Panagiota BirmpaHeriot-Watt University · Department of School of Mathematical & Computer Sciences, Actuarial Mathematics & Statistics
Panagiota Birmpa
Doctor of Philosophy
About
8
Publications
676
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
7
Citations
Introduction
Skills and Expertise
Publications
Publications (8)
Lipschitz regularized f-divergences are constructed by imposing a bound on the Lipschitz constant of the discriminator in the variational representation. They interpolate between the Wasserstein metric and f-divergences and provide a flexible family of loss functions for non-absolutely continuous (e.g. empirical) distributions, possibly with heavy...
Probabilistic graphical models are a fundamental tool in probabilistic modeling, machine learning and artificial intelligence. They allow us to integrate in a natural way expert knowledge, physical modeling, heterogeneous and correlated data and quantities of interest. For exactly this reason, multiple sources of model uncertainty are inherent with...
We study the density fluctuation field for the stirring process with births and deaths at two sites at the boundary which tend to impose a current into the system. Assuming correlation estimates (to be proved in a companion paper [2]) we derive an equation for the limiting kernel of the variance of the fluctuation field. The key difficulty lies in...
We present an information-based uncertainty quantification method for general Markov Random Fields. Markov Random Fields (MRF) are structured, probabilistic graphical models over undirected graphs, and provide a fundamental unifying modeling tool for statistical mechanics, probabilistic machine learning, and artificial intelligence. Typically MRFs...
We study the most probable way an interface moves on a macroscopic scale from an initial to a final position within a fixed time in the context of large deviations for a stochastic microscopic lattice system of Ising spins with Kac interaction evolving in time according to Glauber (non-conservative) dynamics. Such interfaces separate two stable pha...
We study an one dimensional model where an interface is the stationary solution of a mesoscopic non local evolution equation which has been derived by a microscopic stochastic spin system. Deviations from this evolution equation can be quantified by obtaining the large deviations cost functional from the underlying stochastic process. For such a fu...