• Home
  • Pablo Santos-Sanz
Pablo Santos-Sanz

Pablo Santos-Sanz
Instituto De Astrofisica De Andalucia-CSIC · Solar System

PhD

About

231
Publications
23,709
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,220
Citations
Introduction
Skills and Expertise

Publications

Publications (231)
Article
Full-text available
The Centaur (60558) Echeclus was discovered on March 03, 2000, orbiting between the orbits of Jupiter and Uranus. After exhibiting frequent outbursts, it also received a comet designation, 174P. If the ejected material can be a source of debris to form additional structures, studying the surroundings of an active body like Echeclus can provide clue...
Preprint
Full-text available
After the discovery of rings around the largest known Centaur object, (10199) Chariklo, we carried out observation campaigns of stellar occultations produced by the second-largest known Centaur object, (2060) Chiron, to better characterize its physical properties and presence of material on its surroundings. We predicted and successfully observed t...
Preprint
Full-text available
This work aims at constraining the size, shape, and geometric albedo of the dwarf planet candidate 2002 MS4 through the analysis of nine stellar occultation events. Using multichord detection, we also studied the object's topography by analyzing the obtained limb and the residuals between observed chords and the best-fitted ellipse. We predicted an...
Preprint
Full-text available
We could accurately predict the shadow path and successfully observe an occultation of a bright star by Chiron on 2022 December 15. The Kottamia Astronomical Observatory in Egypt did not detect the occultation by the solid body, but we detected three extinction features in the light curve that had symmetrical counterparts with respect to the centra...
Article
Full-text available
Context. Quaoar is a classical trans-Neptunian object (TNO) with an area-equivalent diameter of 1100 km and an orbital semi-major axis of 43.3 astronomical units. Based on stellar occultations observed between 2018 and 2021, an inhomogeneous ring (Q1R, i.e., Quaoar’s first ring) has been detected around this body. Aims. A new stellar occultation by...
Preprint
Full-text available
Quaoar is a classical Trans-Neptunian Object (TNO) with an area equivalent diameter of 1,100 km and an orbital semi-major axis of 43.3 astronomical units. Based on stellar occultations observed between 2018 and 2021, an inhomogeneous ring (Q1R, Quaoar's first ring) was detected around this body. Aims. A new stellar occultation by Quaoar was observe...
Article
Full-text available
Planetary rings are observed not only around giant planets¹, but also around small bodies such as the Centaur Chariklo² and the dwarf planet Haumea³. Up to now, all known dense rings were located close enough to their parent bodies, being inside the Roche limit, where tidal forces prevent material with reasonable densities from aggregating into a s...
Article
Full-text available
The rotational states of the members in the dwarf planet-satellite systems in the trans-Neptunian region are determined by formation conditions and the tidal interaction between the components. These rotational characteristics serve as prime tracers of their evolution. A number of authors have claimed a very broad range of values for the rotation p...
Preprint
Full-text available
The rotational states of the members in the dwarf planet - satellite systems in the transneptunian region are determined by the formation conditions and the tidal interaction between the components, and these rotational characteristics are the prime tracers of their evolution. Previously a number of authors claimed highly diverse values for the rot...
Article
Full-text available
Within our program of physical characterization of trans-Neptunian objects and centaurs, we predicted a stellar occultation by the centaur (54598) Bienor to occur on January 11, 2019, with good observability potential. We obtained high accuracy astrometric data to refine the prediction, resulting in a shadow path favorable for the Iberian Peninsula...
Preprint
Full-text available
Within our program of physical characterization of trans-Neptunian objects and centaurs, we predicted a stellar occultation by the centaur (54598) Bienor to occur on January 11, 2019, with good observability potential. We obtained high accuracy astrometric data to refine the prediction, resulting in a shadow path favorable for the Iberian Peninsula...
Preprint
Full-text available
Context. Stellar occultation is a powerful technique that allows the determination of some physical parameters of the occulting object. The result depends on the photometric accuracy, the temporal resolution, and the number of chords obtained. Space telescopes can achieve high photometric accuracy as they are not affected by atmospheric scintillati...
Article
Full-text available
Context. As part of our international program aimed at obtaining accurate physical properties of trans-Neptunian objects (TNOs), we predicted a stellar occultation by the TNO (38628) Huya of the star Gaia DR2 4352760586390566400 ( m G = 11.5 mag) on March 18, 2019. After an extensive observational campaign geared at obtaining the astrometric data,...
Preprint
Full-text available
Within our international program to obtain accurate physical properties of trans-Neptunian objects (TNOs) we predicted a stellar occultation by the TNO (38628) Huya of the star Gaia DR2 4352760586390566400 (mG = 11.5 mag.) for March 18, 2019. After an extensive observational campaign, we updated the prediction and it turned out to be favorable to c...
Preprint
Full-text available
We predicted, observed, and analyzed the multichord stellar occultation of the Second Gaia Data Release (Gaia DR2) source 3449076721168026624 (m$_v$ = 14.1 mag) by the plutino object 2003 VS$_2$ (hereafter, VS$_2$) on 2019 October 22. We also carried out photometric observations to derive the rotational light curve amplitude and rotational phase of...
Article
Full-text available
Context. Stellar occultations have become one of the best techniques to gather information about the physical properties of trans-Neptunian objects (TNOs), which are critical objects for understanding the origin and evolution of our Solar System. Aims. The purpose of this work is to determine, with better accuracy, the physical characteristics of t...
Article
Full-text available
Context. A stellar occultation by Neptune’s main satellite, Triton, was observed on 5 October 2017 from Europe, North Africa, and the USA. We derived 90 light curves from this event, 42 of which yielded a central flash detection. Aims. We aimed at constraining Triton’s atmospheric structure and the seasonal variations of its atmospheric pressure si...
Article
Full-text available
Context. The recently announced Oort-cloud comet C/2014 UN 271 (Bernardinelli-Bernstein) is remarkable in at least three respects: (i) it was discovered inbound as far as ∼29 au from the Sun (with prediscovery images up to ∼34 au); (ii) it already showed cometary activity at almost 24 au; and (iii) its nuclear magnitude ( H r ∼ 8.0) indicates an ex...
Preprint
Full-text available
The recently announced Oort-cloud comet C/2014 UN271 (Bernardinelli-Bernstein) is remarkable in at least three respects: (i) it was discovered inbound as far as ~29 au from the Sun (with prediscovery images up to ~34 au); (ii) it showed cometary activity already at almost 24 au; and (iii) its nuclear magnitude (Hr ~ 8.0) indicates an exceptionally...
Preprint
Full-text available
A stellar occultation by Neptune's main satellite, Triton, was observed on 5 October 2017 from Europe, North Africa, and the USA. We derived 90 light curves from this event, 42 of which yielded a central flash detection. We aimed at constraining Triton's atmospheric structure and the seasonal variations of its atmospheric pressure since the Voyager...
Article
Context. Stellar occultation is a powerful technique that allows the determination of some physical parameters of the occulting object. The result depends on the photometric accuracy, the temporal resolution, and the number of chords obtained. Space telescopes can achieve high photometric accuracy as they are not affected by atmospheric scintillati...
Preprint
Full-text available
A stellar occultation by Pluto was observed on 6 June 2020 with the 1.3-m and 3.6-m telescopes located at Devasthal, Nainital, India, using imaging systems in the I and H bands, respectively. From this event, we derive a surface pressure for Pluto's atmosphere of $p_{\rm surf}= 12.23^{+0.65}_{-0.38} $~$\mu$bar. This shows that Pluto's atmosphere is...
Article
Full-text available
A stellar occultation by Pluto was observed on 2020 June 6 with the 1.3 m and 3.6 m telescopes located at Devasthal, Nainital, India, using imaging systems in the I and H bands, respectively. From this event, we derive a surface pressure for Pluto’s atmosphere of p surf = 12.23 − 0.38 + 0.65 μ bar. This shows that Pluto’s atmosphere has been in a p...
Article
Full-text available
Context. The Centaur (10199) Chariklo has the first ring system discovered around a small object. It was first observed using stellar occultation in 2013. Stellar occultations allow sizes and shapes to be determined with kilometre accuracy, and provide the characteristics of the occulting object and its vicinity. Aims. Using stellar occultations ob...
Preprint
Full-text available
The Centaur (10199) Chariklo has the first rings system discovered around a small object. It was first observed using stellar occultation in 2013. Stellar occultations allow the determination of sizes and shapes with kilometre accuracy and obtain characteristics of the occulting object and its vicinity. Using stellar occultations observed between 2...
Article
Full-text available
We predicted a stellar occultation of the bright star Gaia DR1 4332852996360346368 (UCAC4 385-75921) (mV= 14.0 mag) by the centaur 2002 GZ32 for 2017 May 20th. Our latest shadow path prediction was favourable to a large region in Europe. Observations were arranged in a broad region inside the nominal shadow path. Series of images were obtained with...
Preprint
Full-text available
We predicted a stellar occultation of the bright star Gaia DR1 4332852996360346368 (UCAC4 385-75921) (m$_{\rm V}$= 14.0 mag) by the centaur 2002 GZ$_{32}$ for 2017 May 20$^{\rm th}$. Our latest shadow path prediction was favourable to a large region in Europe. Observations were arranged in a broad region inside the nominal shadow path. Series of im...
Article
Context. Trans-Neptunian objects (TNOs) and Centaurs are remnants of our planetary system formation, and their physical properties have invaluable information for evolutionary theories. Stellar occultation is a ground-based method for studying these distant small bodies and has presented exciting results. These observations can provide precise prof...
Preprint
Full-text available
Trans-Neptunian objects (TNOs) and Centaurs are remnants of our planetary system formation, and their physical properties have invaluable information for evolutionary theories. Stellar occultation is a ground-based method for studying these small bodies and has presented exciting results. These observations can provide precise profiles of the invol...
Preprint
Full-text available
We present results from the first recorded stellar occultation by the large trans-Neptunian object (174567) Varda that was observed on September 10$^{\rm th}$, 2018. Varda belongs to the high-inclination dynamically excited population, and has a satellite, Ilmar\"e, which is half the size of Varda. We determine the size and albedo of Varda and cons...
Article
Context. Deriving physical properties of trans-Neptunian objects is important for the understanding of our Solar System. This requires observational efforts and the development of techniques suitable for these studies. Aims. Our aim is to characterize the large trans-Neptunian object (TNO) 2002 TC 302 . Methods. Stellar occultations offer unique op...
Preprint
Full-text available
Among the four known transneptunian dwarf planets, Haumea is an exotic, very elongated, and fast rotating body. In contrast to the other dwarf planets, its size, shape, albedo, and density are not well constrained. Here we report results of a multi-chord stellar occultation, observed on 2017 January 21. Secondary events observed around the main bod...
Preprint
Full-text available
On 28th January 2018, the large Trans-Neptunian Object (TNO) 2002TC302 occulted a m$_v= $15.3 star with ID 130957813463146112 in the Gaia DR2 stellar catalog. 12 positive occultation chords were obtained from Italy, France, Slovenia and Switzerland. Also, 4 negative detections were obtained near the north and south limbs. This represents the best o...
Preprint
Non-resolved thermal infrared observations enable studies of thermal and physical properties of asteroid surfaces provided the shape and rotational properties of the target are well determined via thermo-physical models. We used calibration-programme Herschel PACS data (70, 100, 160 $\mu$m) and state-of-the-art shape models derived from adaptive-op...
Article
Full-text available
We present the results from four stellar occultations by (486958) Arrokoth, the flyby target of the New Horizons extended mission. Three of the four efforts led to positive detections of the body, and all constrained the presence of rings and other debris, finding none. Twenty-five mobile stations were deployed for 2017 June 3 and augmented by fixe...
Preprint
Full-text available
We present the results from four stellar occultations by (486958) Arrokoth, the flyby target of the New Horizons extended mission. Three of the four efforts led to positive detections of the body, and all constrained the presence of rings and other debris, finding none. Twenty-five mobile stations were deployed for 2017 June 3 and augmented by fixe...
Article
Full-text available
Observation of stellar occultation by objects of the Solar System is a powerful technique that allows measurements of size and shape of the small bodies with accuracies in the order of the kilometre. In addition, the occultation star probes the surroundings of the object, allowing the study of putative rings/debris or atmosphere around it. Since 20...
Article
Full-text available
From CCD observations carried out with different telescopes, we present short-term photometric measurements of the large trans-Neptunian object Varuna in 10 epochs, spanning around 19 years. We observe that the amplitude of the rotational light curve has changed considerably during this period of time from 0.41 to 0.55 mag. In order to explain this...
Article
The study of the visible colours of the trans-Neptunian objects opened a discussion almost 20 yr ago which, in spite of the increase in the amount of available data, seems far from subside. Visible colours impose constraints to the current theories of the early dynamical evolution of the Solar system such as the environment of formation, initial su...
Conference Paper
Full-text available
Within our international program to obtain physical properties of Transneptunian objects (TNOs) we predicted a stellar occultation by the TNO (38628) Huya of a very bright star (mv= 10.6 mag) for 2019, March 18 th. After a very extensive astrometric campaign we updated the prediction and it turned out to be favorable to central Europe. Therefore, w...
Preprint
Full-text available
From CCD observations carried out with different telescopes, we present short-term photometric measurements of the large trans-Neptunian object Varuna in 10 epochs, spanning around 19 years. We observe that the amplitude of the rotational light-curve has changed considerably during this period of time from 0.41 to 0.55 mag. In order to explain this...
Conference Paper
Full-text available
A stellar occultation by the large Trans-Neptunian object (174567) Varda was registered on September 10, 2018, from three different sites in the United States of America. This technique is being used by our team to characterize these distant small objects of the Solar System. Besides precise measurements of their size and shape, we can also study t...
Preprint
Full-text available
We present results from three world-wide campaigns that resulted in the detections of two single-chord and one multi-chord stellar occultations by the Plutino object (84922) 2003~VS$_2$. From the single-chord occultations in 2013 and 2014 we obtained accurate astrometric positions for the object, while from the multi-chord occultation on November 7...
Preprint
Full-text available
The study of the visible colours of the trans-Neptunian objects opened a discussion almost 20 years ago which, in spite of the increase in the amount of available data, seems far from subside. Visible colours impose constraints to the current theories of the early dynamical evolution of the Solar System such as the environment of formation, initial...
Preprint
Full-text available
We discuss here a lunar impact flash recorded during the total lunar eclipse that occurred on 2019 January 21, at 4h 41m 38.09 +- 0.01 s UT. This is the first time ever that an impact flash is unambiguously recorded during a lunar eclipse and discussed in the scientific literature, and the first time that lunar impact flash observations in more tha...
Preprint
Full-text available
In terms of scientific output, the best way to study solar system bodies is sending spacecraft to make in-situ measurements or to observe at close distance. Probably, the second best means to learn about important physical properties of solar system objects is through stellar occultations. By combining occultation observations from several sites, s...
Article
Full-text available
Context. The tenuous nitrogen (N2) atmosphere on Pluto undergoes strong seasonal effects due to high obliquity and orbital eccentricity, and has recently (July 2015) been observed by the New Horizons spacecraft. Aims. The main goals of this study are (i) to construct a well calibrated record of the seasonal evolution of surface pressure on Pluto an...
Article
Full-text available
Context. The tenuous nitrogen (N2) atmosphere on Pluto undergoes strong seasonal effects due to high obliquity and orbital eccentricity, and has recently (July 2015) been observed by the New Horizons spacecraft. Aims. The main goals of this study are (i) to construct a well calibrated record of the seasonal evolution of surface pressure on Pluto an...