive outcome of the disease, which can only be resolved with surgical treatment. In this manuscript, a deep learning method is proposed for the classification of cutaneous lesions based on their visual appearance and on the patient’s anamnestic data. These include age and gender of the patien...
Preprint
In recent years, the use of deep learning is becoming increasingly popular in computer vision. However, the effective training of deep architectures usually relies on huge sets of annotated data. This is critical in the medical field where it is difficult and expensive to obtain annotated images. In this paper, we use Generative Adversarial Network...
Article
Full-text available
In recent years, Deep Neural Networks (DNNs) have led to impressive results in a wide variety of machine learning tasks, typically relying on the existence of a huge amount of supervised data. However, in many applications (e.g., bio–medical image analysis), gathering large sets of labeled data can be very difficult and costly. Unsupervised domain...
Preprint
Full-text available
The absence of large scale datasets with pixel-level supervisions is a significant obstacle for the training of deep convolutional networks for scene text segmentation. For this reason, synthetic data generation is normally employed to enlarge the training dataset. Nonetheless, synthetic data cannot reproduce the complexity and variability of natur...
Article
Full-text available
During the last decade, deep learning and Convolutional Neural Networks (CNNs) have produced a devastating impact on computer vision, yielding exceptional results on a variety of problems, including analysis of medical images. Recently, these techniques have been extended to 3D images with the downside of a large increase in the computational load....
Chapter
In this paper, we introduce a new method for the segmentation of bacterial colonies in solid agar plate images. The proposed approach comprises two contributions. First, a simple but nonetheless effective engine is devised to generate synthetic plate images. This engine overlays bacterial colony patches to existing background images, taking into ac...
Chapter
Most of the leading Convolutional Neural Network (CNN) models for semantic segmentation exploit a large number of pixel–level annotations. Such a human based labeling requires a considerable effort that complicates the creation of large–scale datasets. In this paper, we propose a deep learning approach that uses bounding box annotations to train a...
Conference Paper
Urinary Tract Infections (UTIs) are a severe public health problem, accounting for more than eight million visits to health care providers each year. High recurrence rates and increasing antimicrobial resistance among uropathogens threaten to greatly increase the economic burden of these infections. Normally, UTIs are diagnosed by traditional metho...
Conference Paper
Urinary Tract Infections (UTIs) are very common in women, babies and the elderly. The most frequent cause is a bacterium, called Escherichia Coli, which usually lives in the digestive system and in the bowel. Infections can target the urethra, bladder or kidneys. Traditional analysis methods, based on human experts’ evaluation, are typically used t...
Conference Paper
In this paper, we present an automatic system for the screening of urinary tract infections. It is estimated that about 150 million infections of this kind occur world wide yearly, giving rise to roughly five billion health–care expenditures. Currently, Petri plates seeded with infected samples are analyzed by human experts, an error prone and leng...
Article
Urinary Tract Infections (UTIs) represent a significant health problem, both in hospital and community-based settings. Normally, UTIs are diagnosed by traditional methods, based on cultivation of bacteria on Petri dishes, followed by a visual evaluation by human experts. In this paper, we present a fully automated system for the screening, that can...

Network

Cited By