
Pål HalvorsenSimulaMet - Simula Metropolitan Center for Digital Engineering · HOST
Pål Halvorsen
Dr. Scient
About
426
Publications
117,520
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
6,663
Citations
Citations since 2017
Introduction
More info about publications (full-text PDFs), project, supervision, teaching, professional services, etc. can be found under my home page:
http://home.ifi.uio.no/paalh/
Additional affiliations
February 2019 - present
January 2019 - present
January 2006 - present
Publications
Publications (426)
Correlation matrix visualization is essential for understanding the relationships between variables in a dataset, but missing data can pose a significant challenge in estimating correlation coefficients. In this paper, we compare the effects of various missing data methods on the correlation plot, focusing on two common missing patterns: random and...
Monotone missing data is a common problem in data analysis. However, imputation combined with dimensionality reduction can be computationally expensive, especially with the increasing size of datasets. To address this issue, we propose a Blockwise principal component analysis Imputation (BPI) framework for dimensionality reduction and imputation of...
A manual assessment of sperm motility requires microscopy observation, which is challenging due to the fast-moving spermatozoa in the field of view. To obtain correct results, manual evaluation requires extensive training. Therefore, computer-aided sperm analysis (CASA) has become increasingly used in clinics. Despite this, more data is needed to t...
Parameters (mean and covariance matrix) estimation is often a problem of interest since it provides information about the location and variation of the data and correlation between features and can be used for hypothesis testing, principle component analysis, etc. However, it is also common that values in some features of a dataset are missing. A p...
In order to take advantage of AI solutions in endoscopy diagnostics, we must overcome the issue of limited annotations. These limitations are caused by the high privacy concerns in the medical field and the requirement of getting aid from experts for the time-consuming and costly medical data annotation process. In computer vision, image synthesis...
Cheapfake is a recently coined term that encompasses non-AI ("cheap") manipulations of multimedia content. Cheapfakes are known to be more prevalent than deepfakes. Cheapfake media can be created using editing software for image/video manipulations, or even without using any software, by simply altering the context of an image/video by sharing the...
Public multimedia datasets can enhance knowledge discovery and model development as more researchers have the opportunity to contribute to exploring them. However, as these datasets become larger and more multimodal, besides analysis, efficient storage and sharing can become a challenge. Furthermore, there are inherent privacy risks when publishing...
Head and neck cancers are the fifth most common cancer worldwide, and recently, analysis of Positron Emission Tomography (PET) and Computed Tomography (CT) images has been proposed to identify patients with a prognosis. Even though the results look promising, more research is needed to further validate and improve the results. This paper presents t...
In this paper, we provide an overview of the upcoming ImageCLEF campaign. ImageCLEF is part of the CLEF Conference and Labs of the Evaluation Forum since 2003. ImageCLEF, the Multimedia Retrieval task in CLEF, is an ongoing evaluation initiative that promotes the evaluation of technologies for annotation, indexing, and retrieval of multimodal data...
The interest in video anomaly detection systems that can detect different types of anomalies, such as violent behaviours in surveillance videos, has gained traction in recent years. The current approaches employ deep learning to perform anomaly detection in videos, but this approach has multiple problems. For example, deep learning in general has i...
Nowadays, most people have a smartphone that can track their everyday activities. Furthermore, a significant number of people wear advanced smartwatches to track several vital biomarkers in addition to activity data. However, it is still unclear how these data can actually be used to improve certain aspects of people's lives. One of the key challen...
Polyps in the colon are widely known cancer precursors identified by colonoscopy. Whilst most polyps are benign, the polyp's number, size and surface structure are linked to the risk of colon cancer. Several methods have been developed to automate polyp detection and segmentation. However, the main issue is that they are not tested rigorously on a...
The in vitro fertilization procedure called intracytoplasmic sperm injection can be used to help fertilize an egg by injecting a single sperm cell directly into the cytoplasm of the egg. In order to evaluate, refine and improve the method in the fertility clinic, the procedure is usually observed at the clinic. Alternatively, a video of the procedu...
Livestreaming of child sexual abuse (LSCSA) is an established form of online child sexual exploitation and abuse (OCSEA). However, only a limited body of research has examined this issue. The Covid-19 pandemic has accelerated internet use and user knowledge of livestreaming services emphasizing the importance of understanding this crime. In this sc...
Missing data is common in datasets retrieved in various areas, such as medicine, sports, and finance. In many cases, to enable proper and reliable analyses of such data, the missing values are often imputed, and it is necessary that the method used has a low root mean square error (RMSE) between the imputed and the true values. In addition, for som...
This study investigated the potential of recognising arousal in motor activity collected by wrist-worn accelerometers. We hypothesise that emotional arousal emerges from the generalised central nervous system which embeds affective states within motor activity. We formulate arousal detection as a statistical problem of separating two sets - motor a...
Manually analyzing spermatozoa is a tremendous task for biologists due to the many fast-moving spermatozoa, causing inconsistencies in the quality of the assessments. Therefore, computer-assisted sperm analysis (CASA) has become a popular solution. Despite this, more data is needed to train supervised machine learning approaches in order to improve...
Head and neck cancers are the fifth most common cancer worldwide, and recently, analysis of Positron Emission Tomography (PET) and Computed Tomography (CT) images has been proposed to identify patients with a prognosis. Even though the results look promising, more research is needed to further validate and improve the results. This paper presents t...
In this work, we argue that the search for Artificial General Intelligence should start from a much lower level than human-level intelligence. The circumstances of intelligent behavior in nature resulted from an organism interacting with its surrounding environment, which could change over time and exert pressure on the organism to allow for learni...
For many use cases, combining information from different datasets can be of interest to improve a machine learning model's performance, especially when the number of samples from at least one of the datasets is small. However, a potential challenge in such cases is that the features from these datasets are not identical, even though there are some...
Soccer is one of the most popular sports globally, and the amount of soccer-related content worldwide, including video footage, audio commentary, team/player statistics, scores, and rankings, is enormous and rapidly growing. Consequently, the generation of multimodal summaries is of tremendous interest for broadcasters and fans alike, as a large pe...
In this paper, we address the problem of predicting schizophrenia based on a persons measured motor activity over time. A key challenge to achieve this is how to extract features from the activity data that can efficiently separate schizophrenia patients from healthy subjects. To achieve this, we suggest to fit time dependent hidden Markov models w...
Cheapfake is a recently coined term that encompasses non-AI (``cheap'') manipulations of multimedia content. Cheapfakes are known to be more prevalent than deepfakes. Cheapfake media can be created using editing software for image/video manipulations, or even without using any software, by simply altering the context of an image/video by sharing th...
In this work, we argue that the search for Artificial General Intelligence (AGI) should start from a much lower level than human-level intelligence. The circumstances of intelligent behavior in nature resulted from an organism interacting with its surrounding environment, which could change over time and exert pressure on the organism to allow for...
Early identification of a polyp in the lower gastrointestinal (GI) tract can lead to prevention of life-threatening colorectal cancer. Developing computer-aided diagnosis (CAD) systems to detect polyps can improve detection accuracy and efficiency and save the time of the domain experts called endoscopists. Lack of annotated data is a common challe...
Study question
Can real-time deep learning model track hundreds of spermatozoa simultaneously?
Summary answer
The state-of-the-art deep learning detection model YOLOv5 shows possibilities of multi-sperm tracking with high sensitivity and precision.
What is known already
Computer-aided sperm analysis (CASA) systems can be used for the evaluation o...
Study question
Can deep learning be used to detect and track spermatozoa and the different parts of an ICSI procedure?
Summary answer
Deep learning can be used as a tool to assist and organize the contents of an ICSI procedure.
What is known already
Sperm tracking has been a topic of research and practice for many years, especially in the context...
Ubiquitous sensors and Internet of Things (IoT) technologies have revolutionized the sports industry, providing new methodologies for planning, effective coordination of training, and match analysis post game. New methods, including machine learning, image and video processing, have been developed for performance evaluation, allowing the analyst to...
Ubiquitous sensors and Internet of Things (IoT) technologies have revolutionized the sports industry, providing new methodologies for planning, effective coordination of training, and match analysis post game. New methods, including machine learning, image and video processing, have been developed for performance evaluation, allowing the analyst to...
Video monitoring and surveillance of commercial fisheries in world oceans has been proposed by the governing bodies of several nations as a response to crimes such as overfishing. Traditional video monitoring systems may not be suitable due to limitations in the offshore fishing environment, including low bandwidth, unstable satellite network conne...
When responding to allegations of child sexual, physical, and psychological abuse, Child Protection Service (CPS) workers and police personnel need to elicit detailed and accurate accounts of the abuse to assist in decision-making and prosecution. Current research emphasizes the importance of the interviewer’s ability to follow empirically based gu...
Missing data is a commonly occurring problem in practice. Many imputation methods have been developed to fill in the missing entries. However, not all of them can scale to high-dimensional data, especially the multiple imputation techniques. Meanwhile, the data nowadays tends toward high-dimensional. Therefore, in this work, we propose Principal Co...
Generalizability is seen as one of the major challenges in deep learning, in particular in the domain of medical imaging, where a change of hospital or in imaging routines can lead to a complete failure of a model. To tackle this, we introduce Consistency Training, a training procedure and alternative to data augmentation based on maximizing models...
The interest for video anomaly detection systems has gained traction for the past few years. The current approaches use deep learning to perform anomaly detection in videos, but this approach has multiple problems. For starters, deep learning in general has issues with noise, concept drift, explainability, and training data volumes. Additionally, a...
Early identification of a polyp in the lower gastrointestinal (GI) tract can lead to prevention of life-threatening colorectal cancer. Developing computer-aided diagnosis (CAD) systems to detect polyps can improve detection accuracy and efficiency and save the time of the domain experts called endoscopists. Lack of annotated data is a common challe...
The increasing popularity of social networks and users’ tendency towards sharing their feelings, expressions, and opinions in text, visual, and audio content have opened new opportunities and challenges in sentiment analysis. While sentiment analysis of text streams has been widely explored in the literature, sentiment analysis from images and vide...
Tacrolimus is one of the cornerstone immunosuppressive drugs in most transplantation centers worldwide following solid organ transplantation. Therapeutic drug monitoring of tacrolimus is necessary in order to avoid rejection of the transplanted organ or severe side effects. However, finding the right dose for a given patient is challenging, even fo...
Analyzing medical data to find abnormalities is a time-consuming and costly task, particularly for rare abnormalities, requiring tremendous efforts from medical experts. Therefore, artificial intelligence has become a popular tool for the automatic processing of medical data, acting as a supportive tool for doctors. However, the machine learning mo...
Clinicians and software developers need to understand how proposed machine learning (ML) models could improve patient care. No single metric captures all the desirable properties of a model, which is why several metrics are typically reported to summarize a model’s performance. Unfortunately, these measures are not easily understandable by many cli...
The increase of available large clinical and experimental datasets has contributed to a substantial amount of important contributions in the area of biomedical image analysis. Image segmentation, which is crucial for any quantitative analysis, has especially attracted attention. Recent hardware advancement has led to the success of deep learning ap...
Deep learning has in recent years achieved immense success in all areas of computer vision and has the potential of assisting medical doctors in analyzing visual content for disease and other abnormalities. However, the current state of deep learning is very much a black box, making medical professionals highly skeptical about integrating these met...
The growth of data today poses a challenge in management and inference. While feature extraction methods are capable of reducing the size of the data for inference, they do not help in minimizing the cost of data storage. On the other hand, feature selection helps to remove the redundant features and therefore is helpful not only in inference but a...
Polyps are well-known cancer precursors identified by colonoscopy. However, variability in their size, location, and surface largely affect identification, localisation, and characterisation. Moreover, colonoscopic surveillance and removal of polyps (referred to as polypectomy ) are highly operator-dependent procedures. There exist a high missed de...
Soccer has a considerable market share of the global sports industry, and the interest in viewing videos from soccer games continues to grow. In this respect, it is important to provide game summaries and highlights of the main game events. However, annotating and producing events and summaries often require expensive equipment and a lot of tedious...
Widely used traditional supervised deep learning methods require a large number of training samples but often fail to generalize on unseen datasets. Therefore, a more general application of any trained model is quite limited for medical imaging for clinical practice. Using separately trained models for each unique lesion category or a unique patien...
The holy grail in endoscopy examinations has for a long time been assisted diagnosis using
Artificial Intelligence (AI). Recent developments in computer hardware are now enabling technology to equip clinicians with promising tools for computer-assisted diagnosis (CAD) systems. However, creating viable models or architectures, training them, and ass...