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Genetic mapping by linkage analysis has been an invaluable tool in the positional 
strategy to identify the molecular basis of many rare Mendelian disorders. With the 
attention of the scientific and medical community shifting towards the analysis of more 
common, complex traits, it has become necessary to develop new approaches that take 
into account the complexity of the genetic basis of these disorders and their possible 
interaction with other, nongenetic factors. Linkage disequilibrium studies are now 
becoming increasingly popular thanks to the advent of genotyping platforms that allow 
genome-wide searching for association between hundreds of thousands of random 
polymorphisms and disease phenotypes in large samples of unrelated individuals. 
Moreover, the definition of the disease phenotype itself is being reconsidered to include 
quantitative traits that may better define the underlying biologic mechanisms for many 
pathologic conditions. This article will review classic and new approaches to genetic 
mapping by linkage and association analysis and discuss the directions this field is likely to 
take in the near future.
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The past 20 years have seen the elucidation of
the molecular basis of an ever-increasing
number of genetic disorders become possible
thanks to the parallel advances in the develop-
ment of biomolecular technology available in
the laboratory and of the statistical tools neces-
sary for the analysis of these data. The 1990s
have been characterized by a plethora of linkage
(family-based) studies that have taken advan-
tage of the introduction of the extremely poly-
morphic microsatellite markers and the imple-
mentation in statistical genetic software of
sophisticated analytical tools. These have made
feasible the likelihood analysis of complex pedi-
gree structures, and thus the mapping of the
many genes underlying Mendelian disease in
such pedigrees. The so-called model-based
methods that have been used for these studies
are based on the analysis of recombination
between the hypothetical disease locus and ran-
dom genetic markers with known location in
the human genome, and require specification
of the mode of inheritance at the disease locus.
However, the same statistical tools have proven

less successful in identifying the genes responsible
for common complex traits such as obesity,
schizophrenia or diabetes. Other approaches
that do not require specification of a genetic
model for the disease, such as model-free link-
age analysis based on allele sharing among rela-
tives, may be more appropriate for identifying
the genes underlying susceptibility to a com-
plex genetic disease. A debate has ensued on
which methods have more power and are more
appropriate under different circumstances.

Success in linkage mapping depends prima-
rily on the magnitude of the effect of the locus
involved in the trait under investigation, and
low-penetrant genetic variants underlying com-
plex traits may be too weak to be detected by
linkage studies. For low-penetrant genetic vari-
ants, association approaches have been shown
to have increased power compared with linkage
methods – much smaller sample sizes would be
required to detect association than to detect
linkage. Association study is a widely accepted
important complement to linkage analysis in
refining the location of disease genes in regions
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previously identified by linkage (fine-scale mapping). With the
discovery of massive numbers of genetic markers and the develop-
ment of better statistical tools, association studies have received
renewed attention and the potential use of these strategies as a
tool for identifying more elusive genes involved in complex
diseases in the whole genome is currently under debate.

More recently, attention has grown around the study of
quantitative traits that underlie or are used to define many
common conditions such as obesity and hypertension. Direct
genetic analysis of the quantitative traits may provide increased
power for the identification of susceptibility genes for these dis-
orders. This article will review these methods and instruments
of genetic analysis, and the directions that this field is likely to
take in the near future.

Linkage analysis of binary traits
Model-based linkage analysis
The principal method of analysis for disease gene mapping of
Mendelian binary traits in pedigrees is the so-called lod-score
method [1,2]. The general idea underlying linkage analysis is to
correlate the segregation of the disease and of random genetic
markers with known location in the human genome in selected
families. The basis of the lod-score method is the analysis of
recombination, or the phenomenon by which alleles at different
loci are separated at meiosis as a result of an odd number of cross-
overs (FIGURE 1). Since the probability of a crossover occurring
between two loci is a function of the distance between them, it is
possible to estimate the distance between two loci by means of
the frequency at which recombination is observed between them.
If this frequency, known as the recombination fraction and often
indicated as θ, is small, then the two loci must be closely located

in the genome. In contrast, when two loci are far apart on the
same chromosome, or on different chromosomes, they will segre-
gate independently and θ will be equal to 50%. By using maps of
markers with known location in the human genome, we can thus
identify the location of the disease gene of interest.

In classic linkage analysis, the recombination fraction θ is esti-
mated by likelihood-based statistical methods [3–5]. This method
of linkage analysis is also known as model-based, or parametric,
as it requires definition of a genetic model for the disease. The
likelihood is a measure of the plausibility of the observations,
which depends on assumptions about the genetic model para-
meters, and on the value of the recombination fraction. Specifi-
cally, one must define the so-called penetrance, or the probability
of having the disease phenotype given an underlying genotype at
the disease locus. Other parameters that need to be specified
include the disease and marker allele frequencies, but studies
have shown that while the power of the linkage test is sensitive to
the degree of dominance, and slightly sensitive to the actual val-
ues of penetrance, it is not greatly affected by errors in the disease
gene frequency [6]. On the other hand, model-based linkage
analysis can accommodate complications derived from genetic
heterogeneity (when the same clinical phenotype is caused by
mutations in different independent genes), incomplete pene-
trance (when the probability of manifesting the disease is
<100%, even in individuals with the susceptible genotypes) and
presence of phenocopies (when even within the same families
there may be individuals affected by the same disease due to dif-
ferent, possibly nongenetic, causes) [1]. Different algorithms have
been proposed and are implemented in statistical genetic soft-
ware to calculate the likelihood of the observed pedigrees as a
function of the recombination fraction between the disease and
the marker loci, and of the parameters that define the mode of
inheritance of the disease in the same pedigrees (TABLE 1) [3–5].

Once the likelihood is defined, in classic linkage analysis, this
is evaluated for different values of the recombination fraction
varying between 0 (complete linkage) and 50% (independence,
or no linkage). The value of the recombination fraction that
maximizes the likelihood is taken as its best estimate, and its sig-
nificance is measured by the maximum lod-score, defined as the
log10 of the ratio between the maximum likelihood and the
likelihood at θ = 50%. Significant linkage at a given θ is declared
when the corresponding lod-score is greater than or equal to 3.
This corresponds to a very stringent asymptotic p-value of
0.0001. Historically, this was chosen to compensate for the small
a priori probability of linkage between two loci taken at random.
In more recent studies, a lod-score of 3.3 has been shown to pro-
vide a genome-wide significance level of 0.05, when accounting
for the multiple tests that are performed when linkage to a
disease locus throughout the whole genome is sought [7].

Following the introduction of the DNA polymorphisms [8],
linkage analysis by the lod-score method has been used to map
the genes responsible for hundreds of relatively rare Mendelian
disorders. As of April 2005, Online Mendelian Inheritance in
Man (OMIM; a catalog of human genes and Mendelian dis-
orders [201]) gene map lists 1583 loci that have been mapped by

Figure 1. Recombination is due to an odd number of crossovers. After 
the homologous chromosomes pair up, a crossover takes place in the 
relatively large interval between loci B and D.  This results in recombination 
between the locus pairs A–D and B–D.  In contrast, no recombination is 
observed between A and B, which are separated by a smaller distance.
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Table 1. Most commonly used software for linkage and association analysis. 

Program Type of analysis Website address Main features
GENEHUNTER Model-based and 

model-free linkage, 
QTL, TDT

www.fhcrc.org/labs/kruglyak/Downloads/index.
html

Simple to use, it handles medium-size pedigrees and 
large numbers of markers; includes many types of 
statistical genetic analysis.

LINKAGE Model-based linkage http://linkage.rockefeller.edu
or
www.ncbi.nlm.nih.gov/CBBresearch/Schaffer/
fastlink.html for Fastlink version

The first software available for multipoint linkage 
analysis, has basically no limitation on pedigree 
structure but can only handle a limited number 
of markers

MENDEL Model-based and 
model-free linkage, 
QTL, TDT

www.genetics.ucla.edu/software/mendel5 Performs likelihood-based analysis for a variety of 
genetic problems in addition to model-based and 
model-free linkage analysis

MERLIN Model-based and 
model-free linkage, 
QTL

www.sph.umich.edu/csg/abecasis/Merlin One of the fastest pedigree analysis packages, it 
performs several types of genetic analyses

SIMWALK2 Model-based and 
model-free linkage

watson.hgen.pitt.edu/register/soft_doc.html
or
www.genetics.ucla.edu/software/simwalk2

Analyzes any size of pedigree and very large 
numbers of markers by means of MCMC and 
simulated annealing algorithms

VITESSE Model-based linkage http://watson.hgen.pitt.edu/register/
soft_doc.html

A modified version of Linkage that is faster and 
allows the analysis of a larger number of markers

ALLASS Fine mapping by LD 
analysis of binary 
traits

http://cedar.genetics.soton.ac.uk/pub/
PROGRAMS/ALLASS 

Implements the Malecot model for localizing disease 
genes by allelic association in a set of disease and 
normal haplotypes

DHSMAP Fine mapping by LD 
analysis of binary 
traits

http://galton.uchicago.edu/~mcpeek/software/
dhsmap

Estimates the location of susceptibility genes from 
marker haplotypes or genotypes in affected 
individuals and controls

FBAT Association of binary, 
measured and 
time-to-onset traits

www.biostat.harvard.edu/~fbat/fbat.htm Well-documented software to test for association 
between disease phenotypes and haplotypes by 
utilizing family-based controls

HAPLOVIEW Association of binary 
traits

www.broad.mit.edu/mpg/haploview Performs LD and haplotype block analysis, single SNP 
and haplotype association tests, permutation tests 
and tagSNP selection

HAPLO_stats Association of binary, 
ordinal and 
quantitative traits

http://mayoresearch.mayo.edu/mayo/research/
biostat/schaid.cfm

S-PLUS/R routines for haplotype analysis. Provide 
score statistics for associations for a variety of traits, 
with the possible inclusion of covariates

UNPHASED Association of binary 
and quantitative traits

www.mrc-
bsu.cam.ac.uk/personal/frank/software/
unphased

Performs association analysis of multilocus 
haplotypes from genotype data in trios, case/control 
sets and general pedigrees

TRANSMIT Association of binary 
traits

www-gene.cimr.cam.ac.uk/clayton/software Transmission disequilibrium testing for marker 
haplotypes based on several closely linked markers. 
Allows parental genotype and/or haplotype phase to 
be missing

QTDT Association of binary 
and quantitative traits

www.sph.umich.edu/csg/abecasis/QTDT Performs several family-based tests of LD for 
quantitative traits

LOKI Model-based QTL 
linkage analysis

http://loki.homeunix.net MCMC-based software primarily for segregation and 
linkage analysis of quantitative traits in large and 
complex pedigrees

SOLAR Variance component 
QTL linkage analysis

www.sfbr.org/solar/index.html Software package for quantitative linkage analysis, 
allows modeling multiple loci, dominance and 
epistatic effects. Also includes bivariate analysis of 
two quantitative traits

Information on these and many other softwares available for statistical genetic analysis can be found at http://linkage.rockefeller.edu/soft.
LD: Linkage disequilibrium; MCMC: Markov Chain Monte Carlo; QTL: Quantitative trait locus; SNP: Single nucleotide polymorphism; TDT: Transmission disequilibrium test.
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linkage analysis in pedigrees using DNA polymorphisms, out of
a total of 9216 entries [202]. Starting from their localization by
genetic linkage analysis, many of the genes responsible for rare
Mendelian disorders have been subsequently identified thanks to
ever more powerful molecular approaches that can now also take
advantage of the knowledge of the human genome sequence. In
contrast, the application of the same positional approach to the
identification of genes responsible for more common diseases
such as schizophrenia, diabetes, hypertension and cancer has
proven less successful. These are also known as complex or multi-
factorial diseases to indicate that multiple genetic factors as well
as nongenetic ones (such as chance or environment) and their
interactions contribute to increased susceptibility of developing
the disease. One classic example of such a disease is Type 1
Diabetes (T1D) [9]. Several epidemiologic studies have shown
that genetic factors play an important role in determining suscep-
tibility to T1D, as indicated, for example, by the increased con-
cordance rate in monozygotic compared with dizygotic twins.
However, the same studies show that T1D is likely to arise from
multiple genes in addition to environmental risk factors, as well
as the interactions between them. One major candidate gene
locus (IDDM1) for T1D susceptibility is represented by the
human leukocyte antigen (HLA) region on chromosome 6.
A second locus, IDDM2, has been identified by association to
alleles of a variable number of tandem repeat (VNTR) polymor-
phism in the insulin gene (INS) on chromosome 11. However,
association to HLA haplotypes and INS VNTR alleles only par-
tially explains the genetic predisposition to T1D. Many other
loci and candidate genes have been implicated in different studies
(for an updated list, see [203]) but results are often conflicting, and
no other genetic risk factor has been identified unequivocally.

In general, after several years of research into the genetic basis
of common diseases, only a few loci have been mapped consist-
ently across different studies, and even fewer genes have actu-
ally been identified following their putative localization by
genetic linkage analysis.

Model-free linkage analysis
A possible limitation of the standard linkage approach by
means of the lod-score method to the analysis of complex traits
is the need to define a mode of inheritance for the disease. In
view of the complexity underlying disease transmission, meth-
ods that do not require an explicit definition of the genetic
model parameters may be more appropriate to the analysis of
complex traits. These methods are known as nonparametric or
model-free, in contrast to the model-based or parametric lod-
score method. The classic model-free methods are based on the
concept of identity by descent sharing among relatives. Two
alleles observed in two different individuals are termed identical
by descent (IBD) when they are in fact copies of the same allele
originally present in a common ancestor to the two individuals.
In contrast, two alleles can be identical by state (IBS) when they
are identical from the molecular point of view, but they do not
share a common origin, or their common origin cannot be
unequivocally determined (FIGURE 2). Two relatives affected by the
same disease are expected to share IBD alleles at the disease sus-
ceptibility loci, and at all the marker loci tightly linked to it. It is
possible to predict the proportion of marker alleles that a group of
affected relatives of a given degree will share IBD when there is no
linkage between the disease and the marker itself [10]. A deviation
from the expected IBD sharing towards increased observed IBD
sharing is thus taken as an indication of linkage between the dis-
ease and the marker locus (FIGURE 3). All this can be accomplished
without specification of a mode of transmission for the disease.
Sibling pair (sibpair) linkage analysis was first described by
LS Penrose in 1935 [11], and the affected sibpairs (ASPs) design is
still the most commonly used of the model-free methods of link-
age analysis. Various statistical tests with different properties
depending on the underlying disease model have been proposed
[12–15]. Most of these tests can accommodate a variety of situations
including extension to different types of relative pairs, extended
pedigrees, missing genotype information, uncertain IBD status,
multipoint (i.e., including multiple marker loci) analysis and so

on. Some of the software that perform
model-free linkage analysis in pedigrees of
various sizes and with variable number of
markers are indicated in TABLE 1. A compari-
son of several model-free tests specific to
simpler study designs such as ASP or small
nuclear pedigrees and the corresponding
softwares can be found in [16].

Model-free methods have the advantage
that they are relatively simple to use, and
are particularly appealing in the analysis of
complex traits as these traits are expected
to be more common in the population
then those caused by highly penetrant
genes, and are more likely to be identified
in smaller families than in large multiplex
families. However, the main disadvantage
over model-based methods is that they
often disregard available data, for example,

Figure 2. Identity by descent (IBD) versus identity by state (IBS). Genotypes at a marker with four 
different alleles are indicated below each individual.  (Pedigree 1) The two sibs share allele 1 IBD as it has 
been transmitted to both of them from the father.  (Pedigree 2) Allele 1 in the two sibs is IBS but not IBD 
(assuming the parents are unrelated) since it has different parental origin.  (Pedigree 3) It is impossible to 
tell whether allele 1 in the two sibs is IBD or just IBS because the father is homozygous for allele 1 (and 
thus not informative).  (Pedigree 4) A probability of allele 1 being IBD can be calculated based on its 
population frequency, and thus the probability of the father carrying 1 or 2 copies of the same allele.
IBD: Identical by descent; IBS: Identical by state; Sib: Sibling. 
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by not exploiting all the information provided by unaffected
relatives, and therefore, they are usually less powerful than a cor-
rectly specified model-based linkage analysis. In fact, it has been
suggested that a test based on the highest lod-score from two
simple model-based analyses, one under a recessive and one
under a dominant mode of inheritance at a fixed intermediate
penetrance, can be at least as powerful as and often more power-
ful than a model-free linkage analysis under several disease gene
models [17]. In any case, model-free methods are now used rou-
tinely in linkage analysis, and examples of success in the identifi-
cation of genes responsible of susceptibility to complex traits are
becoming available [18–21]. Notably, the case of the
CARD15/NOD2 gene and Crohn’s disease (CD) is often cited as
a successful application of the positional strategy to complex dis-
ease gene identification [19]. In this case, a clear increase in dis-
ease risk, particularly in the homozygous state, has helped single
out three rare CARD15 variants that are responsible for CD in
a large region of chromosome 16, previously identified by
model-free linkage analysis.

Association studies of binary traits
Association studies are a different class of model-free methods for
disease gene identification. Theoretical studies have suggested
that under some conditions, association-based studies would
provide more power to detect genes of modest effect on disease
risk (genes that confer less than twofold increase of risk in hetero-
zygous individuals compared with homozygous individuals with
the wild-type allele) compared with linkage approaches that
would require unrealistically large samples to identify the same
weak-effect genes [22]. The classic genetic association study is
based on comparison of allele frequencies in unrelated individu-
als from population-based samples. However, different strategies
are used in different contexts, and the authors aim to provide a
general summary of the statistical approaches used in association
studies and their applications. A few of the most commonly used
softwares in association studies are listed in TABLE 1.

Candidate genes
Direct association studies are used to investigate the contribu-
tion to disease of specific candidate genes, for which there is
evidence of a possible role in disease etiology, and/or are located
in regions identified through linkage analysis. Direct associa-
tion studies usually involve selection of potential susceptibility
variants (e.g., nonsynonymous polymorphisms in coding and
regulatory regions) [23]. The statistical approach is straight-
forward and is based on the classic case-control study design,
where a sample of patients with a given disease (cases) and a
sample of unrelated, unaffected individuals (controls), properly
matched with the cases for factors that may be important in the
disease etiology, are collected from the same population. Com-
parison of allele or genotype frequencies in the two samples can
be carried out by χ2 tests for contingency tables, Armitage’s test
for trend, or log-linear methods, with the expectation that a
risk-conferring variant will be more common in cases than
among controls. Genotype-based and allele positivity tests (per-
formed by pooling individuals with at least one copy of the sus-
ceptibility variant – either heterozygotes or homozygotes) are
suitable for the detection of susceptibility alleles that show a
dominant or recessive mode of inheritance.

Tests based on Hardy–Weinberg equilibrium (HWE) – that
is, based on deviation of observed genotype frequencies from
those expected on the basis of the product of the frequencies of
the composite alleles – have also been suggested to identify
associations with functional variants [24]. Since, when collect-
ing cases, genotypes are sampled proportionally to the rate of
disease susceptibility that they confer, departures from HWE
are expected in the case sample, depending on both the effects
and the mode in which the alleles interact within a genotype to
confer disease risk [25].

Allele-based tests are more powerful for the identification of
susceptibility alleles showing a multiplicative mode of inherit-
ance, but they assume HWE at population level [26]. When
alleles act in a multiplicative manner to cause increased levels

Figure 3. Alleles shared IBD by an affected sibpair. On average, 50% of alleles are shared IBD in a sample of sibpairs.  Given the first affected child's genotype 
at a marker locus (1/3), the second affected child will show 0 (genotype 2/4), 1 (genotype 1/4 or 2/3) or 2 (genotype 1/3) alleles IBD with probabilities of 25, 50 
and 25%, respectively, if marker and disease loci segregate independently (Pedigree 1).  The extreme cases of complete linkage between the marker and the 
disease loci in the case of recessive (Pedigree 2; both marker alleles are shared by the sibpair, average IBD sharing = 100%) and dominant transmission 
(Pedigree 3; one marker allele is shared by the sibpair, average IBD sharing = 75%) are also shown. In general, increased IBD sharing (>50% for affected sibpairs) 
is indicative of linkage between disease and marker loci.
IBD: Identical by descent; Sibpair: Sibling pair.
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of disease risk, deviations from HWE are not expected in the
case sample, as genotypes are selected proportionally to the
product of the allele frequencies. If this is the case, and if HWE
holds at the population level, it implies that each subject’s two
chromosomes can be sampled independently from the popula-
tion and chromosomes can be treated as independent units.
Allele-based tests practically double the sample size compared
with genotype-based tests, and are therefore more powerful [26].

Although straightforward in principle, the direct strategy
would imply comprehensive analysis of a candidate gene through
resequencing to search for all polymorphisms within its coding
and regulatory regions, and as such is limited by our present
incomplete knowledge about functional variation. Typically,
association studies of candidate genes use an indirect approach,
in which several neutral polymorphisms, mostly single nucleotide
polymorphisms (SNPs), typed in or closely adjacent to a candi-
date gene, are tested for association with the disease. Association
in this case may arise as a result of linkage disequilibrium (LD)
between the risk-conferring variant and nearby marker alleles.

Linkage disequilibrium mapping
LD is defined as the nonrandom assortment at the population
level of alleles at different loci. If alleles A and B at two loci are
in LD, they are more likely to be found on the same haplotype,
so that the frequency of the haplotype AB would be pApB + D,
where pApB is the haplotype frequency under equilibrium (the
product of the population frequencies of the constituent alleles).
LD between two loci can be summarized by the pairwise dis-
equilibrium coefficient, D, calculated as the difference between

the observed and expected haplotype frequency in the population.
For instance, for two biallelic loci with alleles A, a and B, b,
respectively, D = pAB - pApB. Two widely used measures of LD
based on D are D´ = |D/Dmax|, and r2 = D2/(pApapBpb).
D´ tends to be favored for LD-based mapping studies as it more
closely reflects the extent of recombination between the two
loci. The correlation coefficient between the two loci, r2, is often
used to evaluate whether one locus can be substituted for the
other (e.g., in the search for so-called tagSNPs; see below) with-
out loss of information. Both these measures equal 0.0 when
there is independence between the two loci, and 1.0 in the case
of complete disequilibrium. An overview of the different mea-
sures of LD and their utility in LD mapping can be found in
Devlin and Risch [27].

Of interest in LD mapping is nonindependence between
alleles of tightly linked loci. If a disease-causing mutation
occurred some time in the past on a given chromosome
(FIGURE 4), then LD between the mutation and the alleles at
other loci on that chromosome will be complete (one finds the
mutation only in the presence of that specific set of marker alleles).
Once LD is created, recombination between loci causes it to
decay over time, and the haplotype coupled with the ancestral
mutation will tend to shrink in successive generations due to
recombination. As a result, of the alleles present on the ancestral
chromosome, only those at marker loci tightly linked to the dis-
ease locus are expected to be in LD with the disease mutation
after many generations (FIGURE 5). This phenomenon is exploited
in LD mapping. If affected individuals have received a copy of
the same ancestral mutation from a common ancestor, they will
share a set of common alleles at loci around the mutated locus at
an increased frequency compared with unaffected individuals.
Since LD decays quite rapidly with distance in random-mating
populations, the region of shared DNA among affected sub-
jects in which the disease mutation must lie is expected to be
narrowed significantly by historic recombination events.

Aspects of the demographic population history, unrelated to
the disease, also play a critical role in LD structure. Although
mutation and recombination have the clearest impact on LD, a
range of demographic and evolutionary factors may have a sig-
nificant effect on the extent and distribution of LD [28], such as
admixture (the union of two or more genetically distinct popu-
lations) and migration (the introduction of new genes from one
previously distinct population into another). Initially, LD might
also exist between loci on different chromosomes, but as LD
between unlinked markers is eroded rapidly by recombination
in successive generations, only LD between nearby markers is
maintained [29].

Isolated populations are often considered advantageous for
association mapping, and extensive LD was demonstrated
around rare variants, and thus most of the affected individuals
in the current population shared a single ancestral chromo-
some inherited IBD from a common founder [30]. The degree
to which the same will be true for more common, older vari-
ants is uncertain. In constant-sized, finite populations, the dis-
ease mutation and the associated haplotype might increase in

Figure 4. The process that leads to an increased frequency of a specific 
allele (allele 1 in this example) at a marker, M, closely linked to a gene, 
G, in the current population sample of disease-predisposing 
chromosomes, G shaded, compared with normal chromosomes. After a 
disease-predisposing mutation has occurred, chromosomes carrying the 
mutation and normal chromosomes evolve independently and will be 
characterized by different marker alleles. Recombination between the two 
loci, which occurs with probability θ, and occurrence of another 
disease-predisposing mutation at gene G, which occurs with a probability µ, 
homogenize these populations.
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frequency by genetic drift (i.e., random changes in allele and
haplotype frequencies from one generation to another as a
result of chance events), thus also facilitating LD studies for
common variants [31]. Another potential advantage of isolated
populations that are recently derived from a limited pool of
individuals (founder populations) is that the number of vari-
ants underlying susceptibility to a disease may be reduced com-
pared with large outbred populations, thereby making associa-
tion easier to detect. Excellent overviews on the many factors
that influence LD-mapping studies can be found in [32,33].

Fine mapping by linkage disequilibrium analysis
LD mapping can be applied not only to candidate genes, but
also to further examine regions of the genome that have been
identified through linkage analysis. Linkage analysis typically
localizes complex disease genes to relatively broad regions, often
exceeding 10–20 cM, which might include hundreds of genes.
If there are no natural candidate genes in the critical region,
various fine-mapping methods can be used to refine the loca-
tion or to estimate the position of the disease-causing mutation
within the region. Collins and Morton described a likelihood-
based approach that allows estimating the location of a disease
gene in a high-resolution marker map, adopting the Malecot
model for isolation by distance [34]. Haplotype-based fine-map-
ping approaches have been proposed that account for the
dependence among case haplotypes and for the presence of
multiple causative mutations. Many methods use a coalescence
approach to reconstruct a tree structure based on mutations
(rather than recombinations) for the present-day haplotypes
back to their most recent common ancestor. Due to the com-
plexity of the likelihood models, Markov Chain Monte Carlo
(MCMC) methods are generally used. Some of these
approaches are described in [35–39]. Other methods rely on the
evaluation of haplotype sharing, as haplotypes around a causal
locus will be more similar among cases than in controls.
Te Meerman and coworkers observed that affected individuals
will share a longer haplotype IBD than unaffected control sub-
jects [40]. McPeek and Strahs developed a multilocus model for
LD mapping, based on the decay of haplotype sharing, which is
most appropriate for situations in which small regions of the
ancestral haplotype around a single variant are preserved in the
extant case sample [41].

Haplotype-based association analysis
Biallelic SNPs are the markers of choice for LD mapping due
to their high frequency in the genome, low mutation rates
and amenability to automation. Methods have also been
generalized to deal with multiallelic markers, for which
degrees of freedom increase dramatically with the number of
alleles and problems of sparse data in contingency tables are
potentially encountered [42,43].

LD analysis can be performed by testing each marker singu-
larly, but most recent statistical approaches focus on haplo-
types (i.e., combinations of alleles at multiple markers) rather
than single-marker analysis. The development of methods for

haplotype-based analysis is probably one of the most active and
rapidly expanding areas of statistical research in genetics as a
consequence of the availability of a large number of densely
spaced SNPs. These methods can be more powerful as they
allow the capture of the ancestral structure of the chromo-
some(s) flanking the susceptibility variant(s). In the direct
strategy, a haplotype-based test applied to a candidate gene
involves testing functional variants at different coding sites,
and it might result in a more powerful test when specific com-
binations of the variants on the same chromosome (variants
said to be in cis-position) have different effects on disease risk.
The extent and importance of cis-interactions in the human
genome are as yet unknown, although examples in humans of
super-allele effects have been reported [44–46].

Haplotype-based methods usually require information about
phase (i.e., information on which alleles at different linked loci
are located on the same homologous chromosome), which is
not immediately available from simple genotype data. Phase
could be derived either using molecular techniques, or by typ-
ing additional relatives, but both methods are costly and often
impractical, and in some cases, phase ambiguity may remain.
Statistical methods have been developed to infer most likely
haplotypes or all possible ones consistent with the observed
data (for a detailed coverage of recent computational methods
on this subject, see Niu [47]). However, it is not recommended
to use statistically inferred most likely haplotypes as if they were
directly observed, and phase ambiguity should be taken into
account in the statistical method used. Alternatively, multilocus

Figure 5. Ancestral haplotype carrying a disease mutation will 
tend to shrink in successive generations due to recombination. 
As a result, of the alleles present on the ancestral haplotype, only 
those at marker loci tightly linked to the disease locus D are 
expected to be in linkage disequilibrium with a disease mutation after 
many generations.
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approaches, based on scores of allele counts at multiple loci
rather than haplotypes, allow circumventing the problem of
reconstructing haplotypes statistically and have been shown to
provide increased power under certain circumstances [48,49].

Methods that evaluate haplotype-based association treat
haplotypes as categorical variables and usually follow traditional
statistical approaches. Maximum likelihood haplotype frequen-
cies can be estimated (e.g., using the EM algorithm described
in Excoffier and Slatkin [50]) separately in cases and controls
and compared with those estimated in the joint sample in order
to test if significant differences can be detected between the two
samples by a likelihood ratio test (through a χ2 statistic, or an
exact test obtained from permutations) [51]. A limitation of this
approach is that it implies reconstructing haplotypes from
unphased genotype data separately for cases and controls, and
thus assumes that HWE also holds in the case sample, which is
true only if the causative locus (and consequently markers in
strong LD with it) has an underlying multiplicative model on
the genotype relative risk [26].

More general regression methods, which also provide a flexible
means to include environmental effects, have recently been
extended to account for uncertain haplotype estimation. Schaid
and coworkers proposed a score test embedded within the classic
Generalized Linear Modeling (GLM) framework for testing
haplotype–phenotype association that can handle a variety of
phenotypes (binary, ordered and quantitative) [52]. An alternative
score test is described by Zaykin and coworkers [53]. An advantage
of the score statistic is that it is quick to compute and therefore
allows the estimation of empirical significance by simulations.

When many markers are considered jointly, a large number
of haplotype configurations become possible, many of which
are expected to be rare. For rare haplotypes, a study might have
insufficient power to detect association, even if association is
present. A possible solution, although not completely satisfac-
tory, can be to set a minimum haplotype frequency threshold,
and to group all rarer haplotypes together. Alternative methods
group haplotypes based on specific measures of similarity
among them, because similarity is likely to be determined by
shared genealogy [54]. Finally, an additional active area regards
the development of methods based on haplotype clustering and
cladistic analysis [55–57]. A comprehensive review on current
haplotype-based approaches is provided by Schaid [58].

Population stratification
Association study designs that make use of unrelated cases and
controls are popular due to their efficiency and the ease of
recruiting subjects. On the other hand, the case-control design
has been criticized due to the potential for spurious associa-
tions due to population stratification – the existence of geneti-
cally different subgroups in the population under study. Popu-
lation stratification, sometimes known as ‘substructure’,
implies the existence of genetically different groups in the
population under study. It occurs, for example, when cases and
controls are not well matched ethnically or when people in the
population under study have not mated randomly for several

generations. Spurious association arises in a stratified sample
when disease prevalence and marker allele frequencies differ
among the subpopulations. The impact of erroneous associa-
tion due to population stratification in case-control studies has
been debated [59,60].

One approach for dealing with population stratification is
to match the ethnic backgrounds of patients to controls as
much as possible, although a certain amount of cryptic strati-
fication may remain undetected. If stratification exists in a
population sample, methods have been devised to adjust the
association test using the information on unlinked markers (as
stratification acts on the whole genome and not only locally) [61].
Other methods use unlinked markers to infer the underlying
structure and then condition on the structure in the test for
association [62,63].

Family-based approaches to association studies
The first attempt to tackle the problem of population stratifica-
tion by means of family-based studies was undertaken by Falk
and Rubinstein with their haplotype relative risk (HRR)
approach [64], further developed by Terwilliger and Ott [65], and
later with the transmission disequilibrium test (TDT) [66]. The
rationale behind the TDT is that under the null hypothesis of
the absence of both linkage and association between marker
and disease loci, marker alleles will be transmitted randomly
from parents to offspring. The TDT compares the frequency of
transmission versus nontransmission of marker alleles to
affected offspring by means of a simple χ2 test. The strength of
the TDT is that it eliminates population stratification effects
completely, but is less powerful than population-based
approaches when there is no population stratification. The
original formulation of the TDT clearly requires the collection
of DNA sample from parents of the affected individuals, which
may be difficult to obtain for example for late-onset diseases.
Many subsequent modifications to the TDT have been proposed,
allowing for other types of relatives as controls [67], unavailable
parental data [68], multiallelic markers [69], multimarker analy-
ses [70] and families with multiple affected individuals [71].
Some methods allow the detection of association while taking
into account linkage, either in nuclear families [72] or in pedi-
gree of any size [71], while others are proposed for joint linkage
and association analysis in a more powerful manner [73,74].

Genome-wide association mapping
Currently, a central issue in human genetics is whether it would
be possible to use LD mapping strategies on the whole genome
to identify disease genes underlying complex traits, considering
the improved techniques for high-throughput identification and
genotyping of polymorphisms that offer the possibility of
interrogating hundreds of thousands of SNPs across the genome
[75,76]. The extent and patterns of LD across the genome are cru-
cial parameters for defining the statistical power of large-scale
association studies. Strong LD in a region implies that most of
the variation can be captured by a reduced number of well-cho-
sen SNPs (tagSNPs), thus reducing the genotyping of redundant
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SNPs. Large projects are currently underway (such as the Inter-
national HapMap Consortium [204]) that will allow guiding the
selection and spacing of SNPs that are useful in candidate genes,
candidate regions, and possibly whole-genome association stud-
ies. There has been much emphasis on determining the haplo-
type block structure of the human genome [77,78]. A variety of
definitions for haplotype blocks have been proposed, and there
is an emerging literature on methods for choosing an optimal set
of haplotype tagSNPs (htSNPs), in order to capture the haplo-
type structure of the genome [79–81]. The utility of haplotype
block definition, motivated by the hypothesis that common
variants play an important role in the etiology of common dis-
eases [82] in the discovery of disease-susceptibility genes of a
more general spectrum, remains uncertain [83]. An alternative
approach, which is not based on haplotype block definitions,
has also been proposed based on LD maps that describe the pat-
tern of LD in a chromosomal region through a measure of dis-
equilibrium between pairs of SNPs (LD units) [84]. LD unit
maps provide a scale on which to distribute SNPs for association
mapping, in a fashion analogous to the recombination maps
expressed in centiMorgans and used to guide linkage studies.

Since causal variants that contribute to complex traits are
likely to have modest effects, large sample sizes are crucial in
association studies, although ultimately, power depends on many
different factors that jointly influence the probability of success.
In particular, the effect (or penetrance) of the causal variant(s)
and its/their frequency(ies) in the population will affect both
direct and indirect approaches; whereas, in the indirect
approach, the frequency(ies) of the marker allele(s) that is/are
correlated with the causal variant(s) and the extent of LD
between them will also play a crucial role [75]. Large sample sizes
are also important in achieving a statistically significant associa-
tion, particularly in a genome-wide context, since more stringent
thresholds for individual tests are needed when performing mul-
tiple comparisons using many markers. For instance, a point-
wise significance of 5 × 10-8 after Bonferroni correction has been
suggested in order to preserve a genome-wide Type I error rate of
0.05 [22]. This would require a prohibitively large sample and
represents an over-conservative threshold, because the tests at
different markers are likely to be correlated. As an alternative,
permutation testing allows evaluation of how often an observed
test result would occur by chance if the study was repeated a
large number of times (e.g., 10,000 times) under the null
hypothesis of no association. The null hypothesis of no associa-
tion is obtained by shuffling case and control labels in each per-
muted set. Evaluation of the proportion of the permuted samples
in which the test statistic exceeds a given threshold provides an
estimate of the empirical significance for the test statistic
observed in the actual data set [85].

Analysis of quantitative traits
Linkage analysis
The effects of multiple genes, environmental factors and their
interactions may often lead to similar phenotypes, obscuring
the inheritance pattern of common diseases. Several approaches

have been taken in order to reduce the expected genetic hetero-
geneity and environmental noise, and to improve the power of
linkage methods for common diseases. One approach relies on
a suitable selection of the sample. For example, related individ-
uals showing a form of the disease with increased severity are
more likely to share the same genetic determinant. This study
design has been successful in identifying a genetic variant
involved in Alzheimer’s disease [86]. Analogously, age at onset of
disease information improved the ability to detect genes for
breast cancer [87], as early-onset forms are expected to show
minor environmental influences.

Instead of reducing the expected etiologic heterogeneity by
operating a selection according to phenotypic characteristics,
the same goal may be achieved by focusing the linkage studies
on a genetically homogeneous population [88]. Indeed, geneti-
cally isolated populations with a small number of founders are
expected to display reduced disease-influencing variants when
compared with outbred populations, and the shared environ-
ment and life style are likely to enhance the signal-to-noise ratio
of linkage studies. Isolated population studies have proved very
valuable for the mapping and positional cloning of genes deter-
mining rare recessive Mendelian disorders (e.g., see [89]). Their
value in complex disease mapping is unclear, even though the
first successes are beginning to appear (e.g., see [90]).

An alternative (or integrative) approach to reducing the etio-
logic heterogeneity in genetic linkage studies is to focus on
quantitative traits that are risk factors for the disease. The under-
lying quantitative phenotypes that predispose to disease develop-
ment may be etiologically more homogeneous than the disease
itself. For example, the pathogenesis of cardiovascular diseases
can result from a combination of several etiologic factors, such as
central obesity, serum lipid levels, insulin level and blood pres-
sure, each of them under a varying degree of genetic control.
Therefore, the number of susceptibility loci may be so high that
it is preferable to study the intermediate phenotypes, since the
disease state among affected individuals can be an insensitive
indicator of different underlying processes. In other cases, the
disease itself is defined on the basis of a rather arbitrary threshold
set on a quantitative measurement (e.g., body mass index in the
case of obesity, or bone mineral density and osteoporosis) and
direct analysis of the quantitative trait itself may more objectively
represent the variation observed among different individuals.

A locus underlying variation at a quantitative phenotype is
known as a quantitative trait locus (QTL). In some cases, spe-
cific effects of QTL alleles on quantitative phenotypes are
directly observable. For instance, markers at or near loci of
known function (candidate genes) may have the potential to
affect the phenotype, either directly or indirectly, through
LD. This approach, named the measured genotype approach,
enables assignment of phenotypic effects to specific alleles or
haplotypes at the candidate loci. The measured genotype test
compares by ANOVA the mean values of the quantitative
trait in individuals who have either specific alleles or specific
genotypes, and it has been successfully applied in human
populations [91–93].
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When the genetic effect of one or more QTLs is unobserv-
able, their locations and effects are estimated through linkage
analysis. Lod-score methods for quantitative traits require the
specification of QTL parameters, including allele frequencies,
mean effect of the genotypes and genetic variance in the popula-
tion. The genetic model can be evaluated in a first step through
segregation analysis (without markers) and the trait-related
parameters estimated are subsequently fixed for the linkage
analysis with marker data. However, if the trait model is not
particularly accurate, this approach leads to an overestimation
of the recombination fraction. Better results can be achieved by
simultaneously modeling segregation and linkage analysis.
These methods are computationally challenging, even if MCMC
methods have provided new tools able to fit such complex models
even in extended families [94]. Nevertheless, as previously stated
for binary traits, the high parameterization of lod-score methods
and the difficulties in obtaining correct parameter estimates had
driven the development of various model-free methods. These
methods are based upon IBD sharing among relatives, evaluated
by observing the segregation pattern of polymorphic genetic
markers in the pedigrees. The degree of IBD sharing among dif-
ferent relatives is correlated to trait similarity by either regression
or variance component (VC) analysis. In 1972, Haseman and
Elston (HE) developed the first regression method for quantita-
tive trait mapping [95]. It is based on the regression of the trait-
squared difference in a sibpair on their IBD sharing at a marker.
If the marker is linked to the trait, small differences in the trait
should be associated with high IBD sharing, and vice versa, and
the slope of the regression line should therefore be negative.
Conversely, a flat regression line would indicate no correlation
between IBD sharing and trait-squared difference between the
sibpairs, and thus no linkage.

Several authors have subsequently proposed modification of
the original test to improve its power, using the squared sum of
the trait values together with the squared difference (for a sur-
vey on revised HE methods, see [96]). In particular, Sham and
coworkers extended the regression-based methods to the analy-
sis of different types of relative pairs, as all these methods were
limited to the analysis of sibpair data [97]. Compared with VC
methods, regression methods are computationally less
demanding and are more robust to violation of normality of
the trait distribution. In addition, they are more suited to the
analysis of selected samples. Selective sampling of extreme sib-
pairs often increases the genetic signal, especially for trait loci
with low heritability (the proportion of the trait variance
attributable to genetic factors), and potentially reduces the
costs of the linkage study, provided that the massive pheno-
typing needed to identify suitable pairs would be cheaper than
genotyping [98].

However, when the distribution of the trait is approxi-
mately normal, VC linkage methods [99] are more powerful
than regression-based methods [100]. Indeed, the VC
approach is noteworthy for its generality and flexible mode-
ling capability, as virtually any type of effect and interaction
can be easily incorporated.

In VC linkage analysis, the components that model the pheno-
typic covariance among relatives are estimated by maximum likeli-
hood. For a simple model in which one QTL and residual poly-
genic effects influence a quantitative trait, the overall phenotypic
variance σp

2 of the trait is modeled as the sum of the phenotypic
variances due to additive effects of the QTL (σq

2), an additive
polygenic effect σa

2, assumed to be due to a large number of
unlocalized loci acting additively, and a random environmental
deviation σe

2. Under the VC model, we can test the null hypo-
thesis that the additive genetic variance due to the QTL equals
zero (equivalent to the hypothesis of no linkage) by comparing the
likelihood of this model with that of an alternative model in which
σq

2 is estimated. The statistical evidence for linkage is evaluated by
a likelihood ratio test, presented as a lod-score [97].

The additive QTL heritability, or QTL effect size, is
expressed by the ratio: 

and represents the QTL contribution to the total trait
phenotypic variance.

Sample sizes commonly used in human linkage studies have
the power to detect only QTLs with a major effect on the
phenotype – usually not less than 10% of the total phenotypic
variance. With underpowered data sets, when a genome-wide
scan shows significant linkage to a QTL, the effect size estimate
can be upwardly biased [101], especially if the true genetic effect
is small. This bias should be kept in mind in result evaluation,
such as when attempting to replicate a significant finding in a
different sample.

VC methods can be easily extended to complex genetic mod-
els, allowing for additional sources of genetic and nongenetic
variance. Shared environmental effects can be modeled by the
introduction of an additional VC, indicating whether any given
relative pair shares or does not share the same environment.
Dominance effect as well as interaction among loci can be esti-
mated in the VC model by specification of opportune VCs [102].
Ability to detect epistasis (or gene–gene interactions; see more
later) in a QTL linkage framework is low [103]. Purcell and
Sham showed that a simple additive variance component model
may well be adequate for the detection of QTLs that in reality
act epistatically [104].

Linkage of two correlated traits to a single chromosomal
region is often taken as further support that a major gene con-
trolling both traits exists in that region. Model-free methods for
quantitative traits can be further adapted for the analysis of
multivariate data [105]. Amos and coworkers compared HE and
VC methods in a multivariate context [106]. They demonstrated
that the power of multivariate models is high when polygenic
and major gene correlation in traits were opposite in sign.

Association studies
As in the case of binary traits, QTL linkage studies have limited
resolution, due to the relatively small number of observable
meiotic events [107]. LD mapping provides one possible strategy
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for narrowing the site of the QTL causing the phenotypic
effect. Moreover, the ability to detect an association between a
genetic variant and the quantitative phenotype may be higher
than in linkage studies [108], particularly for traits with low her-
itability [109]. Many of the observations and comments already
made for association studies of binary traits also apply to QTL
association studies, which can also be broadly categorized into
population- and family-based designs. Population-based tests
make use of unrelated genotyped and phenotyped individuals.
In a simple design, the population sample is stratified by
marker genotype, and association between the marker and trait
is inferred if there is a significant difference in trait mean
between marker genotype classes.

As already mentioned in the case of the binary traits, popula-
tion-based tests have been criticized for possibly inducing spu-
rious association due to population stratification. Methods such
as the TDT originally developed for binary traits [66] have been
extended to quantitative trait analysis [110–112] and can be used
in the presence of population stratification. These quantitative
TDT-like tests examine whether subjects with different geno-
types within the same family have different trait means. Since
all family members belong to the same subpopulation, signifi-
cant within-family differences cannot be the result of admixture
and are thus indicative of association between the trait and the
tested polymorphism(s). A comparison of several different LD
tests for identification of loci affecting quantitative traits that
use either single individuals or parent–child trios is discussed
in [113]. A few of the most commonly used softwares in QTL
analysis are listed in TABLE 1.

Gene–gene interactions
Gene–gene interaction (or epistasis) is expected to play a crucial
role in complex trait etiology, and statistical methods
designed for its detection are receiving increased attention.
Most gene mapping methods described thus far are concerned
with the analysis of one trait or disease locus at a time. This
section will describe methods that explicitly address the simul-
taneous analysis of multiple unlinked loci all that affect the
same trait or disease. Joint analysis of all possible disease loci
can confer a clear advantage over locus-by-locus analysis when
the underlying genetic model implies strong interaction effects
among loci (purely epistatic models) that would have no effect
by themselves (no marginal effects). If marginal effects (the
effects of each single locus without considering interactions
with the others) are detectable, an efficient approach would be
to conduct a multistage approach that first identifies signifi-
cant loci in an initial scan without considering epistasis, and
then performs conditional analyses based on the identified loci
to search for other interacting loci or evaluates all possible
two-way interactions among them.

Statistical procedures to simultaneously analyze more then
one locus have been developed for both linkage and associa-
tion approaches. Specifically, methods that allow testing of
two-trait-locus models have been proposed for model-based
and model-free linkage analysis [114,115], but their application

has been limited to date. Methods that allow the analysis of
gene–gene interactions in the context of association studies
are, in contrast, receiving increasing attention, although
underpowered sample sizes may represent a major limitation of
these approaches, as larger sample sizes are required to com-
pensate for the increased number of hypotheses involved in
multidimensional screenings.

More recent statistical methods focus on interaction models
to detect disease loci with little or no marginal effects. Classic
logistic regression methods are not practical when multiple
interaction factors are included in the model. The combinato-
rial partitioning method (CPM) allows evaluation of the
effects at many markers jointly, specifically for quantitative
traits [116]. An extension of this method is multifactor dimen-
sionality reduction (MDR) applicable to case-control data and
discordant sibpair studies, based on pooling multilocus geno-
types to reduce the dimensionality of the tests [117]. Hoh and
coworkers have proposed a method termed ‘set association
analysis’ to perform a simultaneous significance test on several
sets of loci while keeping the overall Type I error in control [118].
Contributions from multiple SNPs in different genomic
regions are combined by forming a sum of single-marker sta-
tistics, which results in a single test statistic with high power.
In Marchini and coworkers, computationally feasible multi-
locus methods are proposed for large genome-wide association
studies [119]. The authors showed that these approaches can be
more powerful than traditional analyses, also when using a
conservative correction for multiple testing, since the sharp
increase in power compensates for the burden of multiple test-
ing. Excellent reviews on methods for detection of gene–gene
interactions can be found in [120–122].

Expert commentary
Over the past two decades, genetic linkage and positional cloning
methods have been extremely useful in identifying many genes
implicated in simple (Mendelian) diseases, whereas little success
has been achieved in identifying genetic factors underlying
more elusive complex traits. Complex traits are likely to involve
several genes, which can be of marginal importance individu-
ally, and are characterized by extensive heterogeneity and
gene–gene interactions as well as interactions of genetic with
nongenetic factors.

All gene-mapping studies aim to detect correlations between
the genotypes of marker loci of known genomic locations and
the phenotype of interest (which can be a disease or a quanti-
tative trait). While classic model-based approaches have been
extremely powerful in the analysis of Mendelian traits, model-
free methods are often preferred for their simplicity and
independence from specification of disease model parameters
for the analysis of complex genetic traits.

Disease-associated quantitative traits (also termed intermedi-
ate phenotypes) are increasingly being used as proxy for disease
phenotypes in genetic studies of complex diseases. In general,
continuous phenotype measurements are inherently more
informative, objective and statistically powerful than binary
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categorizations of disease status, and they avoid the problems of
arbitrary dichotomization. Until recently, it was impracticable
to identify the genes that are responsible for variation in continu-
ous traits, or to directly observe the effects of their different
alleles. Now, the abundance of genetic markers and sophisti-
cated statistical approaches have made it possible to identify
QTL – the regions of a chromosome or, ideally, individual
sequence variants that are responsible for trait variation.

LD mapping methods are essential for fine-scale mapping of
susceptibility loci, and have been suggested to be more power-
ful than linkage analyses in detecting weak genetic effects. Most
current association mapping is indirect, with reliance on LD,
and much recent methodologic work has been conducted to
optimize this indirect approach, including the investigation of
haplotype block structure and techniques for selecting tagging
SNPs. These studies should be adequately designed to take into
account the different factors that jointly influence the power of
these strategies: the effect size of the susceptibility locus, the fre-
quency of the trait-influencing allele(s), the frequency of the
marker allele(s) that are correlated with the trait-influencing
allele(s), and the extent of LD between the two. In the study of
disease phenotypes, unless only a few mutations account for
most instances of disease, the signal will be too inconsistent to
find associations, although some degree of heterogeneity is
tolerable and newer methods that allow for such heterogeneity
by clustering of disease chromosomes have been proposed.

Stringent significance levels should be used in association stud-
ies, particularly in the case of whole-genome association studies
involving testing of hundreds of thousands of markers. Replication
of a significant result is critical, although nonreplication might
result from true biologic differences, as when specific susceptibility
variants have different frequencies in different populations.

The success of genetic mapping depends heavily on the
degree of genetic homogeneity underlying a trait. Population
isolates possess many advantages in this regard, and past suc-
cesses with Mendelian disorders have prompted geneticists to
target several population isolates for mapping genes for com-
plex diseases. Populations with reduced genetic variation might
be beneficial and have been recommended.

Ultimately, geneticists will need to turn the problem of com-
plex disease gene identification back over to the molecular and
cell biologists, as the role of a putative disease gene variant can
only be confirmed after a biologically functional effect has
been demonstrated.

In this article, the authors have aimed to provide a general
overview on statistical genetic methods. Of course, this cannot
be complete, as statistical applications in genetics are receiving a
great deal of attention, and improvements in methodology are
continually being proposed. Care will be required in their
design, performance, analysis and interpretation.

Five-year view
The positional approach of genome-wide mapping followed by
candidate gene analysis will remain the method of choice for
identifying rare, high-risk mutations, with optimal study designs

based on linkage analysis in multiplex families. The search for
more common, low-risk gene variants that underlie complex
traits will remain of central importance in human genetics. This
type of study will be based on smaller family units, such as
affected sibpairs in the case of linkage analysis, trios composed
of parents and one affected child in the case of LD analysis, or
unrelated samples of cases and controls for population-based
association studies.

Owing to the rapid increase in the availability of large numbers
of genetic markers and of the entire human DNA sequence, sta-
tistical methods will mainly focus on association studies aimed at
the identification of more elusive risk variants. The new data will
allow testing the current arsenal of statistical approaches, and
prompt for more sophisticated and powerful ones, especially for
haplotype and multilocus analyses. These approaches might play
an important role in the context of genome-wide association
studies, which have the potential to identify genes for common
diseases and quantitative traits. Two competitive strategies will be
pursued: map-based and gene- or sequence-based. In the former,
SNPs are chosen to comprehensively capture the common
variation across the genome through LD patterns or haplotypes.
Methods for selecting such SNPs and for using them efficiently
will continue to be developed and refined.

Parallel to the advance in our knowledge on genomic varia-
tion, it will become feasible for association studies to examine
all the variants within and around putative genes, and specifi-
cally functional variants. Statistical tests will be performed on
the main effects of these variants, and haplotype methods will
entail testing cis-interactions in addition to main effects. Func-
tional genomic technologies involving microarrays and pro-
teomics will add insights regarding gene function and inter-
action of genes, providing a powerful complement to gene-
mapping statistical approaches. Additional advantages of the
gene-based approach is that replication is less susceptible to
erroneous findings due to genetic differences between popula-
tions and that it provides straightforward meta-analysis
approaches combining data from multiple studies.

Investigating large numbers of loci leads to a greatly increased
number of statistical tests, increasing the possibility of false-
positive results. This remains a problematic topic requiring
additional statistical genetic research. Rigorous study design,
independent replication of data and careful attention to the
effects of multiple testing are among the recommendations that
will improve the value of association data in the future.

Assessing gene–gene and gene–environment interactions will
be necessary, and will require novel statistical methods, whose
properties, such as power under different scenarios, still need to
be explored.

Finding a disease-associated variant will just be the beginning
of applying knowledge of gene variation to human disease to
assess their public health and clinical relevance. This is likely to
be a difficult task as genetic studies, in contrast to classic epi-
demiologic studies, use confounding and ascertainment bias to
help identify weak genetic effects, thus making quantification
of their relevance to public health complex.
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