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Abstract. The identification of cohesive communities is a key process
in social network analysis. However, the algorithms that are effective
for finding communities do not scale well to very large problems, as their
time complexity is worse than linear in the number of edges in the graph.
This is an important issue for those interested in applying social network
analysis techniques to very large networks, such as networks of mobile
phone subscribers. In this respect the contributions of this report are
two-fold. First we demonstrate these scaling issues using a prominent
community-finding algorithm as a case study. We then show that a two-
stage process, whereby the network is first decomposed into manageable
subnetworks using a multilevel graph partitioning procedure, is effective
in finding communities in networks with more than 106 nodes.

1 Introduction

After several years of academic research on social network analysis (SNA), con-
siderable commercial interest in exploiting SNA has recently emerged. The re-
search reported in this work is motivated by the prospect of using SNA in large-
scale applications, such as exploring online communities [1], mining web usage
data [2], identifying research trends in bibliographic networks [3], and analysing
relationships among mobile telephone subscribers. The identification of cliques
or communities in network data has received a lot of attention in SNA research,
where a number of promising techniques have emerged [4–6]. These techniques
can identify subgraphs such that the density of edges within the subgraph is
greater than the density of edges connecting the subgraph to the rest of the
network. They can also identify overlapping communities, where an individual
can belong to more than one group. This is an important facility for network
analysis in many real-world domains.
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Another highly significant issue in this area is that of scalability. Unfortu-
nately, it is in the nature of the analysis entailed in many community-finding
algorithms that they do not scale well to very large graphs. In fact, existing
techniques in this area generally cannot handle graphs with more than a few
tens of thousands of nodes (e.g. [6]). In contrast, many real-world networks will
be substantially larger. For instance, in a study reported by Abello et al. [7], a
one-day telephone call graph at AT&T consisted of 53,767,087 vertices and more
than 170 million edges.

To deal with this issue of scalability, we propose a pragmatic problem decom-
position strategy: use a “top-down” graph partitioning technique to decompose
the network into smaller subnetworks, on which it is then feasible to apply a more
computationally intensive community-finding algorithm. To perform the initial
partitioning, we use the multilevel method proposed by Dhillon et al. [8], referred
to as Graclus. For the second stage of the process, the CFinder algorithm [5] is
employed to discover small, overlapping communities. Two evaluations are pre-
sented in this report to demonstrate the effectiveness of the proposed two-stage
strategy, covering two key aspects of the community-finding problem:

1. Scalability: The two stage strategy is evaluated on synthetic data to demon-
strate that it results in a significant reduction in running time, making it
possible to discover communities in graphs much larger than can be tackled
by a community finding algorithm operating on its own.

2. Solution quality: The evaluation also demonstrates that the two stage
process produces good solutions – this is assessed according to two related
criteria:

– The extent to which graph partitioning preserves communities intact
when applied to a large graph.

– The agreement between the communities discovered when the commu-
nity finding algorithm is run on the entire graph, and those discovered
when using the subgraphs obtained via graph partitioning.

We perform evaluations on networks with community structures similar to those
occurring in large-scale, real-world networks such as those pertaining to mobile
phone subscribers – i.e. small, dense, localised communities embedded in a very
large sparse graph. We show that we can discover communities in these networks
in a computationally efficient manner, without adversely affecting the “quality”
of these communities.

The remainder of this report is organised as follows. The next section pro-
vides a summary of existing methods, specifically community-finding algorithms
and top-down network partitioning algorithms, which are relevant in SNA. We
summarise our proposed problem decomposition approach in Section 3. The
datasets used in our experiments are presented in Section 4, and our experimen-
tal results are subsequently discussed in Section 5. The report finishes with some
conclusions in Section 6.



2 Related Work

2.1 Community-Finding Algorithms

Before discussing recent work in the area of SNA, it is important to say some-
thing about the terms “clique” and “community” that pervade this discussion.
A “clique” has a formal meaning in graph theory – it refers to a set of nodes that
are fully connected (i.e. an edge exists between all pairs of nodes). Although the
problem of finding a maximum clique in a graph is NP-hard [9], a number of
clique-finding techniques employing a variety of heuristics have been proposed
in the graph theory literature [10–13]. Most would agree that this definition of
a clique is too strict for SNA, as “communities” of dense connections will be of
interest, even if not all pairs of nodes are connected. If the objective is not to
discover maximum cliques but instead to discover dense structure in the net-
work, then the question will arise of which criterion to optimise when searching
for dense structures. It is interesting to see how this issue has been addressed
by various authors in the SNA literature. Additionally, it is important to note
that techniques for optimising an appropriate connectedness criterion often have
poor time complexity, thus limiting their usefulness when working with very large
graphs. We now outline three prominent algorithms that have been employed
for community-finding in SNA tasks.

Newman & Girvan’s method (GN). This is essentially a top-down hier-
archical clustering strategy, which employs a novel partitioning criterion. This
criterion is based on the shortest path betweenness measure [14], which is well-
established as a measure of node centrality in SNA. In the GN algorithm, the
“edge betweenness” refers to the number of shortest paths in a network that pass
along an edge. Edges that score highly on this criterion are likely to be inter-
cluster edges (i.e. edges that link adjacent clusters). It may seem surprising that
a criterion for identifying cluster centrality can also identify links between adja-
cent clusters when applied to edges rather than nodes. In fact, these edges are
weak ties in the sense of this term introduced by Granovetter [15]. That is, while
they are important links connecting individuals across the network, they rep-
resent associations between casual acquaintances rather than close friends. The
GN approach works by generating a successive partitioning of a graph, cutting
the edge with the highest edge betweenness score at each stage. Clearly this will
be computationally expensive, given the number of shortest-path calculations
that must be performed. Newman & Girvan say the time complexity of this
algorithm is O(n3) on sparse graphs, making it applicable to graphs of up to
10,000 nodes at the time of publication in 2003.

CONGA. A related community-finding approach from the recent literature
that can deal with overlapping communities is the CONGA algorithm, proposed
by Gregory [6]. Since it is based on the GN algorithm described above [16], this
approach also employs a divisive hierarchical partitioning strategy. In order to



allow nodes to belong to more than one cluster, CONGA permits nodes to be
split, i.e. a real node v will be split into {v1, v2} with the incoming edges to
v divided between v1 and v2, and a new virtual edge created to link v1 and
v2. If this new virtual edge has a higher edge betweenness than any real edge,
then the node should be split on this basis. The enhancement that CONGA
brings to the GN algorithm is to add this node-splitting step as an extension
to the partitioning phase of the algorithm. Gregory states that the worst case
time complexity of this algorithm is O(e3), where e is the number of edges. In
practice CONGA has been shown to handle networks of up to 4,000 nodes and
7,000 edges.

CFinder. In contrast to the two previous algorithms which operate in a top-
down manner, CFinder [5] is a bottom-up technique that uses cliques as building
blocks for large groups. The algorithm first extracts all maximal complete sub-
graphs (i.e. cliques) that do not form part of larger complete subgraphs, and
composes these into larger structures. Although an efficient approach for find-
ing all cliques in a general network may not be feasible since determining a
maximum clique is NP-hard, Palla et al.nevertheless claim that their approach
performs well on real networks. From these cliques, all k-cliques are enumerated
(i.e. complete subgraph of size k). The algorithm then proceeds to find k-clique-
communities, which are defined as the union of all k-cliques that can be reached
from each other through a series of adjacent k-cliques. This approach can dis-
cover overlapping and nested communities. Palla et al.point out that, given the
nature of the algorithm, it is difficult to analyse the time complexity of CFinder.

2.2 Graph Partitioning

It is not always easy to distinguish between the community-finding algorithms re-
viewed in the previous section, and the graph partitioning algorithms discussed
here. However, we can make several broad distinctions. Notably, community-
finding algorithms are designed to find regions of dense structure that are not
well-connected with the rest of the network. These regions will often exhibit a
certain degree of overlap. In contrast, the graph partitioning problem involves
finding the optimal division of a graph into k disjoint parts according to a chosen
criterion, such that the partition covers the entire graph. Common applications
for graph partitioning algorithms include VLSI module placement, load balanc-
ing for parallel processing, and image segmentation [17].

Of the vast array of approaches that have been proposed in the literature, two
of the most important classes are spectral clustering and multilevel partitioning.
Spectral methods produce a partition based on the eigendecomposition of the
graph. Usually the Laplacian matrix is used in this context, rather than the
original adjacency matrix. The reader is referred to [18] for a detailed discussion
on the Laplacian matrix, and the connection between the eigenvalues of the
Laplacian with many key invariants of the graph. Spectral approximations for
a variety of partitioning criteria have been formulated, including the minimum
cut [19], ratio cut [20], and normalised cut [17].



Many multilevel approaches for graph partitioning have been developed over
the years, the Metis algorithm [21] being the most well-known example. In
these approaches a sequence of successively smaller, coarser hypergraphs is con-
structed. A bisection of the smallest hypergraph is computed and is successively
projected to the next finest level. At each level, an iterative refinement algo-
rithm is used to improve the bisection. Most multilevel algorithms are based
on the seminal work by Kernighan & Lin [22]. Given an edge weighted graph
G = (V,E), and an initial partitioning of the nodes V = A ∪ B, the algorithm
proceeds by finding equal-sized subsets of nodes X ∈ A and Y ∈ B, such that
exchanging X and Y reduces the total cost of edges between the old partitions
A and B. Previously it was assumed that the initial partitions would be of equal
sizes. However, a number of variants of the original algorithm have been proposed
which support unbalanced clusters.

Recently, Dhillon et al. [8] developed a fast multi-level algorithm that directly
optimises various weighted graph clustering objectives. The authors show that a
general weighted k-means objective is mathematically equivalent to a weighted
graph clustering objective, and they exploit this equivalence. The main advan-
tage of their method is that it approximates graph clustering objectives without
requiring an eigendecomposition, which can be computationally intensive for
large graphs. Another advantage of this algorithm compared to other multilevel
approaches is that it does not require the partitions to be of equal sizes.

3 Problem Decomposition Strategy

While community-finding algorithms have been aimed at SNA applications, these
techniques are computationally expensive and the communities they discover are
small – normally comprising some tens of nodes. When dealing with very large
graphs, which may potentially contain hundreds of thousands or even millions
of nodes, algorithms with running time O(e2) or O(e3) will not be practical.
Therefore the question arises, how can we find small communities in such large
networks?

The approach we take in this work is to employ a two-stage problem decom-
position strategy as outlined below:

Stage 1: Given a large graph, apply a computationally tractable graph parti-
tioning algorithm that minimises the number of links broken in the process.
The resulting partitions will themselves form large subgraphs.

Stage 2: Once the original graph has been split into manageable subgraphs,
apply a more computationally intensive community-finding algorithm to each
subgraph, and subsequently combine the results.

For the first stage of the process, we suggest the use of the implementation of
the multilevel partitioning method proposed by Dhillon et al. [8], referred to as
Graclus1. We choose this approach as it allows us to optimise the objectives for

1 Available from http://www.cs.utexas.edu/users/dml/Software/graclus.html



spectral clustering, which have previously proved successful in other areas [17],
but without requiring a costly eigendecomposition. Thus Graclus will provide a
partitioning of a large graph with a small running time. For the second stage of
the process, we employ the CFinder algorithm [5], as it supports the discovery
of overlapping, localised and nested communities. It should be noted that, while
we focus on the pairing of Graclus and CFinder in the remainder of this report,
our proposed strategy can naturally be generalised to make use of any suitable
combinations of algorithms.

4 Experimental Datasets

Two sets of experiments were performed, one using synthetic data, and the
other using real data. Synthetic data was used for two main purposes. Firstly,
we wished to examine how community-finding techniques scale to large, sparse
graphs, approaching the size of those occurring in real-world applications, such
as the analysis of mobile subscriber networks. For these scalability experiments
synthetic graphs consisting of 1k, 2k, 5k, 10k, 100k, and one million nodes were
used. Secondly, we wished to assess the extent to which graph partitioning tech-
niques preserve communities intact. In addition to using synthetic data, we also
performed experiments on real data. Graphs derived from the CORA biblio-
graphic network [23] were used for this purpose.

4.1 Synthetic data

We performed experiments on two sets of synthetically generated graphs2. The
generation and structure of these graphs is now described in detail.

Power law graphs. An important characteristic of networks is the distribu-
tion of edges. The most straightforward assumption about the distribution of
edges is that all possible edges between the vertices are equally probable [24].
This defines a random graph where the degree of each node follows a Poisson
distribution. It has been shown that for many real graphs the degree distribution
follows a power law rather than a Poisson distribution [25]. An example of the
distinction between the distributions is given in Figure 1. The important point
about power law graphs is the increased probability of nodes with large num-
bers of edges. These nodes represent hubs which have a significant impact on the
overall connectivity of the graph, since a connected set of hubs can provide short
paths between a large proportion of the nodes in the network. Thus the average
distance between vertices in a power law graph will be small. Power-law graphs
also tend to have a high cluster coefficient and exhibit scale-free characteristics,
so the plot of degree distribution is self-similar at different levels of resolution.

The degree sequence of a graph is the set of node degrees (d1, . . . dn), ordered
such that d1 ≥ · · · ≥ dn. To construct synthetic graphs that approximate real-
world power-law graphs, we generated random graphs with a given fixed input
2 Available for download at http://mlg.ucd.ie/datasets/graph.html
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Fig. 1. A comparison of degree distribution for random and power law graphs - a
common model for degree distribution in random graphs is a Poisson distribution.

degree sequence, and chose the degree sequence to follow an exact power-law.
That is, for k = 1 . . . n, we choose dk such that

dk = round(ckα) ,

for chosen constants c and α. In particular, we select a reasonable value of α
based on values reported from real-world graphs. The constant of proportionality
c, was set by specifying the minimum degree dn = dmin, so that

dk = round
((

k

n

)α

dmin

)
Note that, provided the degree sequence is graphical, it is possible to generate
a graph corresponding to that degree sequence by applying the constructive
method proposed in [26]. Real-world graphs do not exhibit the perfect power-law
characteristics of these synthetic graphs, but rather tend to exhibit a power-law
behaviour in certain ranges of the node degrees. Nevertheless, this is a useful
approximation that allows us to examine algorithms on large-scale graphs which
exhibit some of the characteristics that can be found in real-world graphs. In
the experiments described later in Section 5, we use graphs with dmin = 8 and
α = 10.

Graphs with embedded communities. An important aspect of our evalua-
tions was to compare the groups discovered by the community finding algorithm
to the actual structures present in the data, and to examine the extent to which
the prior application of graph partitioning affects the discovery of these struc-
tures. For this purpose, we generated graphs with embedded communities, where
these communities represent a “ground truth”. To achieve this, we followed a
procedure similar to that outlined by Newman & Girvan [4]. The basic idea



is that nodes in each of the communities acquire edges among other members
of the same community, as well as nodes outside the community, with certain
probabilities. These probabilities are defined in terms of two key parameters:

– Let pin denote the probability with which a node in a community acquires
edges with other members of the same community.

– Let pout denote the probability with which a node acquires edges randomly
with the rest of the nodes in the graph.

When constructing artificial graphs, values for these parameters can be reached
in a number of ways. For instance, Newman & Girvan [4] fix the expected degree
of each vertex, and then compute values for pin and pout accordingly.

While cliques and variants such as k-plexes are precisely defined, as noted
previously, the term “community” is not clearly defined in the literature. In most
cases, the term refers to a group of nodes which have a high degree of connectivity
between themselves, relative to the rest of the network. In order to capture this
notion of a community, we introduce the measure assoc, which quantifies the
connectivity between a community C and a graph G, where C ⊂ G,

assoc(C,G) =
∑

u∈C,v∈G,u 6=v

w(u, v) (1)

and where w(u, v) is the weight of the edge connecting a pair of nodes u and v.
Note that in the data described here, edge weights are either 1 or 0. In this case
assoc(C,C) is a count of the number of edges connecting nodes within C, and
we can use pin(C) as a quality measure where

pin(C) =
assoc(C,C)
c× (c− 1)/2

(2)

and c = |C|. Another measure of community quality is the ratio r(C) of the
within-community connectivity in C to the connectivity of the community’s
nodes to the entire graph:

r(C) =
assoc(C,C)
assoc(C,G)

(3)

To construct the graphs used in our experiments, we fix the values for the
two measures pin(C) and r(C) for all communities – thus the graphs are defined
by the parameters pin and r. From these values, we can compute the other
parameter pout used by Newman & Girvan [4]. We chose to fix pin as opposed to
pout, since it has a straightforward interpretation – it is a measure of how close
the community is to forming a maximal clique. For instance, pin=1 corresponds
to a fully connected clique. It is worth noting that the parameter pin is closely
related to the clustering coefficient defined by Watts & Strogatz [27]. In fact, it is
equivalent to the clustering coefficient of the subgraph obtained by considering
only the nodes of the particular community and their connecting edges.

For evaluation purposes, we constructed “unit” graphs consisting of 1,000
nodes, containing embedded communities of different sizes, ranging from 10 to
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Fig. 2. This figure shows three example communities of 10 nodes in the synthetic data
with different parameter values: in (a) pin = 0.7, r = 0.7, in (b) pin = 0.5, r = 0.5, in
(c) pin = 0.2, r = 0.5. For instance, in example (c) 20% of the possible links in the
community exist, and half of all links are internal to the community.

40 nodes. These communities were non-overlapping, and all nodes were assigned
to a community. Successively larger graphs were then generated such that the
number of nodes and communities were scaled by the same integral ratio. For
example, a graph of 2,000 nodes had exactly twice the number of communities
of the same respective sizes as a graph of 1,000 nodes.

In order to better understand the nature of the synthetic data, some example
communities consisting of ten nodes, but of different link densities, are shown
in Figure 2. In Figure 2(a) a community of ten nodes with pin = 0.7 and r =
0.7 is shown. At this density, on average 70% of all possible within-community
edges exist, and 70% of all edges associated with the community are internal. In
the evaluation in Section 5.2 it is clear that the community finding algorithms
perform well when the community “signature” is this pronounced. In the scenario
in Figure 2(b) the community signature is weaker with just 50% of possible
internal links present and as many external as internal links in existence. The
evaluation in Section 5.2 still shows good performance on this data. The situation
in Figure 2(c) is effectively a pathological situation, as only 20% of all possible
internal links are present. In this situation the community does not even form
a single connected component. Perhaps unsurprisingly, most community finding
algorithms will perform poorly in this context.

4.2 Real data

The CORA bibliographic dataset [23] contains information and annotations such
as authors, cited papers and topic for over 50,000 research papers3. For our eval-
uation, the paper citation graph derived from the CORA dataset was used. Only

3 See http://www.cs.umass.edu/∼mccallum/code-data.html



the papers with available authors were selected, where the total number of these
was 28,400. We suggest that this graph is a reasonable proxy for real-world data,
such as mobile subscriber networks, since the communities are small despite the
scale of the graph – typically containing 10 to 20 members. The edge direc-
tions and weights were ignored, and the largest weakly-connected component
was used for the experiments described in the next section. This resulted in a
graph consisting of 24,542 nodes.

5 Experimental Evaluation

The evaluation presented in this section has two objectives: to highlight the
scalability advantages of the two stage process, and to examine how the prior
application of graph partitioning affects our ability to locate communities in a
large graph. Additionally we compare the communities obtained from the entire
graph with those discovered from the individual subgraphs obtained via graph
partitioning. These evaluations on synthetic data are presented in Section 5.1
and Section 5.2 respectively, where we use both the power-law and embedded
community graphs described in Section 4. Since the results were generally similar
across a range of synthetic graph parameters, we discuss only representative
results. The results of evaluations on real data are then presented in Section 5.3.

5.1 Scalability: Synthetic data

Our scalability analysis entails comparing the running times of the two-stage
process and CFinder alone on graphs generated as described in Section 4. In this
analysis the graph partitioning stage is set to yield sub-graphs of about 1,000
nodes, i.e. a graph of 10,000 nodes is divided into 10 sub-graphs. The results for
the power law graphs are shown in Figure 3, and those for graphs with embedded
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Fig. 3. CFinder execution times (in seconds) versus graph size for synthetically gener-
ated power law graphs: (a) actual execution time, (b) execution time relative to 1000
node graphs.
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Fig. 4. CFinder execution times versus graph size for graphs with embedded com-
munities. Actual execution times are shown in (a,c,e) while relative execution times
relative to a 1,000 node graph are shown in (b,d,f). The parameters for the graphs are
(pin, r) = (0.2, 0.5) in (a,b), (pin, r) = (0.5, 0.5) in (c,d), (pin, r) = (0.7, 0.7) in (e,f).

communities are shown in Figure 4. The results shown in Figure 4 correspond to
parameter sets (pin, r) = (0.2, 0.5), (pin, r) = (0.5, 0.5) and (pin, r) = (0.7, 0.7).



These parameter values correspond to community signatures of the type shown
in Figure 2. The results show average execution times computed over 50 runs.

In these figures, both the actual and relative execution times are shown. The
graphs showing the actual execution times are included to illustrate the depen-
dence of the CFinder execution time on the link density. It is clear that execution
time increases steeply as more links are added to the graph. For both the power
law and embedded community graphs, we observe a steep increase in the execu-
tion times as the graphs grow in size even though the average “community size”
is the same. For example, we can see from Figure 3(b) that the average execution
time for a 10,000 node graph is more than 100 times that for a graph of 1000
nodes. The execution time is approximately O(n2) in the number of nodes. The
running times for the two-stage strategy are also shown in the graphs. It is clear
that this strategy results in a dramatic reduction in overall running time. The
combined running times are computed as follows. Let the graph be partitioned
into k parts. The total running time on a graph may be expressed as

T = Gk +
k∑

i=1

Ci

where Gk denotes the execution time for partitioning the graph into k parts using
Graclus, and Ci denotes the execution time of CFinder on the ith subgraph
resulting from the graph partitioning. For our datasets, the running time for
Graclus was usually a fraction of a second for graphs consisting of up to a few
tens of thousands of nodes. Thus the total running time was dominated by the
CFinder execution times on the individual subgraphs.

In Figures 3 and 4 we have shown the combined running times for graphs
containing up to a few tens of thousands of nodes. However, the problem decom-
position strategy permits discovery of communities in graphs of sizes significantly
larger than possible using the community finding algorithm on its own. For in-
stance Graclus can easily handle sparse graphs up to a few million nodes. Sample
execution times of two stage strategy for larger graphs are shown in Table 1. In

Graph type # Nodes # Partitions CFinder execution time
CFinder only 2-stage

Embedded communities 50k 50 40604.6 1227.94
(pin, Nconnavg) = (0.5, 0.5)

Embedded communities 100k 10 189022.89 29967.89
(pin, Nconnavg) = (0.5, 0.5)

Power law 1,000k 1000 N/A 365.73
(dmin, α) = (8, 10)

Table 1. Comparison of sample CFinder execution times (in seconds) for large syn-
thetic graphs. Note that N/A indicates that CFinder did not terminate within a “rea-
sonable” period of time.



cases where the subgraphs were larger than could be handled by CFinder, we
further partitioned the subgraphs. The actual running time of CFinder on the
entire graph is shown where available, although in many cases CFinder either
took an unreasonably long time or did not terminate at all. For our datasets we
found that graphs of 10,000 nodes and > 80, 000 edges were close to the limit of
what can be handled by CFinder on a 2GHz dual core machine with 4GB RAM,
running 64-bit Linux.

5.2 Solution Quality: Synthetic data

Having established that the two-stage strategy could scale for graphs of up to
1,000,000 nodes, the next objective of our evaluation was to examine the quality
of the results produced by the two-stage process. The first issue was to assess
the extent to which the graph partitioning stage preserves communities when
applied to a large graph. The second issue was to compare the sets of communities
discovered by CFinder alone to those discovered by the two-stage process.

A few sample communities discovered by the CFinder software are shown in
Figure 5. As mentioned before, CFinder enumerates all small cliques (specifically
all k-cliques), and uses these as “building blocks” to enumerate communities. A
k-clique-community is defined as the union of all k-cliques that can be reached
from each other through a series of adjacent k-cliques, making this strategy

(a) (b)

(c)

Fig. 5. Illustrative examples of smaller communities discovered by CFinder on syn-
thetic data.



(a) (b)

Fig. 6. Illustrative examples of larger communities discovered by CFinder on synthetic
data, which are comprised of smaller, interconnected communities.

useful in discovering overlapping as well as nested communities. Thus the com-
munities discovered by CFinder can vary in size from a few nodes (Figure 5) to
tens or even hundreds of nodes (Figure 6). Hence it is necessary to compare the
communities obtained by CFinder to the true communities, specifically to what
extent CFinder is able to faithfully discover the true communities. As an exam-
ple, consider again Figures 5(a)-(c). In Figures 5(a) and 5(b), CFinder faithfully
uncovers the communities (i.e. only community nodes with no other extraneous
ones). Figure 5(c) is a case where an extraneous node (the node labelled 136,
highlighted in a different colour) is chosen along with the other correct commu-
nity nodes. A different scenario is shown in Figure 6, where the large communities
presumably subsume a number of smaller communities. Again it is important
here to assess whether or not the true communities are faithfully recovered.

Validation measures. Given the issues raised by Figures 5 and 6, we use preci-
sion and recall as measures of cluster quality in our evaluation process. Precision
can be seen as a measure of relevance – i.e. the fraction of results are true posi-
tives (although other relevant results may be missed out). Recall is a measure of
completeness – i.e. the fraction of all relevant results that were retrieved (possibly
including a number of irrelevant results). Formally these measures are defined
as follows:

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

where TP is the number of true positives, FP is the number of false positives,
and FN is the number of false negatives. To calculate the actual validation scores
for a given clustering, we compared each reference community from the “ground
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Fig. 7. Mean precision and recall scores for synthetic graphs of 2,000 nodes, gener-
ated with different parameter values: in (a,b) (pin, r) = (0.2, 0.5), in (c,d) (pin, r) =
(0.5, 0.5), in (e,f) (pin, r) = (0.7, 0.7).

truth” with every one of the clusters discovered by the community finding algo-
rithm. Then, for each of the reference communities, we select the combination
yielding the highest values for Eqn. 4 and Eqn. 5, and return these values. We
repeated this procedure across multiple experimental runs, and subsequently
calculated the mean precision and recall scores.
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Fig. 8. Mean precision and recall scores for synthetic graphs of 5,000 nodes, gener-
ated with different parameter values: in (a,b) (pin, r) = (0.2, 0.5), in (c,d) (pin, r) =
(0.5, 0.5), in (e,f) (pin, r) = (0.7, 0.7).

Discussion of validation results. The mean validation scores for synthetic
graphs with embedded communities, containing 2,000 and 5,000 nodes, are shown
in Figure 7 and Figure 8 respectively. We provide results for three sets of syn-
thetic graph generation parameters, ranging from weak signatures (pin = 0.2, r =
0.5) to strong signatures (pin = 0.7, r = 0.7). The communities are arranged in



increasing order of size along the x-axis. The plots on the left hand side (a,c,e)
correspond to precision scores, while those on the right hand side (b,d,f) cor-
respond to recall scores. Note that, for the graph partitioning phase, we are
only concerned with recall scores, as precision values are not meaningful in this
context since the number of chosen partitions is usually much smaller than the
number of communities. As long as existing communities are not broken up by
graph partitioning, there remains the potential for them to be discovered by the
community finding algorithm in the second stage of the two-stage strategy.

From Figure 7 and 8 we observe that the recall scores for the partitions
obtained from Graclus are consistently high, especially for larger communities.
This is a good indication that the first stage of the two-stage strategy is rela-
tively successful in preserving communities intact. In fact, these scores are close
to 100% for communities with reasonably well-defined signatures, as shown in
Figure 7(c,e) and Figure 8(c,e). It is apparent that, when errors are made, they
are most likely to be made on the small communities consisting of only ten nodes.
The only situation where CFinder alone outperforms the two-stage strategy in
terms of solution quality is in Figure 8(d). Here the recall of the two stage-
strategy is slightly worse on the small communities of ten nodes. Note that the
graphs in Figure 7(a,b) and Figure 8(a,b), with (pin, r) = (0.2, 0.5), represent a
pathological case, where neither the two-stage strategy nor CFinder alone can
effectively discover the communities embedded in the data, since the community
signatures are not sufficiently well-defined.

5.3 Real-world data

Scalability. In the experiments performed on the CORA bibliographic dataset,
we wished to determine the degree to which communities discovered by run-
ning CFinder on the entire graph are uncovered when CFinder is run on the
individual subgraphs obtained from graph partitioning. For the latter case, we
pooled together the communities obtained from the different subgraphs, remov-
ing any duplicates. We then compared the total number of communities ob-
tained from the entire graph with those obtained from partitioning the graph
into k = {2, 3, . . . , 10} subgraphs. Figure 9 shows that increasing the number of
subgraphs had little effect on the total number of communities recovered, with
a small decrease from 3601 on the original graph to 3448 for k = 10. In contrast,
we clearly observe that the overall running time of the two-stage community
finding process decreases substantially as the number of subgraphs k increases.

Next we compared the actual communities discovered by applying CFinder
on the CORA dataset, with those recovered by the two-stage strategy. Our
experiments showed a very considerable overlap. For example, the total number
of communities obtained by running CFinder on the full graph was 3,601, and
the total number after partitioning the graph into two subgraphs was 3,572.
Of these, the number of communities in the two sets that were identical was
3,454. Of the remaining 147 communities obtained from the full graph, there
were close matches for 118 communities. When the graph was partitioned into
ten subgraphs, the total number of communities was 3,448, of which 2,967 had
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Fig. 9. The execution time for the two-stage community finding process on the CORA
dataset. The first data point corresponds to the single stage process (i.e.CFinder
alone), while the remaining points correspond to the combined times for the two-stage
decomposition strategy. The total number of communities discovered is also shown.

exact matches from among the communities of the full graph. Thus, while we
achieve a significant reduction in execution time when the two-stage procedure
is employed, these results indicate that there is also minimal loss of information
overall.

Solution quality. We now consider the issue of solution quality on the CORA
dataset, focusing on the ability of the graph partitioning phase of the two-stage
strategy to preserve the underlying structures in the data. Specifically, we ex-
amined the topic distribution of the clusters obtained by Graclus, where the
quality or accuracy of the resulting partitions was determined by using the topic
annotations in the CORA dataset as a “ground truth”.

Clustering in bibliometrics is based on the assumption that a paper will tend
to cite other papers in related areas of research. Therefore, we expect the com-
munities occurring in the partitions generated by graph partitioning to represent
relatively homogeneous topics. In our experiments, when Graclus was applied to
the CORA dataset, we observed a high level of enrichment with respect to topics
in the resulting partitions. Figure 10 shows the overall topic distribution in the
CORA dataset, where we see that the top two topics are “artificial intelligence”
and “programming”, pertaining to 34% and 21% of the papers repectively. Sam-
ple results for a two-way partitioning produced by Graclus are shown in Figure 10
and Figure 11, indicating the proportion of each annotated topic present in both
clusters. We see that the clusters are enriched with respect to the two dominant
topics. The topic “artificial intelligence” accounts for 61% of the papers in one of
the clusters, compared to 34% overall, while “programming” accounts for 21%
of the nodes in the other cluster, compared with 12% overall.
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Fig. 10. Original topic distribution of papers in the CORA dataset.
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Fig. 11. Topic distribution of two clusters obtained from Graclus, when applied to the
CORA dataset.

5.4 Summary

Since graph partitioning techniques are more scalable than community-finding
algorithms, we have shown that the latter represents the “weak link” in the
analysis process. Thus, our proposed strategy is feasible within some of the limi-
tations of the community-finding approach. For instance, the authors of CFinder
suggest that, if the most densely connected region of the network contains a large
number of highly overlapping cliques, the computational performance of CFinder
can suffer significantly. In our particular case (i.e.where CFinder is used as the
community algorithm), the decomposition strategy can be somewhat limited
in situations where communities grow in size over time. However, in many real
networks, such as phone subscriber data, it will often be the case that more com-



munites of similar size distribution emerge, rather than a “growth” in the size
of communities. As illustrated by our evaluations on real and synthetic data,
the two-stage strategy would be useful in this context, since it would permit
discovery of communities in graphs larger than those which can be handled by
CFinder alone.

6 Conclusion

In this report, we have proposed a two-stage problem decomposition approach
strategy that facilitates the application of computationally expensive clique or
community-finding algorithms to much larger networks than would be possible
if these algorithms were applied on their own. The two-stage approach involves
using a top-down graph partitioning technique to divide the network into smaller
subnetworks, on which it is then feasible to apply a more computationally inten-
sive community-finding algorithm. It is important to note that, while we have
used the combination of Graclus (the graph partitioning technique) and CFinder
(community-finding algorithm) in this report, the two-stage strategy could be
used with alternative combinations of algorithms. We have demonstrated the
usefulness of this strategy in empirical evaluations on both artificial and real-
world datasets, where the computational cost of the network analysis process was
significantly reduced without adversely affecting the quality of the communities
that were discovered.
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