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Hormones and B-cell
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and autoimmunity
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The development of B cells into antibody-secreting plasma cells is central to the

adaptive immune system as they induce protective and specific antibody

responses against invading pathogens. Various studies have shown that, during

this process, hormones can play important roles in the lymphopoiesis, activation,

proliferation, and differentiation of B cells, and depending on the signal given by

the receptor of each hormone, they can have a positive or negative effect. In

autoimmune diseases, hormonal deregulation has been reported to be related to

the survival, activation and/or differentiation of autoreactive clones of B cells,

thus promoting the development of autoimmunity. Clinical manifestations of

autoimmune diseases have been associated with estrogens, prolactin (PRL), and

growth hormone (GH) levels. However, androgens, such as testosterone and

progesterone (P4), could have a protective effect. The objective of this review is

to highlight the links between different hormones and the immune response

mediated by B cells in the etiopathogenesis of systemic lupus erythematosus

(SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS). The data collected

provide insights into the role of hormones in the cellular, molecular and/or

epigenetic mechanisms that modulate the B-cell response in health and disease.
KEYWORDS
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Introduction

B cells are part of the immune response and play an important defensive role against

pathogens through the production of antibodies and the presentation of antigens to T cells.

However, B cells are also involved in the development of autoimmune diseases, in which

the response is directed against autoantigens. Generally, the development of B cells begins

in the bone marrow (BM) and continues in the spleen, after which they migrate to other

peripheral lymphoid organs where they are activated and differentiated into memory and
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plasma B cells. In this process, there is bidirectional communication

between the immune and endocrine systems. This relationship has

been studied since the 1940s, when Ungar G. demonstrated that

hormone-like components are produced in the spleen and secreted

into the circulation (1). In rats with splenectomy, a decrease in the

concentration of 20a-dihydroprogesterone was found, delaying the
onset of ovulation (2), while a reduction in the number of

pregnancies was observed in splenectomized mice (3). In people

who underwent splenectomy, a reduction in sexual activity, such as

decreased libido, erectile dysfunction, and sexual dissatisfaction,

was observed (4), demonstrating that splenectomy can interfere

with the reproductive system possibly by interfering with hormonal

regulation. Furthermore, the functions of the spleen are also

regulated by the hypothalamic-pituitary-ovarian axis, and there

may be feedback between endocrine molecules and the migration

of leukocytes from the spleen to the ovaries (5). In addition to

regulating the reproductive system, sex hormones regulate the

development and function of immune response cells. It has been

shown that females have the ability to produce more antibodies (6),

which increases their resistance to infections (7) and decreases their

susceptibility to viral infections (8). However, this increase in the

immune response can be harmful when one has a predisposition to

develop autoimmunity. In both human and mouse models, it has

been shown that some hormones promote the development of

autoimmunity, while others inhibit it. To date, there is relevant

information on the role that hormones play in the development and

activation of T cells during the autoimmunity process (9, 10);

however, information on the role that hormones play in the

development and activation of B cells is scarce. Therefore, in this

review, we describe the role of prolactin (PRL), estrogens, growth

hormone (GH), testosterone and progesterone (P4) in the

development and activation of B cells as well as their role in

pathological processes such as autoimmune diseases. This

collection of articles demonstrates the importance of endocrine

regulation and the B-cell immune response.
Development of B cells

The development of B cells (B-2) begins in the BM with

hematopoietic precursor cells (HSCs) (11), which differentiate

into early lymphoid progenitors (ELPs), and subsequently,

common lymphoid progenitors (CLPs). For CLPs to commit to a

B-cell lineage, different transcription factors, such as E2A (12), EBF

(13), and PAX5 (14), are necessary. The transcription factors

IKAROS (15)and PU.1 (16), the chemokine axis CXCL12-CXCR4

(17) and the cytokine BAFF (a key cytokine for the development of

B cells) (18) are important for the differentiation of B cells in the BM

(19). The different stages of cell maturation can be differentiated by

the recombination of genes encoding immunoglobulins (Igs), heavy

chain (IgH) and light chain (IgL). Both chains are made up of

variable and constant regions; the IgH variable region is formed by

the VDJ gene segments, while the IgL is generated from the VJ

segments (20). This process is known as V(D)J recombination and

is mediated by RAG1/RAG2 (21).
Frontiers in Immunology 02
The first stage is the formation of pre-pro-B cells, which are

characterized by the B220+CD43+CD19- phenotype and the

expression of the Flt3, Il7, and CD79a lineage genes, although

these cells still express myeloid lineage-associated transcription

factors such as Runx2, Irf8, and Tcf4. The next stage involves the

differentiation of pre-pro-B cells into pro-B cells, which exhibit

the B220+CD93+IgM−CD43+CD25-CD23- phenotype; in this

stage, the D-J segments of the IgH chain are rearranged,

and the functional V-DJ segment subsequently undergoes a

rearrangement. This process results in the synthesis of the IgH

chain and its expression on the surface, which is associated with the

surrogate light chain (l5 and Vpre-B), which is known as pre-BCR.

The formation of the pre-BCR marks the transition to the pre-B

stage. This receptor has two functions: the first is to ensure that two

IgH chains with different specificities are not expressed in the same

cell; this process is called allelic exclusion, and the second function

is to initiate the rearrangement of the VJ genes of the IgL chain. Pre-

B cells have a B220+CD93+IgM−CD43-CD25+CD23- phenotype.

After the successful rearrangement and expression of the IgL chain,

it associates with the previously synthesized IgH chain to form the

BCR (IgM), which is transported to the plasma membrane to form

the IgM-Iga (CD79a) Igb (CD79b) complex and marks the

transition to the immature B-cell stage. Immature B cells are

characterized by the B220+CD93+IgM+CD43-CD25-CD23-

phenotype. At this stage of immature B-cell development, cell-

surface antibodies can bind antigens. In the bone marrow

microenvironment in which immature B cells emerge, antigens

that engage the BCR are almost always self-antigens, which makes

regulation at this stage essential. Ligation of the BCR by self-

antigens promotes signaling that triggers regulatory processes to

reduce self-reactivity. These processes are collectively known as

central tolerance (22–25).

The exit of immature B cells from the BM to the periphery is

regulated by the receptor for sphingosine-1-phosphate (S1P). These

cells that migrate from the BM are called transitional (T) B cells, which

have a short half-life and express CD93. These cells arrive in the spleen

as T1 B cells (IgMhighIgDlowCD24+CD93+CD21-CD23-BAFF-R+/-) and

differentiate into T2 cells (IgMhighIgDintCD24+CD93+CD21+CD23

+BAFF-R+), where the interaction of BAFF with its receptor (BAFF-R)

sends survival signals, such as the activation of antiapoptotic and

proliferation factors, so that they progress from the T1 to the T2 stage

and complete their maturation process (26–28). Two types of mature B

cells can be found: those found in the marginal zone of the spleen,

called marginal zone B cells (MZ-B; CD19+CD21+IgMhigh

IgDlowCD1+), and those located in the follicles, known as B follicular

cells (FO-B; CD19+CD21+IgMlowIgDhighCD23+). The survival of these

cells depends on BAFF (an important cytokine for the development of

B cells) and their receptor interaction (29–31).

MZ-B cells can recognize T-independent antigens, which are

transported by the blood, and can differentiate into short-lived

plasma cells that secrete low-affinity IgM or initiate a response to

antigens in a T-cell-dependent manner. FO-B cells, on the other

hand, recirculate in the blood and in peripheral organs until they

become activated by T-dependent antigens, and with the

cooperation of T cells (T-follicular), these FO-B cells have the
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capacity to form germinal centers (GCs), where activated B cells

(germinal center B cells, GC-B) use activation-induced cytidine

deaminase (AID) to induce point mutations in the variable region

of the B-cell receptor gene to generate a diverse population of GC B

cells from the founder B-cell clone (somatic hypermutation, SHM)

and class switch recombination (CSR) to enhance their affinity. The

GC produces long-lived antibody-secreting plasma cells (ASCs) and

memory B cells. Due to the random nature of this process, B cells

with lower affinity, higher affinity, and novel autoreactivity are

generated, necessitating strict selection of B cells with optimal

antigen affinity to maintain tolerance and B cells with improved

fitness (Figure 1).

Throughout this entire process of maturation and differentiation

of B cells, self-reactive clones can be generated. To avoid this, there are

central and peripheral tolerance mechanisms (32–35). Failure to

eliminate autoreactive clones in conjunction with other factors, such

as hormones, contributes to the development of autoimmune diseases.

In addition to B-2 B cells, B-1 cells are a unique subset of B cells

that are distinct from conventional B-2 cells in terms of their

development, phenotype, and function. B-1 B cells preferentially

develop during fetal and neonatal life and maintain their peripheral

presence into adulthood through antigen-driven self-renewal. These

cells are innate-like B cells that are largely excluded from GC
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reactions and give rise to natural antibody-producing plasma cells

(PCs) in a T-independent manner, including low-affinity-binding

autoantibodies (36, 37). The secretion of autoantibodies has

identified B-1 cells as potential contributors to the development

of autoimmune diseases, such as lupus. In fact, elevated numbers of

B-1 cells have been associated with autoimmunity both in human

and mouse models (38).
The role of hormones in preserving B-
cell homeostasis

Various studies have shown that hormones intervene in the

development, activation, and proliferation of B cells. It has been

reported that B cells can secrete different hormones (PRL, GH and

P4) and can express different hormone receptors (PRL, estrogens,

GH, testosterone, and P4) (Figures 2, 3; Table 1).
Prolactin

PRL is a peptide hormone secreted by lactotroph cells of the

anterior pituitary. Its monomeric isoform has a molecular weight of
FIGURE 1

Model of the development and differentiation of B-2 cells and the transcription factors that regulate them. The B-cell ontogeny generally begins in
the bone marrow (BM) from hematopoietic stem cells (HSCs), which, through the expression of transcription factors such as PU.1, Ikaros, and EA2,
give rise to the formation of common progenitor lymphoid cells. The constant maintenance of EA2, PU.1, and Ikaros, plus the induction of TCF3,
EBF1, and FOXO1, promotes commitment to the B-cell lineage, which begins with the mechanisms of immunoglobulin gene recombination and the
formation of pre-BCRs (IgH and l5/VpreB) in pro-B cells. Subsequently, with the VJ rearrangements of the light chains and the expression of Pax5
and FOXO1, pre-B cells emerge from the BM with the stage of immature cells, characterized by the expression of IRF4 and IRF8. The immature cells
migrate to the spleen, and during this stage, they go through transitional cell stages 1 (T1) and 2 (T2) to finally reach the marginal zone (MZ) or the B
follicles as mature cells. The activation of MZ-B or follicular B cells in the absence of cooperation with follicular T cells (TFH) leads to the formation
of short-lived plasma cells, the process of which is highly regulated by BLIMP-1. When follicular B cells are activated in the presence of TFH and IL-
21, the expression of Bcl-6 occurs, which, together with Bach2 and Pax5, induces the differentiation of GC-B cells. The maintenance of the
activation of GC-B cells, coupled with the maturation of the affinity and increase of BLIMP-1, IRF4, and XBP1, gives way to the formation of memory
B cells or long-lived plasma cells, which travel to bone marrow for the maintenance of immunological memory. Created by Biorender.
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23 kDa and is composed of 199 amino acids (50). Nearly 300

functions of PRL have been reported, and the development of

mammary glands and lactogenesis appear to be the main

functions of this hormone (51). Adenohypophyseal synthesis and
Frontiers in Immunology 04
secretion are essentially regulated at the hypothalamic level by

substances such as dopamine, which exerts negative feedback on

PRL (52). The biological effects of PRL are mediated by its

interaction with its receptor, which depends on the type of cell
FIGURE 2

Hormonal effects on early B-cell development. B-cell development is regulated by hormones in the bone marrow. All stages of B-cell maturation
express PRL and the GH receptor, as well as their ligands. Until now, only some stages of maturation have expressed testosterone receptor.
Hormones positively or negatively regulate the differentiation of B cells and the expression of transcription factors, genes and cytokines that induce
activation, apoptosis, or proliferation. PRL, prolactin; GH, growth hormone; P4, progesterone; BAFF, B-cell activating factor. Created by Biorender.
FIGURE 3

Hormonal effects on mature B-cell development. B-cell development is regulated by hormones in the spleen. FO, GC, and MZ B cells express PRL and GH
receptor, as well as their ligands. Until now, only some stages of maturation have expressed estrogen, testosterone, and P4 receptors. Hormones positively
or negatively regulate the differentiation of B cells and the expression of transcription factors, genes and cytokines that induce activation, apoptosis, or
proliferation. PRL, prolactin; GH, growth hormone; P4, progesterone; BAFF, B-cell activating factor; SHM, somatic hypermutation; AID, activation-induced
cytidine deaminase; FO B, follicular B cells; MZ B, marginal zone B cells; GC B, germinal center B cells. Created by Biorender.
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where it is expressed. The PRL receptor belongs to the type I

cytokine family and consists of three domains: the extracellular

domain, which allows binding to the ligand; the transmembrane

domain; and the intracellular domain. Various isoforms of the

receptor have been described in both humans and mice (53, 54).

PRL can also be produced by extrapituitary sites, which include B

cells (55, 56). PRL production has been detected in IM-9-P cells, a

human B-lymphoblastoid cell line, but the levels of PRL mRNA

present in IM-9-P cells are lower than those found in the human

pituitary. However, the IM-9-P PRL transcript is 150-200

nucleotides longer than its pituitary counterpart. Lymphoid-

origin PRL is capable of carrying out an established biological

function since it can stimulate the proliferation of Nb2 cells, which

are dependent on lactogenic hormones such as PRL for cell

growth (39).

According to Günes ̧ & Mastro, the PRL receptor is also

expressed in rat splenocytes, where it has been found at the

mRNA and protein levels. Two isoforms (42 and 84 kDa) were

found to be expressed throughout the estrus cycle. The 84 kDa

isoform is expressed in greater abundance in proestrus, estrus, and

diestrus, but both isoforms are expressed during pregnancy and to a

greater extent during the beginning of lactation than in

thymocytes (57).

The expression of the PRL receptor has also been found in

human B cells, where its expression is similar in healthy individuals

and in patients with hyperprolactinemia, even after treatment with

bromocriptine, a dopamine agonist that regulates pituitary PRL

production (58). In mice (C57BL, MRL, and MRL/lpr), the

expression of the receptor at the mRNA and protein level has

been reported in all stages of B cell maturation, both in bone

marrow (pro-B, pre-B, and immature) and in the spleen transitional

(T), FO, GC, and MZ B cells (40–42). In CAF1/J mice, treatment

with PRL and estrogen increases the number of IgA-secreting

plasma cells in mammary glands (59). In vitro, PRL (0.2-100 ng/

mL) increases the activation of B cells, as measured by the increase

in the expression of the IL-2 receptor (IL-2R) when the cells are

costimulated with anti-IgM and IL-2, in addition to increasing the

secretion of IgM and IgG (60). PRL also increases the proliferation

of B cells when they are costimulated with suboptimal contractions

of mitogens such as phytohemagglutinin (PHA) or Staphylococcus
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aureus Cowan 1 (SAC). However, compared to physiological

concentrations (25 ng/mL), high concentrations of PRL (100 ng/

mL) decrease B-cell proliferation (61). Furthermore, bromocriptine

decreases the proliferation of B cells at DI-50 values between 1 and

10 µg/mL, as well as the production of immunoglobulins (62). In

mouse B-cell hybridomas that produce IgM or IgG, PRL increases

the proliferation and antibody levels of the hybridomas. In

hybridomas 5C6, 4A8, 19B3, 4D8, 3B10, and 4A2, proliferation

increased at concentrations ranging from 1-50 µg/mL.

Furthermore, the effect is increased when cells are stimulated with

IL-4, IL-5, and IL-6. PRL (1-50 µg/mL) also restored the

proliferation of hybridomas 5C6, 7A8, 3C9, 4D8, and 3B10 upon

inhibition induced by TGF-b (63). The PRL receptor is expressed in

all maturation states of B cells, indicating that this hormone could

play a role in the development of B cells in the BM. Meanwhile, in

mature B cells, PRL at physiological concentrations could

participate in the activation, proliferation, and differentiation to

ASC, thus increasing the production of antibodies, if the B cells have

a co-stimulatory signal (anti-IgM, mitogens, etc.); it could also act

in an autocrine manner since B cells can secrete PRL. In contrast,

high-dose PRL reduces the proliferation of B cells, possibly through

the suppressors of cytokine signaling (SOCS) pathway, as it has

been reported that the PRL induces SOCS 1 and 3 in a dose-

dependent manner (64).

On the other hand, an increase in the number of circulating B

cells has been reported in healthy men when they perform physical

exercise. Additionally, the serum concentration of PRL was

increased in these men, which correlated positively with the

number of B cells that express the PRL receptor, and the number

of B cells increased with exercise (65). However, in B cells from

healthy subjects and hyperprolactinemic patients, PRL has been

reported to have no effect on the in vitro expression of the

costimulatory molecules CD40 and CD86 (66). These results

suggest that in humans, PRL could participate in the proliferation

of B cells but not in their activation.

In general, these results show the immunomodulatory effects of

PRL on the development, activation, proliferation, and

differentiation of B cells, indicating that PRL plays an important

role in communication between the endocrine system and

immune system.
TABLE 1 Receptor expression and synthesis of hormones in B cells.

Hormones Receptor Synthesis of hormone References

mRNA Protein

Prolactin + + + (39–42)

Estrogens +
(ERa/ ERb)

+
(ERa/ ERb)

ND (43, 44)

Growth Hormone + + + (45, 46)

Testosterone + + ND (43, 44)

Progesterone +
(PR-A/PR-B)

+
(PR-A/PR-B)

+ (47–49)
+ Detected and reported in mice and human.
ND, not determined.
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Estrogens

Estrogens are hormones derived from cholesterol and are

associated with female reproductive organs and the development

of primary and secondary sexual characteristics. These hormones

regulate the physiological processes of germ cell maturation and

fertilization preparation (67, 68). Estrogens included estrone (E1),

estradiol (E2, 17b-estradiol), estriol (E3), and estetrol (E4).

Estradiol is the predominant circulating hormone among the

estrogen group. In contrast to estetrol, which is produced only by

the fetal liver, estrone and estriol are produced mainly by granulosa

cells and ovaries but can also be secreted by the adrenal glands,

adipose tissue, and cells of the immune system, including B cells

(69–71).

Two types of intracellular estrogen receptors have been

described, estrogen receptor a (ERa) and estrogen receptor b
(ERb), both of which are distributed in the immune system. The

estrogen receptor has been found to be expressed in B-cell lines

(U266 and RPM1 8226 cells line) (43). In the C57BL/10 mouse

strain, it has been reported that splenic B cells express ERa both in

vivo and in vitro after stimulation with 100 nM 17b-estradiol (E2),
but they do not express ERb (44). In the spleen B cells of BALB/c

mice, the expression of ERa and ERbwas demonstrated (72), and in

the same mouse strain stimulated in vitro with estrogen (1 nM), the

expression of activation-induced deaminase (AID) mRNA

increased (73). Furthermore, ERa binds upstream to the human

AID promoter both in vivo and in vitro. Estrogens also induce in

vitro increases in IgA, IgG1, IgG3 and IgE levels in mouse spleen B

cells; increase the frequency of mutations in the VH and CD95/Fas

loci of the Burkitt lymphoma cell line (Ramos); and cause mutations

in the Sg3 region of spleen cells from the intersection of AID−/− and

BALB/c mice (73). Therefore, estrogens play an important role in

AID-dependent processes, such as isotype switching and somatic

hypermutation (SHM). AID can be activated by estrogen, which can

result in immune hyperstimulation. This activation can occur

directly when the estrogen receptor (ER) binds to the AID

promoter or indirectly through the activation of transcription

factors that boost AID expression (e.g., HoxC4) (74).

In B-cell cultures from men and women treated for 6 days with

pokeweed mitogen (PWM) and estradiol (26,000-260 pmol/L), an

increase in the number of plasmablasts and IgM-secreting plasma

cells has been observed (75). In mice that expressed ERa+/+,

estradiol treatment (5 mg/kg), accelerated the maturation of B

cells by increasing the number of mature B cells and decreasing

the number of pre-B cells and immature B cells (76). These results

were verified by Erlandsson et al., who treated male mice that

expressed ERa+/+ or ERb +/+ with estradiol (30 µg/kg) and found

that estradiol inhibits the lymphopoiesis of B cells and increases the

secretion of immunoglobulins (77). Therefore, estrogens decrease

lymphopoiesis at the pro-B-cell stage (78).

Estrogens were found to increase the percentage of IgG- and IgA-

secreting cells in rhesus macaques; this change is also related to the

menstrual cycle and represents a link between ovarian hormones and

the development of B cells (79). In the BALB/c mouse strain, in vitro

estrogens were shown to protect splenic B cells from apoptosis and
Frontiers in Immunology 06
increase IgG secretion. However, they did not promote B-cell

differentiation into plasma cells or proliferation (80).

According to these studies, B cells have estrogen receptors.

Estrogens have been observed to reduce the population of B cells in

the BM. Conversely, in the spleen, estrogens increase AID-

dependent processes, such as isotype switching and SHM, and it

increases Ig secretion while preventing B cells from undergoing

apoptosis. Therefore, it is likely that estrogens act mainly in mature

B-cells and play an important role in their differentiation,

activation, and survival.

The aromatization of androgens is a key step in estrogen

production, and the aromatase enzyme converts androgen to

estrogen. In transgenic male mice that express human aromatase

(AROM+), which has a high estrogen/androgen ratio, alterations in

the function of B cells have been identified. AROM+ mice presented

higher concentrations of IgE, similar to the physiological

concentrations in females, contrary to what was observed in mice

with knockout (KO) of the aromatase enzyme (ArKO),

characterized by an imbalance in sex hormone metabolism,

resulting in nondetectable levels of estrogen in serum and

elevated levels of circulating gonadotrophins and testosterone

(81). Furthermore, high circulating levels of estrogen in mice

increase the production of IgG1, IgG2a, IgG2b, IgG3, and IgA

antibodies, as well as anti-DNA antibodies, which are involved in

autoimmune diseases, such as SLE. An increase in the number of

mature B cells (CD19+IgDlow, IgMhigh) and plasma cells

(CD19+CD138+IgD−) that contribute to the production of

immunoglobulins has been reported (82). Additionally, 244 of

362 transcripts were altered in B cells due to estrogen/androgen

imbalance. Therefore, the synergistic and disruptive effects of sex

hormones such as estrogens directly contribute to the development

of autoimmune diseases by altering the differentiation of B

cells (82).

Thus, in addition to their involvement in numerous other

functions, estrogens play a vital role in metabolism, cognition,

and immunity. Moreover, elevated androgen and estrogen levels

cause alterations in B-cell development and Ig production.
Growth hormone

GH is produced through the anterior pituitary in acidophilic

somatotroph cells. Its synthesis and release is regulated by growth

hormone-releasing hormone (GHRH), which is secreted by the

hypothalamus and by ghrelin. At the same time, it is negatively

regulated by somatostatin (GHIH). GH modulates its biological

functions through a receptor member of the I cytokine receptor

family. GH is necessary for the postnatal development as well as for

bone and muscle development (83, 84).

In human peripheral B cells from healthy subjects, the

expression of GH and its mRNA receptor has been determined

(45). Additionally, an age-related increase in GH receptor

expression has been reported in B cells (85). Moreover, in B-cell

lines (Raji and Daudi cell lines), GH and its mRNA receptor was

found (45). In C57BL/6, BALB/c and DBA/2 mice, the expression of
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the GH receptor has been detected in BM (pro-B, pre-B, immature

cells), peripheral B cells, and spleen (46) (Figures 2, 3).

In the pro-B-cell line (Ba/F3), which is dependent on IL-3,

transfection with the GH receptor induces cell proliferation (86).

Meanwhile, GH allows the cell cycle to progress from the S to the M

phase, promoting the expression of E and A cyclins, c-myc and

inhibiting the expression of p27, while maintaining the constant

expression of Bcl-2, Bag-1, and Bcl-XL (antiapoptotic proteins) (87,

88). GH induces different signaling pathways in these pro-B cells

and can activate the NF-kB signaling pathway to exert an

antiapoptotic effect; also induces PI3-K signaling, which is

responsible for a proliferative effect that can be regulated by c-

myc and cyclins (87, 88). Since GH can activate the NF-kB
signaling pathway, it is likely that it also exerts an inflammatory

effect through the production of cytokines and chemokines, such as

TNF-a, IL-6, and MCP-1, as it has been reported in preadipocytes

(89). These cytokines are critical for immune cell development,

differentiation, and regulation. Therefore, the balance between

the pro-inflammatory and immunosuppressive functions of

these cytokines and their implications for the pathogenesis of

autoimmune diseases are critical.

Similarly, GH promotes the phosphorylation of STAT5b and its

eventual translocation to the nucleus, where it binds to the proximal

STAT response element (pSRE) in the SOCS3 promoter, which

regulates the response to cytokines. Notably, the expression of

SOCS3 is aided by the activation and recruitment of JNK, p38

MAPK, c-Fos, c-Jun, and FOXO3a, which are associated with the

AP1/CRE and FOXO binding motifs on the cAMP response

element-binding promoter (90). However, in C57BL/6 mice, the

percentage of B220+ cells were increased after BM cells were

cultured in the presence of exogenous GH. Exogenous GH also

increased the mRNA expression of Ig-a/CD79a and Ig-b/CD79b,
which are important for BCR signaling, and the mRNA expression

of PU.1 and PAX5, which are important for early B-cell

development (91).

The absence of GH in GH-releasing hormone knockout mice

induces a decrease in body weight and the percentage of spleen B

cells. However, the percentage of B cells normalizes during aging (92).

In GH-deficient children who are administered biosynthetic GH, the

percentage of B cells tends to decrease but the effect is transient and

normalizes over a period of 9 months (93). Moreover, GH increases

the in vitro levels of IgG, IgG4, IgE, IgA, and IgM antibodies in the B

cells of healthy subjects (94, 95). Hence, GH is important for B cell

interactions since GH is involved in the control of the development,

maturation, and the number of B cells in the periphery.

GH is a crucial regulatory protein in numerous B cell processes,

including signal transduction, checkpoint regulation, apoptosis,

cytokine production, and cel l divis ion. Furthermore,

understanding the role of B cells in autoimmune diseases and the

subsequent production of pathogenic autoantibodies enables us to

understand how hormonal regulation of B cell-intrinsic signals

(ontogeny and function) may contribute to autoimmunity

pathogenesis. This underscores the crucial role of B cells in the

interconnected communication systems of the immune and

endocrine systems.
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Testosterone

Testosterone is the main sex hormone in men and the most

common androgen in adult men. Testosterone is secreted in the

gonads and adrenal cortex, mainly in the Leydig cells of the testes

(96); it is responsible for regulating different physiological

processes, including secondary sexual characteristics associated

with puberty, muscle hypertrophy, erythropoiesis, bone

metabolism, cognitive functions, and mood (97). In men, the free

fraction of testosterone is 2%. Testosterone binds to sex hormone

binding globulin (SHBG) with high affinity and albumin and other

proteins with lower affinity, which impacts its distribution in the

blood circulation (98). It has been reported that splenic B cells from

C57BL/6 mice express the intracellular androgen receptor (iAR),

which is located in the cytoplasm and can translocate to the nucleus

after stimulation with testosterone (44) (Figure 3). Furthermore, the

expression of the androgen receptor has also been determined in the

ReH-6 (early pre-B) and RAJI (pre-B) cell lines (43) (Figure 2).

Since the 1970s, testosterone has been known to negatively

regulate lymphocyte development. In female C3H/He mice that

were subjected to irradiation and treated with syngeneic bone

marrow cells, there was a reduction in the number and size of

splenic follicles and a decrease in the number of lymphocytes

surrounding the GC and plasma cells when treated with

testosterone (1-20 mg/mL); the decrease in plasma cells was

maintained until 60 days posttreatment (99). In addition, B-cell

lymphopoiesis in the BM and spleen is reportedly increased in

castrated mice (100–102). In C57BL/6 castrated mice, treatment

with testosterone or 5a-dihydrotestosterone decreased the number

of BM B cells (103). Chen et al. reported that castrated rats with low

endogenous testosterone levels develop splenomegaly, while the

supply of exogenous testosterone restores the size of the spleen,

similar to physiological conditions (104). In addition, LPS

stimulation combined with low testosterone levels increases the in

vitro production of nitric oxide and TNF-a and the proliferation of

splenocytes, and TNF-a production negatively correlates with

plasma testosterone concentrations (104). Therefore, homeostatic

concentrations of testosterone may regulate the development,

proliferation, and maturation of B cells and have an anti-

inflammatory effect.

It is probable that testosterone interferes during the early stages

of B-cell development, since in castrated C57BL/6 mice, the number

of newly migrated B cells from the BM (B220lowCD24high) increases,

as does the number of early-stage pro-B cells in the BM (101).

Testosterone has an indirect effect on B-cell lymphopoiesis by

acting on marrow stromal cells, where it increases the mRNA

expression of TGF-b (105). Wilhelmson et al. reported that in

male androgen receptor KOmice, the osteoblast lineage cell-specific

receptor KO (O-ARKO) allele was associated with increased

expression of B-cell precursors, pro-B cells, large pre-B cells,

small pre-B cells, and immature B cells (106). Therefore,

androgens such as testosterone, through cells of the osteoblast

lineage, exert inhibitory effects on the lymphopoiesis of BM B cells.

In both men and women, in vitro culture of PBMCs and

purified B cells with testosterone (100 nM) for 7 days inhibited
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the production of IgG and IgM, while the addition of IL-6 in culture

partially restored the production of these antibodies in PBMCs

treated with testosterone. However, testosterone affects the

production of IL-6 by monocytes but not by T and B cells (107).

Therefore, this hormone likely induces an indirect effect on the

inhibition of immunoglobulins through monocytes.

Among the inductive mechanisms that establish the decrease in

B-cell expansion by androgens, testosterone has been shown to

regulate B-cell tolerance since the loss of the androgen receptor

induces B-cell evasion of apoptosis (108). In B-cell CD19+

androgen receptor knockout (G-ARKO) mice, this deficiency

increases the number of splenic B cells, while the addition of

exogenous testosterone in vitro (25 mg/day) decreases the number

of splenic B cells only in castrated control mice. Additionally,

testosterone decreases the number of splenic B cells at different

stages of maturation, including B1, transitional (T1, T2 and T3), FO

and MZ cells (109). Furthermore, testosterone downregulates BAFF

expression in splenocytes in an androgen receptor-dependent

manner. It is important to mention that the serum levels of this

hormone are notably greater in females and in men with

hypogonadism (109), which is consistent with previous reports on

the predominance of autoimmunity in females. Thus, testosterone

controls many physiological functions, such as immunity, primarily

through directly influencing B cells that express androgen receptors.

Therefore, testosterone plays a protective role against the

development of autoimmune diseases.
Progesterone

P4 is synthesized by ovarian follicles through the regulation of

theca cells and granulosa cells. P4 plays an important maintenance

role in mammalian pregnancy and fetal development (110). The

biological action of P4 depends on two intracellular receptors, PR-A

and PR-B (111). Many of the effects of P4 are related to the

inhibition of the immune system, particularly the inflammatory

response, which involves a large number of proinflammatory

cytokines (112, 113).

It is worth mentioning that hormonal concentrations fluctuate

throughout life since they increase during puberty, change cyclically

during the menstrual cycle, and increase again during pregnancy.

Therefore, revealing the general hormonal regulation of the immune

system by merely observing physiological effects is difficult since, for

example, circulating P4 levels in male mice range from 1.5–2 ng/mL,

while those in females range from 3 to 35 ng/mL (114–116).

However, during pregnancy, P4 levels are exacerbated (250 mg

during the third trimester) and decrease before childbirth. In this

physiological state, P4 is mainly immunosuppressive (113, 117).

The expression of the P4 receptor (protein and mRNA) has

been demonstrated in the bursa of Fabricius and the thymus in

chickens (49). In mice, mouse (BALB/c) splenic B cells express PR-

A and PR-B, with PR-A predominating in these cells (47). Both

isoforms have also been found in the bursa of Fabricius cells

following estradiol treatment (49). Furthermore, it has been

suggested that B cells produce P4 since the presence of P4 has

been detected in the supernatant of rat B cells activated with
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concanavalin A (48, 118) (Figures 2, 3). The expression of

progesterone and its receptor in B cells suggests that this

hormone may act as an autocrine manner in these cells.

During pregnancy in mice, a gradual decrease in pro-B, pre-B

and immature cells in the BM, as well as in the concentration of

BAFF, has been reported (119). In male lymphocytes, P4 induces a

significant downregulation of BAFF (120). The results suggest that P4

tends to have protective and regulatory effects on the immune

response during pregnancy by decreasing the concentration of

BAFF, which could cause a decrease in B cell maturation. P4

increased the apoptosis of different B cell lines (Raji, CRL 1596 and

SKW) in vitro (121). In BALB/c mice, P4 inhibited the activation of B

cells in vitro by decreasing the expression of costimulatory molecules,

such as CD80 and CD86 (122). This decreased the presentation of

antigens and, therefore, the activation of B cells, which favors the

apoptosis of cells that do not activate or proliferate. Therefore, P4

tends to regulate B cell maturation and activation and may be an

important regulator of tolerance in B cells.

P4 increases the number of IgA plasma cells in the uterus of

ovariectomized outbred albino mice in vivo (123). While in B cells

from spleen of BALB/c mice, P4 did not increase IgG production

(122), nor in the coculture of follicular T cells/B cells from healthy

women and activated with 1 mg/mL staphylococcal enterotoxin B

(SEB); the addition of a pregnancy-related dose of P4 (50 ng/mL),

P4 did not increase the IgG production (124). The increase in IgA

may be due to the microenvironment of the uterus since other

hormones could favor this increase. Furthermore, in splenic B cells

from BALB/c mice, the expression of AID mRNA was reduced in

vitro in the presence of P4 (73); therefore, it could induce a decrease

in isotype switching.

P4 also regulated plasma cell differentiation since it

downregulated the expression of CD138 (122), and reduced the

percentage of plasmablasts (CD19+ CD38+ CD138-), but increased

the percentage of plasma cells (CD19+ CD38+ CD138+) in coculture

of follicular T cells/B cells (124), which suggests that the effects of P4

also depend on the maturation state of the B cells. Additionally, P4

increases the percentage of IL-10+ follicular regulatory T cells (124);

therefore, P4 modulates the activation of B cells and could regulate

GC response during plasma cell generation.
The role of hormones in
autoimmune diseases

It has been documented in animal models and human clinical

studies that alterations in hormonal homeostasis contribute to the

development of autoimmune diseases. The effects of hormones on

B-cell function and vice versa can promote the development of

autoimmune diseases such as SLE, RA, and MS (Figures 4A, B).
Systemic lupus erythematosus

SLE is a chronic inflammatory autoimmune disease caused by

the hyperactivity of B cells, which is identified by the presence of
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autoantibodies directed against various molecules in the nucleus,

such as DNA, RNA, Ro, La, and histones. These autoantibodies can

also form immune complexes that frequently leave circulation and

are deposited in the kidney, skin, and brain, among other tissues,

where they can cause inflammation and tissue damage. SLE affects

mainly women of reproductive age at a 9:1 ratio with respect to men

(125, 126).

The increased incidence of lupus in women of reproductive age

points to a hormonal influence on the development of the disease.

Sex hormones, such as estrogen and PRL, have been found to exert

immunostimulatory effects on B cells that induce the development

of autoimmunity. In humans, PRL increases the production of IgA,

IgM, and IgG in the PBMCs of healthy individuals and, to a greater

extent, in patients with SLE, as well as the synthesis of anti-dsDNA

IgG in vitro (127, 128). Furthermore, between 10 and 33% of

patients present with hyperprolactinemia, which is correlated with

disease activity (129, 130). Moreover, estrogen also increases the

secretion of total IgG in patients with SLE (active and inactive) and

of anti-dsDNA IgG (active SLE) (131). Estrogens even decrease the

percentage of apoptotic cells in PBMCs from patients with SLE and

healthy individuals (132) (Figure 4A).

Similarly, in the NZB/W F1 mouse strain, which is genetically

predisposed to develop an SLE-like disease, estrogen-induced

hyperprolactinemia is associated with premature death (133). Even in

MRL/Faslpr/lpr mice, which also develop SLE-like disease, estrogens

increase immune complex-mediated glomerulonephritis (IgG1, IgG2a,

IgG3, IgM; anti-dsDNA), lymphoproliferation, and mortality (134–136).

Similarly, in MRL and MRL/Faslpr/lpr mice, hyperprolactinemia induced

by the drug metoclopramide increases the production of anti-dsDNA

antibodies, proteinuria and the expression of the PRL receptor in

transitional B cells (41). Therefore, estrogens and PRL modulate the

maturation of autoreactive B cells.

There is a whole range of mouse model studies in which PRL,

and estrogens were identified as modulators of B-cell tolerance,

activation, proliferation, and maturation (Figure 4B). Regarding
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tolerance mechanisms, in BALB/c transgenic mice harboring the H

chain of an anti-DNA Ab (R4A-g2b), estrogens alter B-cell

tolerance and increase the number of splenocytes through the

positive regulation of the antiapoptotic Bcl-2 protein, which is

associated with the evasion of autoreactive B-cell apoptosis (137).

Similarly, PRL also increases the expression of Bcl-2 in the splenic B

cells of R4A-g2b mice (138). In MRL and MRL/Faslpr/lpr mice,

elevated levels of PRL decrease the absolute numbers of pro-B and

immature cells in both strains and increase the expression of the

antiapoptotic molecule BIRC5 (mRNA) in pro-B (MRL/Faslpr/lpr)

and immature cells (MRL and MRL/Faslpr/lpr) (42). PRL promotes

immature B-cell survival through the activation of STAT3, which

binds to the promoters of the antiapoptotic Birc5, Bcl2a1a and

Bcl2l2 genes (139, 140). Therefore, the number of T1 B cells

increases. Moreover, in R4A-g2b mice, estrogens and PRL

increase the expression of BAFF in T1 B cells (138, 141).

Additionally, in Sle3/5 R4A-g2b C57BL/6 mice that express both

the H chain transgene and the Sle3/5 lupus susceptibility range, PRL

decreases the T1:T2 B ratio and promotes autoreactive B-cell

accumulation in splenic follicles. Moreover, PRL increases the

expression of CD40, B7-2, and MHC II in B cells; CD40-L in T

cells; and B7-2 and CD44 in dendritic cells and monocytes, through

which PRL can be activated directly and indirectly from dendritic

cells to B cells (142, 143). Similarly, PRL increased the expression of

CD40 in the splenic B cells of R4A-g2b mice (138). However, in

C57BL/6 mice harboring the Sle1 lupus susceptibility allele, ERa
signaling increases in females, favoring the activation of B cells

through an increase in B220+CD86+ and B220+CD22+ cells (144).

Therefore, ERa signaling is differentially activated in females with

SLE through Sle1b. Taken together, these data confirm that PRL

and estrogens promote the hyperactivity and survival of B cells

through genetic and immunoregulatory factors during the

progression of SLE.

Furthermore, the hormonal microenvironment contributes to

choosing the fate of transgenic R4A autoreactive B cells since
BA

FIGURE 4

Hormonal effects on B cells and autoimmune disease. The loss of a homeostatic physiological state, such as the set of anomalies of the immune system
(loss of tolerance) and of some of the hormonal elements, increases the hyperactivation, proliferation and differentiation of B cells, as well as the expression
levels of different proteins that promote the survival of autoreactive clones that produce autoantibodies. In human (A) and mouse (B) models, hormones
such as PRL, GH and estrogens generally favor an increase in the clinical manifestations of systemic autoimmune diseases such as SLE and RA, as well as the
severity of organ-specific diseases such as MS. However, a decrease in testosterone, P4 and regulatory cellular elements is injurious in the control of
pathologies. AR, Rheumatoid arthritis; SLE, Systemic lupus erythematosus; MS, Multiple sclerosis. Created by Biorender.
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estrogen favors the formation of MZ B cells, and PRL favors the

development of FO B cells. Although estrogens also influence BCR

signaling by decreasing calcium flux in B T1 and B T2 cells (141),

estrogens and PRL also regulate antibody duration. The

concentration of anti-DNA antibodies persists for at least 12

weeks after withdrawal of the estrogen stimulus, as do the

number of DNA-reactive splenic B cells, immune complex

deposition, and survival of the MZ-B cells. However, a constant

effect of PRL is necessary to maintain anti-DNA reactivity in serum

and FO-B cells (145). Therefore, the estrogen-susceptible survival of

MZ autoreactive B cells is an important source of autoantibodies

during disease progression.

In mature B cells, PRL and estrogens influence the GC reaction.

In MRL/Faslpr/lpr mice, PRL increases the proliferation of GC-B

cells, the differentiation of antibody-secreting cells, and the

production of IgG3-conjugated anti-dsDNA antibodies. PRL

signals in GC-B cells through the long isoform of its receptor via

STAT1 and AKT (40). In C57BL/6 Sle1 mice, ERa signaling

increases in females, favoring the formation of spontaneous

germinal centers (GCs) and the development of anti-chromatin

antibodies of the IgG isotype (144). Therefore, PRL and estrogens

influence the maturation and proliferation of B cells, favoring the

maturation of autoreactive clones capable of differentiating into

antibody-secreting cells (ASCs) and increasing the manifestations

of SLE through immune complexes.

Epigenetically, estrogens (ERas) reverse the protection of the

MRL/Faslpr/lpr strain mediated by histone deacetylase inhibitors

(HDIs) and short-chain fatty acids (SCFAs) in vivo, which reduce

skin lesions and the production of anti-dsDNA IgG2a. In vitro, ERa
reverses the negative regulatory effects of HDIs on the expression of

the AID gene and Aicda gene and on class switch DNA

recombination (CSR) through the negative regulation of miR-26a,

which is expressed in activated B cells that carry out CSR and

plasma cell differentiation (146). On the other hand, in BWF1 mice,

which spontaneously develop lupus, chronic administration of 17b-
estradiol (E2) increased the secretion of anti-DNA and anti-Br-RBC

IgM autoantibodies in B1 cells in vitro (147), highlighting the

importance of this population in autoimmunity.

There are pharmacological strategies that aim to reduce

the manifestations of SLE. In NZB/W F1 mice treated for 5

months with tamoxifen (TAM), a synthetic antiestrogen, a

decrease in cellular infiltration (CD40+ and CD40L+ cells) and

glomerulonephritis mediated by estrogens were reported at 8

months of age (148). Moreover, simultaneous treatment with

bromocriptine, a dopamine agonist, reduces manifestations of

SLE (induced by PRL or estrogen), such as anti-DNA antibody

production and mortality (149–151).

In parallel, compared with male patients, female patients with

active and inactive SLE exhibit an increase in serum estrogen levels

and a decrease in the levels of testosterone and its precursor

dehydroepiandrosterone (DHEA-S) (152). It has been determined

that testosterone (10-9 M) suppresses the production of IgG and

IgG anti-dsDNA antibodies in the PBMCs and B cells of SLE

patients in vitro (153). However, in NZB/W F1 mice, testosterone

promoted the development of the GrhighLy-6G+CD11b+ myeloid

population, which inhibited differentiation into ASCs in vitro.
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Furthermore, the depletion of Gr1+ cells in vivo increases the

serum production of antinuclear antibodies (anti-dsDNA and

anti-histone) in male mice but has no effect in females (154). An

in vivo decrease in Gr1+ cells favors the formation of GCs and the

number of GC-B cells (155). With respect to the P4 receptor, Nba2

KO mice exhibit an increase in IgG1 and IgG2c serum antibodies,

an increase in immune complexes, and a decrease in survival (156).

Together, testosterone and P4 play therapeutic roles in SLE by

suppressing the secretion of antibodies from B cells and their

progressive damage (Figures 4A, B).
Rheumatoid arthritis

RA is a chronic autoimmune disease that affects the joints. RA is

characterized by inflammation of the synovial membrane and the

formation of a pannus, an abnormal set of granulomatous tissue

that is responsible for the destruction of cartilage and bone as a

consequence of the activation and infiltration of cells of the immune

system, including T and B cells (157). RA affects 1% of the world's

population, with a 3:1 female/male ratio. RA patients exhibit an

increase in autoantibodies against IgG, known as rheumatoid factor

(RF), and anti-cyclic citrullinated peptide antibodies (ACPAs)

(158, 159).

Several genes related to the immune response (TLR7, CD40L,

FOXP3, etc.) have been reported in an RA murine model (collagen-

induced arthritis [CIA]), and genes expressed on the X

chromosome were shown to regulate susceptibility to RA (160,

161). Since RA is more prevalent in women, it has been proposed

that it may also be regulated by hormonal factors. However, there

are controversies about the influence that estrogens can have on the

development of RA. Several studies have suggested that estrogen

decreases susceptibility to developing RA. Using mice susceptible to

developing RA (DBA/1 strain), Nilsson et al. reported that mice are

more susceptible to developing this disease when they are

ovariectomized and treated with low doses of antigen (CII).

Moreover, the number and percentage of B220+CR1+

(complement receptor 1) B cells in the spleen, lymph nodes, and

peripheral blood, as well as the expression of CR1 were decreased in

these mice; therefore, estrogens could increase the expression of

CR1 (162). The protective effect depends on the dose of CII because

CR1 can inhibit inflammation only when mice are triggered by low

antigen (CII) doses but can stimulate an immune response with

high antigen doses. Therefore, the protective effect of estrogens

depends on the dose of the antigen. Moreover, combined treatment

with dexamethasone plus estrogen in these same mice

(ovariectomized DBA/1) decreased the frequency of B cells, the

concentration of autoantibodies, and the incidence of inflammation

(IL6), reducing the manifestations of the disease, destruction of

cartilage, and osteoporosis. The same results were obtained with

dexamethasone plus raloxifene, a selective estrogen receptor

modulator (SERM) (163). It is known that in RA, the presence of

autoantibodies precedes the inflammatory phase; the sialylation

state of these antibodies is important in this disease. Low IgG

sialylation has been related to the progression of inflammation,

while high IgG sialylation decreases the manifestations of the
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disease (164). It has been reported that high levels of estrogen

increase the expression of ST6GAL1, the enzyme responsible for

binding sialic acid to IgG, thus increasing the sialylation of IgG and

probably inducing an anti-inflammatory effect in patients with AR

(165). Therefore, estrogen may have a protective effect on RA by

reducing inflammation. By increasing IgG sialylation, the

expression of CR1 in B cells decreases, as does the expression of IL6.

However, it has also been reported that estrogen promotes the

development of RA. Estrogens increase the expression of HLA-DR4

in B cells from DRB1*0401-CIA transgenic male mice (mice that

develop RA and produce RF and ACPAs) and increase the antigen-

specific response to estrogen CII peptides (residues 254-273)

restricted to DR4. Furthermore, HLA-DR4 has been associated

with the presence of RA in both female patients and mice.

DRB1*0401 females are more susceptible to developing CIA, with

increased concentrations of proinflammatory cytokines (IL-2, IL-4,

IL-5, and IL-13) and increased proliferation of B cells. Similarly, the

presentation of citrullinated peptides by B cells is more efficient in

females than in males. During in vitro antigen presentation, female

B cells tend to produce higher concentrations of IL-13 and IL-4,

while males produce higher concentrations of IL-10, IL-1b, and
TNF. Simultaneously, males express a greater number of regulatory

B cells (CD5+CD1hghi) (166). Therefore, sex differences in RA

include immunoregulation of estrogens and androgens in the B-

cell response and differential expression of DR4, as well as the

regulatory cells that influence the development of autoimmunity.

Therefore, estrogen may have a protective effect by reducing

inflammation. By increasing IgG sialylation, the expression of CR1

in B cells decreases, as does the expression of IL6. However, it could

favor the development of RA when B cells express DRB1*0401

(associated with the presentation of autoantigens); estrogens

increase the expression of DRB1*0401, increasing the

presentation of autoantigens and, therefore, the presence of

autoantibodies. These findings show that estrogens may have a

dual role in B cell immunomodulation. However, the dose appears

to be a crucial factor in predisposition or susceptibility to RA,

explaining the marked prevalence based on gender.

In the same CIA model, it has also been reported that mice with

deletion of a P4 receptor allele in osteoprogenitor cells (PR DPrx1-
CIA) have a greater incidence of osteoarthritis. Male mice have

lower bone mass in the legs and knees, a lower volume of

subchondral trabecular bone and greater erosion and damage to

the cartilage of the knee joint (167). Therefore, P4 plays a protective

role in the manifestations of RA. Similarly, GH concentrations are

deficient in patients with RA (168).

Although hormonal imbalances can have direct effects on RA, B

cells play an interesting role in the development of pathology

(Figures 4A, B). Thus, maintaining estrogens, P4 and GH levels at

physiological levels would aid in preventing the disease in patients.
Multiple sclerosis

MS is an inflammatory autoimmune disease that affects the

central nervous system and is characterized by chronic

demyelination, axonal loss, and eventual neuronal degeneration
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(169). It most frequently affects women between 20 and 40 years

old, with a female/male ratio of 4:1, depending on geographic location

(170, 171). MS affects a total of 2.8 million people worldwide, and in

recent years, the number of MS cases has continued to increase, with

a high incidence in women (170). Although MS is mediated mainly

by T cells, B cells significantly contribute to this disease (172).

There is evidence suggesting the involvement of hormones in

the course of MS, although it is controversial whether the

immunoregulatory effects are protective or detrimental to the

disease. For example, in MS patients receiving infertility

treatment with assisted reproductive technology, in which there is

an increase in the serum levels of 17b-estradiol and P4, MS activity

increases 7-fold (173). On the other hand, it has also been reported

that the relapse rate of MS decreases during pregnancy and

increases during the first postpartum trimester (174). Therefore,

although the study suggested that a systemic hormonal increase can

confer immunosuppressive effects, there is no insight into the

mechanisms through which the hormones could exert their effects.

Estrogens have been shown to slow the development of

experimental autoimmune encephalomyelitis (EAE) in female

C56BL/6 mice that underwent MS modelling with pertussis toxin.

In mice with EAE, prolonged treatment with high doses of estrogen

increased the percentage of IL-10-producing CD1dhighCD5+

regulatory B cells (175). It was proven that estrogens exert their

protective effect on B cells; for example, in B-cell-deficient mice

(mMT-/-), the protective effect was lost (176). It has been reported

that the interaction of estrogens in B cells occurs through ERa and

G protein-coupled receptor 30 (GPR30) (177).

When B cells from female C57BL/6 mice were preincubated with

low doses of estrogens and subsequently coincubated with myelin

oligodendrocyte glycoprotein (MOG) 35–55-specific 2D2 TCR Tg T

cells, the proliferation of MOG35–55-specific CD4+ T cells decreased

compared with that in B cells not preincubated with estrogens; this

could be explained by the fact that estrogens increase the expression

of PDL1 (immune response inhibitory molecule) (176).

It has been reported that during pregnancy, in addition to

hormonal changes, there are changes in the intestinal microbiota

(178). Therefore, hormones could also induce changes at the

microbiota level. Chronic estrogen treatment has been shown to

positively regulate the microbiota of C57BL/6-EAE mice and

increase the frequency of CD19+CD5+CD1dhigh regulatory B cells

in the spinal cord and mesenteric lymph nodes. Thus, estrogens

have a protective effect against EAE and its clinical manifestations,

such as dysbiosis, through increasing the percentage of regulatory B

cells and enriching a favorable microbiome (179). Furthermore,

estrogens can also contribute to CNS neuroprotection by promoting

the anti-inflammatory M2 phenotype of microglia, which favors an

increase in the percentage of CD19+CD9+IL-10+ regulatory B

cells (175).

It is important to emphasize the importance of the protective

effect of estrogens through the mechanisms of regulatory cells. In

ovariectomized C57BL/6-EAE females, estrogen treatment

improved the disease score and the percentage of regulatory B

and T cells. Estrogens increase the percentage of CD8+CD122+ cells,

CD19+CD5+ CD1dhigh cells, CD19+ TIM-1+ cells and CD19+

CD138+ CD44high B cells in both males and females but increase
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the percentage of CD19+ PD-L1high B cells in females only (180).

These studies clearly revealed that B cells are essential for providing

estrogen-regulated protection against MS, indicating that estrogens

act directly on B cells to positively modulate their function.

In contrast to estrogen, PRL is considered a hormone that

promotes the development of this disease. MS patients in remission

and with active disease presented higher serum PRL concentrations

and greater ex vivo and in vitro Jak/Stat pathway signaling in B cells

than healthy individuals. PRL also increased the expression of BAFF

and Bcl2 in vitro (5-50 ng/mL). Therefore, B cells from patients with

MS and hyperprolactinemia are less susceptible to apoptosis.

Similarly, PRL increases the production of cells that produce anti-

MOG antibodies that induce demyelination and correlates with the

serum level of PRL in patients with MS (181). Like in SLE, it is

suggested that PRL favors the maturation of autoreactive clones of B

cells that evade central tolerance mechanisms and induce the

maturation of autoantibody-producing cells.

In mouse models, PRL-producing B cells infiltrating chronic/late

EAE lesions in C57BL/6 mice play a proinflammatory role in the CNS.

B cells express PRL and GHmRNA, but only PRL markedly increases

the expression of the T-box transcription factor eomesodermin

(Eomes) in CD4+ T cells, which exacerbates the manifestations of

EAE by promoting cytotoxic effects (182, 183). CD4+Eomes+ cells

promote granzyme B production and lysosomal degranulation (183).

Furthermore, in the coculture of T-B cells, an increase in

CD4+CD107a+ Eomes+ T cells was observed, where CD107a+ was

also an index of continuous and cytotoxic lysosomal degranulation.

Similarly, PRL production in B cells is related to the expression of the

transcription factor Zbtb20, which originally positively regulates

pituitary PRL production; its inhibition reduces the development of

EAE and the infiltration of CD4+CD107a+Eomes+ T cells (182).

Strong evidence for the antagonistic effects of both estrogens

and PRL in MS has been shown. Estrogens confer protection

through the induction of regulatory B cells or those with high

expression of PDL-1, which reduces the proliferation of effector T

cells; PRL appears to increase the incidence of MS, promoting the

survival of B cells and increasing the cytotoxic activity of T cells

(Figures 4A, B). This antagonism would explain the controversial

role of hormones in the course of MS in pregnancy and in fertility

treatments, which are both characterized by increases in PRL and

estrogen levels.
Conclusion

Hormones interact with their receptors are involved in the

development, activation, and differentiation of B cells. It is

important to mention that their effects also depend on the stage

of cell maturation and not only on the concentration. Different

hormones, such as PRL, GH, and P4, are secreted by B cells and

express the receptor for PRL, estrogen, GH, testosterone, and P4

(Figures 2, 3; Table 1). Hormone signaling, together with other

signals from the immune response in B cells, can regulate multiple

mechanisms in these cells. However, their role in the bidirectional

communication network between the endocrine system and

immune system is complex but should not be addressed as an
Frontiers in Immunology 12
isolated system in nature. Considering the development of

autoimmune diseases that we address here and given that B cells

play a major role in the onset of these diseases, the hormonal effect

on B-cell function could explain the sexual dimorphism

characteristic of autoimmune diseases. Some hormonal

abnormalities may be related to the exacerbation of autoimmune

disease, as is the case for estrogen, PRL and probably GH, which are

fundamental for the progression and severity of these pathological

processes, while testosterone and P4 may have protective effects.

This finding provides insight into the search for more effective

diagnostic and therapeutic options.

In this regard, the current challenge must be focused on

proposing options that enable the identification of specific

hormonal abnormalities and the cell populations involved in

patients who are at risk. In addition, further studies of this

immunoendocrine duality are needed.
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Gorocica-Rosete P, Pizaña-Venegas A, et al. Prolactin rescues immature B-cells from
apoptosis induced by B-cell receptor cross-linking. J Immunol Res. (2016)
2016:3219017. doi: 10.1155/2016/3219017
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