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e Features of music can be observed in the brain responses. Correlations between stimuli el
features and brain responses can be determined by Stimulus-Response correlations =N
(SRC). wn - g
e This study focuses on naturalistic music through CCA, Stimulus-Response Correlation 5 c
method in order to under to understand the relationship between EEG collected brain || 8 3
responses and music features extracted using MIR tools. 3 ) =
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= e Statistically significant correlation between acoustic
Yo Audio Signal — = = features and EEG responses with CC1-CC5. CC1 produces
L™ [ | : . —— stimuli the maximum correlation in Fig.1.
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e e Consistent trend observed in the correlations for the
T iopedrl " C tent trend ob. d in th lat for th
Audio Waveform RMS Energy g ! spectral 8 octave-wide flux subbands as shown in Fig.3.
Fmen o / e Formation of 3 groups of genres with similar acoustic
S octave-vide S / features using CCA visualisations.
T e g e Peaks in the correlation values observed for Indian
] / classical and semi-classical genres of music, and also for
= the New Age type of music may imply a cultural bias.
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Eighteen sFlmqus features .shown apove were extracted and |ts' low-dimensional stimuli CONCLUSION and FUTURE WORK
representation was created using PCA. First component of PCA along with RMSE and Flux = | inf o T G
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stimulus . . . . - - o Neural entrainment studies could benefit from our methods
e The CCA model shown below temporally filters musical features while spatially filtering 3 |Concept 15-Kodomo | Electronics Medium and results.
the EEG to learn a multidimensional mapping between stimulus and brain responses 4 | Aurore - Claire David New Age High e Improving music recommendations in naturalistic scenarios
o This results in the correlation coefficients and their corresponding p-values 5 | Proof - Idiotape Electronic Dance oW e The limitations of CCA can be overcome using different
} = = correlation methods.
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