IDEAL ADDRESS TRANSLATION:
PRINCIPLES, PROPERTIES,
AND APPLICATIONS

Pamela Zave
AT&T Laboratories—Research
Florham Park, New Jersey, USA
pamela@research.att.com
A TELECOMMUNICATION NETWORK CONNECTS DEVICES BY CREATING REQUEST CHAINS

all feature modules are optional

the formal model concerns the application of features, not module identity (two modules could be parts of a whole, there could be many instances of a module)

a request can set up a persistent signaling channel; all signals related to the request travel on this channel; media is controlled logically (but not physically) by these signals

any part of a signaling channel can be torn down at any time
There is a bit of solution in this formulation of the problem, but it is similar enough to all telecommunication protocols.
ADDRESS-TRANSLATION FUNCTIONS

WHAT FUNCTIONS ARE BEING PERFORMED? WHY ARE THEY BEING PERFORMED? ON WHOSE BEHALF ARE THEY BEING PERFORMED?

SOURCE REGION TARGET REGION

if a1 and a2 identify: then the source translation is: and the target translation is:

- **groups**
 - affiliation: affiliate the caller with the group

- **mobile entities**
 - positioning: position the mobile entity at the location of the calling device

- **roles**
 - assumption: assume the role for the caller

- **affiliation**: find a representative of the group

- **location**: find the location of the mobile entity

- **resolution**: translate the role to the entity playing the role
ORGANIZATION OF ADDRESSES

EACH ADDRESS HAS ONE OR MORE OWNERS

- an owner has rights and responsibilities
- an owner knows the authentication secret

ADDRESSES MUST BE CATEGORIZED ACCORDING TO WHAT THEY IDENTIFY OR REPRESENT

for example:
- device
- person
- group
- role
and combinations thereof

ADDRESS CATEGORIES MUST BE PARTIALLY ORDERED BY "ABSTRACTION"

by definition:
- a group is more abstract than a person representing the group
- a person is more abstract than a device where he is located
- a public role is more abstract than a private identity

THE PRIMARY PURPOSE OF ADDRESS TRANSLATION IS TO CHANGE LEVEL OF ABSTRACTION

- in the source region, source addresses become successively more abstract
- in the target region, target addresses become successively more concrete
INTERACTION: IDENTIFICATION

PEOPLE AND FEATURE MODULES USE ADDRESSES TO IDENTIFY THE PARTIES WITH WHOM THEY ARE COMMUNICATING

A FEATURE THAT PERFORMS ADDRESS TRANSLATION INTERACTS WITH OTHER FEATURES BY AFFECTING THE IDENTIFICATION INFORMATION THEY RECEIVE

These principles balance conflicting goals:

PRIVACY

A person should be able to conceal a more private address that he owns behind a more public address that he owns.

AUTHENTICITY

A person should not be able to pose as an owner of an address he does not own.

r1 hides d1 as source d1 is not observable downstream d2 is not observable upstream r2 hides d2 as target

IM d1 SFM d1 SFM r1 TFM r2 TFM d2 IM d2

src =d1 src =r1 trg =r2 trg =d2 trg =d2

r1 hides d1 as source d1 is not observable downstream d2 is not observable upstream r2 hides d2 as target

authentication dialogues
INTERACTION: CONTACT

PEOPLE AND FEATURE MODULES USE ADDRESSES TO CONTACT THE PARTIES WITH WHOM THEY WISH TO COMMUNICATE

A FEATURE THAT PERFORMS ADDRESS TRANSLATION INTERACTS WITH OTHER FEATURES BY AFFECTING THE CONTACT INFORMATION THEY RECEIVE

REVERSIBILITY

A target feature module or callee should be able to call the source address of a request chain and thereby target the entity that initiated it.

- feature modules in the target region do not change the src address
- this is the most abstract source address, not the caller device
- conflicts with mobility and the freedom of representation functions

src=s

- TFM
- TFM
- IM

REPRODUCIBILITY

A feature module or person should be able to call the same entity twice and be connected to the same representative of that entity.

src=s
INTERACTION: INVOCATION

THE ADDRESSES IN A REQUEST CHAIN DETERMINE WHICH FEATURE MODULES ARE IN THE CHAIN

A FEATURE THAT PERFORMS ADDRESS TRANSLATION INTERACTS WITH OTHER FEATURES BY AFFECTING WHICH FEATURES ARE INVOKED

BOUNDENESS

The numbers of source and target feature modules in a chain should be bounded.

leads to

MONOTONICITY

In a region, the feature modules of more concrete addresses should be closer to the outer end of the region than feature modules of more abstract addresses.

SOURCE REGION

concrete

abstract

TARGET REGION

abstract

concrete

each feature module knows where the more abstract and more concrete features are

features can be prioritized and coordinated (e.g., by token passing) without knowledge of other features
ASSUMPTIONS AND BEHAVIORAL CONSTRAINTS

ASSUMPTIONS

- there is a global, one-to-one mapping between addresses and meanings
- there is a finite set of address categories
- each address belongs to exactly one category
- the abstraction relation on address categories is an irreflexive partial order

CONSTRANTS

Constraint 1:
A target feature module in a request chain does not change the source address of the chain.

Constraint 2s:
If a source feature module in a request chain changes the source address, the new address is more abstract than the old one.

Constraint 2t:
If a target feature module in a request chain changes the target address, the new address is more concrete than the old one.

Constraints 3s and 3t: other signaling maintains the spirit of these constraints
PROPERTIES FORMALIZE THE PRINCIPLES, ARE GUARANTEED BY THE CONSTRAINTS

MONOTONICITY

In a request chain that satisfies Constraint 2s [2t], if \(m1 \) and \(m2 \) are feature modules in its source [target] region, and \(m1 \) precedes \(m2 \), then the address of \(m1 \) is more concrete [abstract] than the address of \(m2 \).

AUTHENTICITY (target side not given)

If \(s2 \) is a source address in the target region of a request chain that satisfies Constraints 1 and 2s, and if \(s2 \) has a source feature module with unconditional authentication, then either an owner of \(s2 \) is present at the initiating device, or its owner also owns a more concrete source address \(s1 \) in the chain.

PRIVACY (target side not given)

If \(s1 \) is a source address in a request chain that satisfies Constraints 1 and 2s, and if \(s1 \) has a source feature module that changes the source to \(s2 \) in this chain, then \(s1 \) is not observable as a source of this chain downstream of its own source feature module.

real properties are more complex because of signaling

proofs are mostly automated with the Alloy constraint analyzer (there are some manual steps)
EXAMPLE: THE SALES REPRESENTATIVE

Both feature modules include Voice Mail.

Group features (including Voice Mail) should take priority over personal failure treatments (including Voice Mail) because:
- If a representative is not available, the best failure treatment is to find another one.
- If no one is available, should record a message accessible to the whole group.

Signal tells cooperating features to abdicate; it does not violate privacy, and there is no assumption that personal features are present.

After authentication, representative can make personal and business calls from shared home telephone.

Blocking of certain outgoing calls applies only when no identification function applies.
EXAMPLE: **ANONYMOUS ELECTRONIC MAIL**

mail host user1@host1

mail host user1@host1

mail host anon2@remailer

mail host user2@host2

mail host user2@host2

SOURCE REGION

TARGET REGION

resolves anonymous role address to normal address

autoresponse feature acts as an agent of subscriber, begins a new request chain

fixing a bad feature interaction from [Hall 00]

src = user1@host1

trg = anon2@remailer

src = user1@host1

trg = user2@host2

src = user2@host2

trg = user1@host1

TARGET REGION

SOURCE REGION

 corresponds anonymous role

 corresponds to normal address

 authenticates use of role

 correspondent-list feature knows which correspondences are sensitive, assumes anonymous role in those

authenticates use of role

autoresponse feature acts as an agent of subscriber, begins a new request chain
VALIDITY OF IDEAL ADDRESS TRANSLATION

VOICE-OVER-IP SERVICES DEVELOPED AT AT&T

- Distributed Feature Composition (DFC, [Jackson & Zave 98]) is a feature-modular architecture
- BoxOS [Bond et al. 02] is a voice-over-IP platform that is an implementation of DFC
- we have built a variety of innovative services on this platform
- we always adhere to ideal address translation—it is the only way we can make sense of the interactions in our complex feature sets

MODULARITY AND EXTENSIBILITY

- a feature module does not need to cooperate explicitly with others, or know which others are present
- adding (or deleting) compliant features does not require changing existing (or remaining) features

HALL [Hall 00] ON FEATURE INTERACTIONS IN ELECTRONIC MAIL

- 26 undesirable feature interactions, of which 12 have nothing to do with address translation
- the remaining 14 are predicted and would be corrected by ideal address translation

APHRODITE AGENT-BASED ARCHITECTURE [Pinard 03]

- has three address categories, which are totally ordered
- architecture seems to comply with ideal address translation
RELATION OF IDEAL ADDRESS TRANSLATION TO
THE REAL WORLD OF NETWORKING

THERE ARE MANY REASONS WHY THE REAL WORLD MIGHT NOT CONFORM TO THE IDEAL

- inadequate infrastructure
- legacy of noncompliant features or address mappings
- interoperation with untrusted networks
- unwise optimizations
- one legitimate case in which a constraint is (deliberately) too strong

THERE ARE MANY WAYS TO COPE WITH THESE EXCEPTIONS

- refine or adapt the reasoning
- trace which properties do and do not hold
- enforce the constraints in a subnetwork only

DESPITE THE EXCEPTIONS, IDEAL ADDRESS TRANSLATION HAS PROVEN VERY USEFUL BECAUSE . . .

- even a subnetwork can have very complex feature interactions
- principles, constraints, properties, and reasoning are all models that we approximate as closely as possible
- it helps us understand infrastructure requirements
FOR MORE DETAILS:

http://www.research.att.com/projects/dfc