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ABSTRACT 

An exact limit-stress solution is presented for the problem of seismic earth pressures on L-shaped cantilever walls retaining dry
cohesionless soil. It is shown that the problem can be analyzed by means of a Rankine stress field in the backfill for an infinite 
set of geometric and material parameters obeying a transcendental equation in friction angle . Key to the proposed approach is 
that the stress characteristics in the soil mass do not intersect the stem of the wall. Consequently, the soil-wall interface is not 
part of the sliding wedge and the roughness of the wall does not influence the response, as the interface remains bonded. In light 
of the above, the solution can be obtained analytically, in the realm of plane strain conditions and pseudo-dynamic seismic action 
in the backfill. The suitability of the popular “virtual vertical back” approach for evaluating active thrusts is confirmed and the 
corresponding roughness angle  is derived in closed form as function of friction angle, backfill inclination and seismic
acceleration. It is shown that existing recommendations for in seismic codes are often erroneous – yet may yield predictions 
on the safe side. Optimization aspects referring to improvement of system stability and corresponding safety factors are
investigated. Issues related to the use (or misuse) of the safety factor against overturning are discussed. 
 

RÉSUMÉ 

Une solution exacte des contraintes-limite est présentée au problème de la pouseé des terres sismique du terrain sur les murs 
cantilever en forme de L retenant des sols secs et sans cohésion. Il est montré que le problème peut être analysé au moyen d’un
champ de  contraintes dans le remblai de Rankine obéissant à une équation transcendantale de l'angle de frottement interne. La 
clé de l'approche proposée est que les caractéristiques des contraintes dans la masse du terrain n’ont pas d’ intersection avec la 
mur. Par conséquent, l'interface sol-mur ne fait pas partie de la tranche de glissement et la rugosité de la paroi n'a pas d'influence
sur la réponse  tant que l'interface reste soudée. A la lumière de ce qui a précède, la solution peut être obtenue de façon
analytique, dans des conditions de déformation plane et d'action sismique pseudo-dynamique dans le remblai. L'adéquation de 
l’approche commune "retour vertical virtuel" pour évaluer des poussées actives est confirmée et l'angle de la rugosité
correspondant est dérivé sous forme fermée en tant que fonction de l'angle de frottement, de l'inclinaison du remblai et de 
l'accélération sismique. Il est montré que les recommandations existantes pour  dans les codes sismiques sont souvent 
erronées - mais elles peuvent donner des prédictions concernant le coté sécuritaire. Des aspects de l'optimisation concernant 
l'amélioration de la stabilité du système et des facteurs de sécurité correspondants sont étudiés. Les questions liées à l'usage (ou 
abus) du facteur de sécurité contre le renversement (basculement) sont discutées. 
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1 INTRODUCTION 

 Cantilever walls of L or inverted T-shape 
represent a popular type of retaining system, 
which is widely considered as advantageous over 
conventional gravity walls for it combines 
economy and ease in construction and 
installation. Furthermore, the specific design is 
deemed particularly rational, as it exploits the 
stabilizing action of soil weight over the footing 
slab against both sliding and overturning. A 
contradictory issue in the literature relates to the 
calculation of active thrust, assumed to be acting 
on a virtual wall back, which is usually taken as 
the vertical plane passing through the heel of the 
wall, under an certain mobilized roughness on 
that plane (Trenter, 2004; O’Sullivan and Creed, 
2007). A variety of virtual back “roughnesses” 
have been reported ranging from 0 (a perfectly 
smooth plane) to φ (a perfectly rough plane). 
These values are often recommended with little 
justification as explained in the ensuing. 
Investigating the significance of these 
assumptions in retaining wall design provided 
the initial motivation for the herein-reported 
work. 

The problem under consideration is presented 
in Fig. 1: a sloping backfill of dry cohesionless 
soil is retained by an L - shaped cantilever wall. 
The system is subjected to plane-strain 
conditions under the combined action of gravity 
(g) and pseudo-static seismic body forces (ah x g) 
and (av x g) in the horizontal and vertical 
direction, respectively. The problem parameters 
are: wall height Η, heel width b, footing width B, 
wall thickness t, wall unit weight w, wall 
roughness w, soil unit weight  and soil friction 
angle . The inclination of the overall body force 
vector resulting from the gravitational and 
inertial actions, shown in Fig. 1, is ψe = tan1[ah 

/(1-av)]. The problem is treated by means of a 
stress limit analysis method in the realm of 
plasticity theory. Contrary to the general earth-
pressure problem, the solution at hand can be 
derived by means of a Rankine stress field, 
which allows simple closed-form solutions to be 
obtained, which offer considerable insight to the 
physics of soil thrust 
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Figure 1.  The problem under consideration 

2 STRESS LIMIT ANALYSIS 

2.1   General approximate solution 

The herein-reported solution is derived based on 
the stress limit analysis approach of Mylonakis et 
al (2007) and Lancelotta (2007) for the problem 
of earth pressures on a rough wall retaining an 
inclined backfill, which makes use of 
discontinuous stress fields like the one shown in 
Fig. 2.  
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Figure 2. Discontinuous stress field in the case of a gravity 
wall (after Mylonakis et al., 2007)  

 In this generic problem the soil mass is 
divided into three regions: Zone A, a Rankine 
Zone located near the free surface of the semi-
finite slope; Zone Β, a Rankine Zone which 
satisfies the stress boundary condition at the soil-
wall interface; Zone C, a transition region which 
satisfies the stress boundary conditions at the 



boundaries of the particular zone with regions A 
and B.  

With reference to the above problem, the 
boundary condition on the wall (Zone Β) 
imposes two restrictions: First it enforces the 
failure criterion at the soil-wall interface (i.e., w 

 w tanw) as the particular surface is a failure 
plane; Second it prescribes the direction of the 
shear traction on the wall surface, that points in 
the same direction as the velocity vector of the 
retained soil mass (which is obviously different 
in the active and passive case). 

As to the transition Zone C, a logarithmic 
stress fan is adopted, which is an exact solution 
for a weightless material, yet only an 
approximate for a material with weight. The 
expression providing the ultimate thrust for 
active and passive conditions is given by the well 
known equation (Ebeling & Morison, 1992; 
Kramer, 1996):  
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     In the above equations, KγE and KqE are earth 
pressure coefficients pertaining to self-weight 
and surcharge actions, respectively; Δ1e and Δ2 
are the corresponding Caquot angles (measured 
in radians), used also in EC7 provisions and θE is 

the rotation angle of the principal planes (and, 
accordingly, stress characteristics), which is 
equal to the opening angle of the transition zone. 
Equations (2) to (5) provide both the active 
thrust and the passive resistance, provided that a 
proper sign is used for the friction angle  and 
the roughness angle w. This merely requires 
positive w and  values for active conditions 
and negative for passive.  

2.2  Generalized Rankine theory 

In the special case of a vanishing angle θE, the 
three stress fields in Fig. 2 collapse into a single 
Rankine zone, which is depicted by the Mohr 
circle of Fig. 3. In this special case, the 
exponential term in Eq. (2) vanishes and the 
equation provides an exact plasticity solution to 
the generalized problem with earthquake 
loading. The necessary condition for the validity 
of this solution is (see Eq. 5): 
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which, naturally, is satisfied by an infinite 
number of combinations of the five governing 
parameters , δw, ω, β and ψe. Among them, as 
special cases, one can identify the classical 
solutions δw  ω  β  ψe  0 and δw β, ω  ψe  
0, both of which were first obtained by Rankine 
(1857). Under these conditions, the solution 
attains, respectively, the special forms (Rankine 
1857, Terzaghi 1943). 
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From Eq. (6) and the Mohr circle of Fig. 3, it 
is straightforward to derive the critical values of 
each of the above parameters as function of the 
others, to satisfy the generalized Rankine 
condition. These solutions are given in Eqs. (9) 
to (12). Equation (9) results directly from 
condition (6), whereas derivation of Eqs. (10) to 



(12) requires additional geometric considerations 
from the stress tensor of Fig. 3. 
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    For the simpler case of gravitational loading, 
the counterparts of Eqs. (9) and (12) can be 
found in the work of Costet & Sanglerat (1979), 
whereas an alternative form of equation (12) is 
given in Chu (1991). The latter solution seems to 
make use of the erroneous assumption that the 
soil thrust inclination R in Eq. (12) (for ψe  0) 
can actually develop on the wall plane regardless 
of the true interface roughness δw. As a result, 
the analysis reported in that work violates the 
failure criterion at the interface and may be 
incompatible with the kinematics of the problem 
(Budhu, 2007). A more complete treatment has 

been recently provided by Evangelista et al 
(2010). 
     It should be noticed that for every 
combination of parameters , δw, ω, β and ψe 
satisfying Eqs. (9) – (12), the predictions of Eq. 
(2) coincide with those of the Mononobe-Okabe 
equation and other approximate solutions (Chu, 
1991; Greco, 1999). This stems from the 
properties of the Rankine stress field and the 
associated straight stress characteristics, which 
are intrinsically compatible with a planar failure 
surface. As a result, the predictions of all these 
methods not only coincide, but they are also 
exact in the context of classical limit analysis 
theory. As pointed out by Heyman (1973), the 
origins of these solutions can be traced back in 
the pioneering studies of Rankine (1857), Levy 
(1874) and Boussinesq (1876). 

3 ANALYSIS OF L – SHAPED WALLS 

 Unlike the case of gravity walls where the 
generalized Rankine condition arises only for 
specific combinations of the five governing 
parameters specified by Eq. (6), in the case of L-
shaped cantilever walls the theory has much 
wider applicability. Indeed, when the heel of the 
wall is sufficiently long, the α and β stress 
characteristics (i.e., the conjugate failure planes 
on the Mohr circle of stresses) in the backfill do 
not intersect the stem of the wall. Then, the 
sliding prism is formed entirely in the backfill, as 
shown in Fig. 4a.  
 Accordingly, the soil-wall interface is not 
part of the Rankine zone and, thereby, does not 
influence the response as the interface remains 
bonded and lies outside the failure mechanism. 
 From Figure 4a, the necessary geometric 
condition for the validity of the above Rankine 
solution is: 
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which is tantamount to the criterion provided by 
Clayton et al. (1993) for the corresponding static 
problem. The inclination of the  – characteristic 



can be determined either graphically, from the 
corresponding Mohr circle (Figure 4b), or from 
Eq. (9) using ; this yields the solution: 
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Figure 4.  (a) Rankine wedge in the backfill and applicability 
condition of Rankine solution, (b) Stress tensor and stress 
characteristics in the retained soil. 
 
 For the case of gravitational loading (ψe  0), 
Eq. (14) can be found in a number of 
publications (Costet & Sanglerat, 1979; Chu, 
1991; Clayton et al, 1993). With minor exception 
(Evangelista et al 2010) the case of earthquake 
loading has not been investigated in the past.  
 In Fig. 5, the minimum required heel length 
to ensure the validity of the Rankine condition is 
presented as function of the horizontal seismic 
acceleration ah and the backfill inclination, . It 

can be clearly seen that the minimum required 
len gth is not constant but decreases with 
increasing acceleration level. [This is in contrast 
to the constant value (b > Η/3) proposed by a 
number of seismic provisions including the 
Greek Seismic Code, EAK2000]. This decrease 
in heel length suggests that condition (13) can be 
satisfied in many cases involving earthquake 
loading, even if it is not satisfied for the pure 
gravitational case. As a result, the condition 
proposed by the Greek code covers a wide range 
of common cases, except for those associated 
with small values of slope angle, β.  
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Figure 5.  Variation of minimum required heel length with 
horizontal acceleration coefficient and backfill angle. 



     For the cases where the Rankine condition is 
valid, the active earth pressure can be determined 
from Eqs. (1) – (4) in conjunction with Eq. (12), 
on any plane (to be referred to hereafter as 
“virtual back”) inclined at an angle  from 
vertical (Fig.4), resulting to:  
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    On this arbitrary plane, the inclination of 
active thrust, δ(ω), is given by Eq. (12) as 
function of ω. This elucidates that the frequently 
employed assumption of a “soil-to-soil” friction 
angle  is not justified (BS8002, 1994; Trenter, 
2004, O’Sullivan and Creed, 2007). The 
exception is the case where ω β, i.e., when the 
plane under consideration is parallel to a β-
characteristic (Fig. 4), generating a mobilized 
friction angle δ() equalto  Naturally, this is 
the maximum value that the interface friction can 
mobilize. 
     In light of Fiq. 4, an effective wall height Η’ 
has to be introduced according to Eq. (16), 
which, evidently varies with the angle ω of the 
virtual back. 
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     In Figure 6, two extreme cases are presented, 
corresponding to cases where ω β and ω  0, 
which have been widely used in the literature 
(Clayton et al., 1993; Greco, 1999; Trenter, 
2004). It can be easily shown that the above 
choices are equivalent, as they lead to the same 
resultant force on the wall (if the body forces in 
the corresponding hatched soil prisms in Fig. 6a, 
b are accounted for). 
 This property holds despite the fact that the 
active thrust PA, calculated for each case on 
plane ω is different (Fig. 6a, b). Notwithstanding 
the validity of these comments, it is preferable to 

adopt the conventional vertical plane AD, 
corresponding to ω = 0, as virtual back, for it 
leads to a simpler geometry and facilitates 
calculations (Fig. 6b). Accordingly, Eqs. (17) 
and (18) are derived for the determination of the 
magnitude of the thrust and its inclination δ(0): 
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 In Figure 7 results for the mobilized friction 
angle  on the vertical virtual back are 
presented, as function of horizontal seismic 
acceleration and slope inclination for soil friction 
angles 30ο and40ο. It can be observed that 
the virtual back roughness is not always equal to 
the slope inclination β; this holds only for the 
case of gravitational loading (ψe  ah  0).  
 In presence of seismic action, the “virtual 
roughness” increases significantly up to the 
maximum value , when the β-characteristic 
becomes vertical (ωβ  0), that is for the same 
earthquake level for which the required heel 
length in Fig. 5 vanishes. [Note in this regard 
that all curves are plotted up to the peak value; 
the ensuing decreasing branch is not shown for 
simplicity.] This suggests that the common 
assumption in the seismic codes, is precise 
only for gravitational loading and generally 
underestimates . 
 Accordingly this assumption yields results on 
the safety side, as the increase in roughness, 
forces an increase in stability (through a higher 
vertical and a lower horizontal component of soil 
thrust). Other inexact assumptions for the 
mobilized  value can be found in the literature 
(i.e. BS:8002, based on the aforementioned 
assumption of a “soil-to-soil” friction parameter; 
AASHTO LRFD, w by an association of the 
actual soil-wall interface with the vertical virtual 
back). 
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Figure 6. (a) Active thrust on the actual slip line ΑΒ (β-characteristic) and (b) Active thrust on the vertical virtual back ΑD. 
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3 STABILITY SAFETY FACTORS 

 Traditionally, stability control of retaining 
walls is based on safety factors against bearing 
capacity, sliding and overturning. Of these, only 
the first two are rationally defined, whereas the 
safety factor against overturning is known to be 
problematic and of uncertain usefulness (Greco, 
1997). In Figure 8, the equilibrium of forces 
acting on the retaining wall is presented. 
Evidently, the total vertical and horizontal forces 
acting on the wall are compensated by the 
external reactions Ν and Τ acting on the footing. 
The combination of these two actions, together 
with the resulting eccentricity e, determines the 
bearing capacity of the wall based on classical 
limit analysis procedures for a strip footing 
subjected an eccentric inclined load (e.g. EC7). 

P Ax

Σ W y

N

T

O
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i
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N
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B' = B  2e

ah x Σ W y
P Ay

(a) (b)

 
Figure 8. (a) Equilibrium of forces; (b) equivalent centrically 
loaded footing according to Meyerhof  
 
 The safety factors against bearing capacity 
and sliding are well defined as the ratio of forces 
Ν and Τ over the corresponding ultimate loads. 
In contrast, the safety factor against overturning 
is not defined on a rational basis. Its calculation 
assumes a limit state of rotation about the toe O 
of the wall, which is the point where the vertical 
reaction N acts (so it generates zero moment 
with respect to O), since the wall base is not 
considered to be in contact with the ground. 
Then, the moments of the remaining forces 
acting on the wall are compared upon 
classification (in an arbitrary manner), into 
stabilizing and overturning components. The 
spurious nature of this analysis can be proven 
analytically, since the safety factor is not 
invariant with respect to the arbitrary choice of 

the virtual back  (Fig. 4) (Greco, 1997). It can 
also be proven that the assumed limit state does 
not represent the most critical failure mechanism, 
as the bearing capacity of the footing, or even the 
structural integrity of the wall, will be exhausted 
before the wall starts rotating around Ο. The last 
point is recognized in recent codes; however the 
conventional safety factor against overturning is 
either preserved (EC7), or replaced by a check of 
eccentricity of the vertical reaction N on the base 
of the wall (e.g. AASHTO LRFD, 1994). The 
above issues are highlighted with the help of 
following numerical example. 

3.1 Numerical example 

 The case of an L-shaped wall with stem 
width t/H0.05 and interface roughness δw23 
retaining soil of unit weight ratio /w0.8 with 
respect to the unit weight of the wall, friction 
angle 35ο, and slope inclination 10ο, is 
examined. The soil under the wall is assumed to 
be the same as the retained one. No passive 
resistance is considered. 
 In Figures (9a – c), the safety factors against 
overturning, bearing capacity and sliding are 
compared for variable heel length and seismic 
acceleration. In Figure (9d) the corresponding 
eccentricity of base reaction is presented for the 
same cases. It is evident that the safety factor 
against overturning is always higher than 1, even 
for cases where the safety factors against sliding 
and bearing capacity are not satisfied. The 
significant overtopping of bearing capacity 
shown in Fig. 9d, is due to the high inclination 
and high eccentricity of the reaction on the 
footing, which exceeds the limit of B/6 for a 
wide range of seismic acceleration coefficients 
and wall base widths. It can also be noticed that 
the bearing capacity is overtopped in cases 
where the eccentricity does not exceed the limit 
B/3 for dynamic loading according to seismic 
codes (EC7, EC8).   
 In Table 1 the corresponding safety factors 
obtained for different virtual backs are 
presented. It is evident that the safety factors 
against sliding and bearing capacity coincide 
regardless of the arbitrary choice of virtual back, 



as all possible ω’s generate the same reaction at 
the base of the wall. In contrast, the safety factor 
against overturning about point O depends on the 

arbitrary choice of virtual back (angle – a 
behavior which is obviously unacceptable. 
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Figure 9.  Safety factors against: (a) bearing capacity, (b) overturning, (c) sliding and (d) eccentricity of the contact force, as 
function of base width and seismic acceleration. 

 
 

Table 1.  Safety factors against sliding, overturning and bearing capacity   
(35o, δw23, ah0.2, B/H0.8, t/H0.05, w0.8). 

Arbitrary angle of 
virtual back, ω (o) 

SFSliding SFOverturning SFBear. Capacity 

-30 2,27 
-20 2,35 
-10 2,44 
0 2,52 
10 2,60 
20 2,70 
30 

 
1,05 

 'sall 

 
2,81 

 
1,65 

 'sall  

 



3 CONCLUSIONS 

An exact analytical solution of the Rankine type 
was presented for the gravitational and 
earthquake-induced earth pressures on L-shaped 
cantilever retaining walls. The proposed analysis 
leads to the following conclusions: 

1) The classical Coulomb and Mononobe-
Okabe solutions can be substituted with more 
accurate and conservative methods, such as 
stress limit analysis solutions. 

2) L-shaped walls should be treated as special 
wall types by EC-8, as done in some national 
codes (EAK 2000), since Rankine conditions 
prevail. However, the geometric condition 
proposed by some seismic codes for the validity 
of the Rankine condition is not accurate, yet it 
may be satisfactory for a wide range of cases 
encountered in practice. 

3) The active thrust on the wall and the 
corresponding inclination of soil thrust can be 
determined for any arbitrary virtual back in the 
backfill. However, the use of the vertical virtual 
back is advantageous as it leads to simpler 
geometry. Equations (17) and (18) were derived 
to determine the active thrust, which are 
recommended for practical use.   

4) The inclination of soil thrust on the 
vertical virtual back is equal to the slope 
inclination β only for the case of the gravitational 
loading (ah 0), contrary to the recommendations 
of a number of seismic codes. However, this 
spurious assumption would yield results on the 
safe side, with an increasing margin of safety 
under increasing seismic acceleration. This may 
result in an over-sizing of the retaining walls, 
beyond the desirable safety factors suggested by 
EC7 and EC8. The exact value for δ(0) could be 
employed to this end.  

5) The retaining wall stability check may be 
viewed as a footing stability problem subjected 
to an eccentric, inclined load. Compared to 
isolated footings, the eccentricity can be much 
higher than the limits specified by EC7 and EC8 
for spread footings. On the other hand, given the 
small duration of this loading and the compliance 
of these systems, these exceedance can be used 

to prevent collapse at the expense of 
accumulating some plastic deformation. 

6) The conventional safety factor against 
overturning is defined arbitrarily and does not 
represent the most critical failure mechanism. It 
is the opinion of the authors that its use in 
practice is misleading and should be 
discontinued. 
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