
Paolina GarbevaNetherlands Institute of Ecology | NIOO-KNAW · Microbial Ecology
Paolina Garbeva
PhD Leiden University
About
208
Publications
65,466
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
13,375
Citations
Publications
Publications (208)
Research has shown that soil-borne beneficial microorganisms can enhance plant growth, productivity, and resistance against pests and pathogens and could thus serve as a sustainable alternative to agrochemicals. To date, however, the effect of soil-beneficial microbes under commercial crop production has been little assessed. We here investigated t...
Secondary metabolites are bioactive compounds, diverse in structure with versatile ecological functions including key roles in mediating interactions between microorganisms and plants. Importantly, these compounds can promote the colonization of plant surfaces, such as roots, or modulate root exudates to enhance microbial recruitment and establishm...
Microplastic (MP) pollution constitutes an emerging type of pollution threatening both aquatic and terrestrial ecosystems. The impact on aquatic ecosystems has been extensively studied, but the effect on terrestrial ecosystems and their inhabitants is mostly underexplored. In this study we explored the effect of microplastic pollution on gut bacter...
Bacterial-fungal interactions influence microbial community performance of most ecosystems and elicit specific microbial behaviours, including stimulating specialised metabolite production. Here, we use a co-culture experimental evolution approach to investigate bacterial adaptation to the presence of a fungus, using a simple model of bacterial-fun...
Natural ecosystems harbor a huge reservoir of taxonomically diverse microbes that are important for plant growth and health. The vast diversity of soil microorganisms and their complex interactions make it challenging to pinpoint the main players important for the life support functions microbes can provide to plants, including enhanced tolerance t...
Research is showing that soil-borne beneficial microorganisms can enhance plant growth, productivity, and resistance against pests and pathogens, and could thus serve as a sustainable alternative to agrochemicals. To date, however, the effect of soil beneficial microbes under commercial crop production has not been fully assessed. We here investiga...
Various studies have addressed the impact of microbial inoculants on the composition of the resident microbiome. How microbial inoculants impact plant metabolism and interact with the resident rhizobiota under herbivory stress remains elusive. Here, we investigated the impact of two bacterial and two fungal inoculants, inoculated as single species...
Bacterial-fungal interactions (BFIs) influence microbial community performance of most ecosystems and elicit specific microbial behaviours, including stimulating specialised metabolite production. Using a simple BFI system encompassing the Gram-positive bacterium Bacillus subtilis and the black mould fungus Aspergillus niger, we established a co-cu...
Geosmin may be the most familiar volatile compound, as it lends the earthy smell to soil. The compound is a member of the largest family of natural products, the terpenoids. The broad distribution of geosmin among bacteria in both terrestrial and aquatic environments suggests that this compound has an important ecological function, for example, as...
Bacterial-fungal interactions (BFIs) influence microbial community performance of most ecosystems and elicit specific microbial behaviours, including stimulating specialised metabolite production. Using a simple BFI system encompassing the Gram-positive bacterium Bacillus subtilis and the black mould fungus Aspergillus niger , we established a co-c...
Microbial community analysis of aquatic environments showed that an important component of its microbial diversity consists of bacteria with cell sizes of ~0.1 μm. Such small bacteria can show genomic reductions and metabolic dependencies with other bacteria. However, so far, no study has investigated if such bacteria exist in terrestrial environme...
This chapter focuses on volatile mediated plant–microbe interactions that are important for plant growth and health. Growth promotion of plants exposed to microbial blends is partially due to the carbon dioxide generated as the result of bacterial respiration. The plant immune system has evolved to recognize molecules associated with pathogenic mic...
Microbes produce and respond to a range of structurally and functionally diverse volatiles. Many microbial volatiles have antimicrobial properties. Since volatiles can diffuse through complex three-dimensional systems like spider nests they are promising pathogen protection for social arthropods. Here, we analyzed the volatilomes of five nest micro...
Nitrapyrin is a nitrification inhibitor used to retain ammonia-N in soil to improve crop yields and quality. Nitrapyrin targets specifically the ammonia oxidizers, but it is not known if it has non-target effects on the soil microbial communities. Here, we tested the hypothesis that nitrapyrin also leads to large shifts in soil microbial community...
Plants produce volatile organic compounds that are important in communication and defense. While studies have largely focused on volatiles emitted from aboveground plant parts upon exposure to biotic or abiotic stresses, volatile emissions from roots upon aboveground stress are less studied. Here, we investigated if tomato plants under insect herbi...
Plastic mulch film residues have been accumulating in agricultural soils for decades, but so far, little is known about its consequences on soil microbial communities and functions. Here, we tested the effects of plastic residues of low-density polyethylene and biodegradable mulch films on soil suppressiveness and microbial community composition. W...
We are currently facing an antimicrobial resistance crisis, which means that a lot of bacterial pathogens have developed resistance to common antibiotics. Hence, novel and innovative solutions are urgently needed to combat resistant human pathogens. A new source of antimicrobial compounds could be bacterial volatiles. Volatiles are ubiquitous produ...
Covering: through June 2021Terpenoids are the largest class of natural products recognised to date. While mostly known to humans as bioactive plant metabolites and part of essential oils, structurally diverse terpenoids are increasingly reported to be produced by microorganisms. For many of the compounds biological functions are yet unknown, but du...
Social arthropods such as termites, ants, and bees are among others the most successful animal groups on earth. However, social arthropods face an elevated risk of infections due to the dense colony structure, which facilitates pathogen transmission. An interesting hypothesis is that social arthropods are protected by chemical compounds produced by...
Soil biota contribute to diverse soil ecosystem services such as greenhouse gas mitigation, carbon sequestration, pollutant degradation, plant disease suppression and nutrient acquisition for plant growth. Here, we provide detailed insight into different perturbation approaches to disentangle soil microbiome functions and to reveal the underlying m...
Soil-borne plant-pathogenic fungi continue to be a major threat to agriculture and horticulture. The genus
Fusarium
Plants are faced with various biotic and abiotic stresses during their life cycle. To withstand these stresses, plants have evolved adaptive strategies including the production of a wide array of primary and secondary metabolites. Some of these metabolites can have direct defensive effects, while others act as chemical cues attracting beneficial (m...
Microbial community analysis of aquatic environments showed that an important component of microbial diversity consists of bacteria with cell sizes smaller than ~0.1 μm. However, so far no study investigated if such bacteria with small cell sizes exist in terrestrial environments as well.
Here, we isolated soil bacteria that passed through a 0.1 μm...
Microorganisms produce and excrete a versatile array of metabolites with different physico-chemical properties and biological activities. However, the ability of microorganisms to release volatile compounds has only attracted research attention in the past decade. Recent research has revealed that microbial volatiles are chemically very diverse and...
Dissolved oceanic CO2 concentrations are rising as result of increasing atmospheric partial pressure of CO2 (pCO2), which has large consequences for phytoplankton. To test how higher CO2 availability affects different traits of the toxic dinoflagellate Alexandrium ostenfeldii, we exposed three strains of the same population to 400 and 1,000 µatm CO...
Iedereen zal de ervaring herkennen. Als het na een droge periode in de zomer gaat regenen komt er een muffige geur uit de bodem, de geur van de regen. Daar is zelfs een uit het Oudgrieks afgeleide term voor: “Petrichor”. Het wordt veroorzaakt door vluchtige stoffen die door micro-organismen worden geproduceerd. Geosmine is de bekendste en de hoofdv...
If you are a microbe in soil, how do you say something to your neighbors? Well, speaking English, French, or Italian would not do you any good underground. Instead, you would have to use molecules as words! Soil microbes like bacteria and fungi communicate with each other and with other organisms, such as animals or plants, by producing different k...
Emission of volatile organic compounds (VOCs) has emerged as important mean of communication between bacteria and other organisms. Most of the knowledge accumulated so far in this field has been obtained with model organisms grown in pure culture. However, in nature, bacteria are part of complex ecosystems and communities encompassing other bacteri...
The role of root exudates in mediating plant–microbe interactions has been well documented. However, the function of volatile organic compounds (VOCs) emitted by plant roots has only recently begun to attract attention. This newly recognized relevance of belowground VOCs has so far mostly been tested using systems limited to a two-compartment Petri...
Nitrapyrin is one of the most common nitrification inhibitors that are used to retain N in the ammonia form in soil to improve crop yields and quality. Whereas the inhibitory effect of nitrapyrin is supposedly specific to ammonia oxidizers, in view of the keystone role of this group in soils, nitrapyrin could have far-reaching impacts. Here, we tes...
Plastic residues could accumulate in soils as a consequence of using plastic mulching, which results in a serious environmental concern for agroecosystems. As an alternative, biodegradable plastic films stand as promising products to minimize plastic debris accumulation and reduce soil pollution. However, the effects of residues from traditional an...
In disease-suppressive soils, microbiota protect plants from root infections. Bacterial members of this microbiota have been shown to produce specific molecules that mediate this phenotype. To date, however, studies have focused on individual suppressive soils and the degree of natural variability of soil suppressiveness remains unclear. Here, we s...
Volatile organic compounds displayed biological activities on a wide range of organisms, including plants and microbes. Investigating their role in the plant-microbe interaction processes occurring in the soil is challenging. By simulating belowground communication conditions between plant and microbes, in this study, we aimed to investigate the ef...
Like most other eukaryotes, plants do not live alone but in close association with a diverse microflora. These plant‐associated microbes contribute to plant health in many different ways, ranging from modulation of hormonal pathways to direct antibiosis of plant pathogens. Over the last 15 yr, the importance of volatile organic compounds as mediato...
Endophytic bacteria are known for their ability in promoting plant growth and defense against biotic and abiotic stress. However, very little is known about the microbial endophytes living in the spermosphere. Here, we isolated bacteria from the seeds of five different populations of wild cabbage (Brassica oleracea L) that grow within 15 km of each...
Soil-inhabiting streptomycetes are nature’s medicine makers, producing over half of all known antibiotics and many other bioactive natural products. However, these bacteria also produce many volatiles, molecules that disperse through the soil matrix and may impact other (micro)organisms from a distance. Here, we show that soil- and surface-grown st...
Competition is a major type of interaction between fungi and bacteria in soil and is also an important factor in suppression of plant diseases caused by soil‐borne fungal pathogens. There is increasing attention for the possible role of volatiles in competitive interactions between bacteria and fungi. However, knowledge on the actual role of bacter...
There is increasing evidence that microbial volatile organic compounds (mVOCs) play an important role in interactions between microbes in soils. In this minireview, we zoom in on the possible role of mVOCs in suppression of plant-pathogenic soil fungi. In particular, we have screened the literature to see what the actual evidence is that mVOCs in s...
In recent years, research in the field of Microbial Ecology has revealed the tremendous diversity and complexity of microbial communities across different ecosystems. Microbes play a major role in ecosystem functioning and contribute to the health and fitness of higher organisms. Scientists are now facing many technological and methodological chall...
Terpene synthases are widely distributed among microorganisms and have been mainly studied in members of the genus Streptomyces. However, little is known about the distribution and evolution of the genes for terpene synthases. Here, we performed wholegenome based phylogenetic analysis of Streptomyces species, and compared the distribution of terpen...
Plant-soil feedbacks contribute to vegetation dynamics by species-specific interactions between plants and soil biota. Variation in plant-soil feedbacks can be predicted by root traits, successional position, and plant nativeness. However, it is unknown whether closely related plant species develop more similar plant-soil feedbacks than more distan...
Pyrazines are 1,4-diazabenzene-based volatile organic compounds and known for their broad-spectrum antimicrobial activity. In the present study, we assessed the antimicrobial activity of 2,5-bis(1-methylethyl)-pyrazine, produced by Paenibacillus sp. AD87 during co-culture with Burkholderia sp. AD24. In addition, we were using transcriptional report...
Pyrazines are 1,4-diazabenzene based volatile organic compounds and known for their broad-spectrum antimicrobial activity. In the present study we assessed the antimicrobial activity of 2,5-bis(1-methylethyl)-pyrazine, produced by Paenibacillus sp. AD87 during co-culture with Burkholderia sp. AD24. In addition, we were using transcriptional reporte...
Plastic residues have become a serious environmental problem in the regions with intensive use of plastic mulching. Even though plastic mulch is widely used, the effects of macro- and micro- plastic residues on the soil-plant system and the agroecosystem are largely unknown. In this study, low density polyethylene and one type of starch-based biode...
Main conclusion
LAESI-MSI, an innovative high-throughput technique holds a unique potential for untargeted detection, profiling and spatial localization of metabolites from intact plant samples without need for extraction or extensive sample preparation.
Our understanding of chemical diversity in biological samples has greatly improved through rece...
Soil-inhabiting streptomycetes are Natures medicine makers, producing over half of all known antibiotics and many other bioactive natural products. However, these bacteria also produce many volatile compounds, and research into these molecules and their role in soil ecology is rapidly gaining momentum. Here we show that streptomycetes have the abil...
Microorganisms can produce a plethora of secondary metabolites, some acting as signaling compounds, and others as suppressing agents. As yet, the potential of groundwater microbes to produce antimicrobial compounds to increase their competitiveness against other bacteria has not been examined. In this study, we developed an AlamarBlue® based high-t...
Our understanding of chemical diversity in biological samples has greatly improved through recent advances in mass spectrometry (MS). MS-based-imaging (MSI) techniques have further enhanced this by providing spatial information on the distribution of metabolites and their relative abundance.
This study aims to employ laser-assisted electrospray ion...
Fusarium culmorum is one of the most important fungal plant pathogens that causes diseases on a wide diversity of cereal and non-cereal crops. We report herein for the first time the genome sequence of F. culmorum strain PV and its associated secondary metabolome that plays a role in the interaction with other microorganisms and contributes to its...
Microorganisms represent a large and still resourceful pool for the discovery of novel compounds to combat antibiotic resistance in human and animal pathogens. The ability of microorganisms to produce structurally diverse volatile compounds has been known for decades, yet their biological functions and antimicrobial activities have only recently at...
Volatile organic compounds play an important role in microbial interactions. However, little is known about how volatile-mediated interactions modulate biogeochemical processes. In this study, we show the effect of volatile-mediated interaction on growth and functioning of aerobic methane-oxidizing bacteria, grown in co-culture with five different...
Plants release a wide set of secondary metabolites including volatile organic compounds (VOCs). Many of those compounds are considered to function as defense against herbivory, pests, and pathogens. However, little knowledge exists about the role of belowground plant VOCs for attracting beneficial soil microorganisms. We developed an olfactometer s...
Ambrosia artemisiifolia L. (common ragweed) is an invasive weed, well-known for the strong allergenic effect of its pollen, as well as for its invasiveness and impact in crop fields (e.g. causing yield losses). This species produces a broad range of sesquiterpenoids. In recent years, new bioactive molecules have been discovered in this plant, e.g....
Low-density polyethylene (LDPE) is the most abundant source of microplastic pollution worldwide. A recent study found that LDPE decay was increased and the size of the plastic was decreased after passing through the gut of the earthworm Lumbricus terrestris (Oligochaeta). Here, we investigated the involvement of earthworm gut bacteria in the microp...
Low-density polyethylene (LDPE) is the most abundant source of microplastic pollution worldwide. A recent study found that LDPE decay was increased and the size of the plastic was decreased after passing through the gut of the earthworm Lumbricus terrestris (Oligochaeta). Here, we investigated the involvement of earthworm gut bacteria in the microp...
During the last decades, research on the function of volatile organic compounds focused primarily on the interactions between plants and insects. However, microorganisms can also release a plethora of volatiles and it appears that microbial volatile organic compounds (mVOCs) can play an important role in intra- and inter-kingdom interactions. So fa...
The ability of bacteria and fungi to communicate with each other is a remarkable aspect of the microbial world. It is recognized that volatile organic compounds (VOCs) act as communication signals, however the molecular responses by bacteria to fungal VOCs remain unknown. Here we perform transcriptomics and proteomics analyses of Serratia plymuthic...
An increasing number of studies report plant range expansions to higher latitudes and altitudes in response to global warming. However, consequences for interactions with other species in the novel ranges are poorly understood. Here, we examine how range-expanding plant species interact with root-feeding nematodes from the new range. Root-feeding n...
Here we aimed to understand how the interspecific interaction between a Gram-positive (Paenibacillus sp. AD87) and a Gram-negative bacteria (Burkholderia sp. AD24) affects their fitness, gene expression and the production of soluble and volatile secondary metabolites.
Recent studies indicated that the production of secondary metabolites by soil bacteria can be triggered by interspecific interactions. However, little is known to date about interspecific interactions between Gram-positive and Gram-negative bacteria. In this study, we aimed to understand how the interspecific interaction between the Gram-positive P...
Fig. S1. Normalized concentration of the unknown Pederin like compound with a mass of 504.316 (M+H+).
Fig. S2. Representation of GC/MS chromatograms of (A)
Burkholderia sp. AD24 monoculture (top) (B)
Paenibacillus sp. AD87 monoculture (middle) and (C) interaction of both bacteria (bottom). The compound 2,5‐bis(1‐methylethyl)‐pyrazine (RT 19.7, m...