Abstract—Rotation of vectors through fixed and known angles has wide applications in robotics, digital signal processing, graphics, games and animation. But, we do not find any optimized CORDIC design for vector-rotation through specific angles. Therefore, in this paper, we present optimization schemes and CORDIC circuits for fixed and known rotations with different levels of accuracy. For reducing the area- and time-complexities, we have proposed a hardwired pre-shifting scheme in barrel-shifters of the proposed circuits. Two dedicated CORDIC cells are proposed for the fixed-angle rotations. In one of those cells, micro-rotations and scaling are interleaved, and in the other they are implemented in two separate stages. Pipelined schemes are suggested further for cascading dedicated single-rotation units and bi-rotation CORDIC units for high-throughput and reduced latency implementations. We have obtained the optimized set of micro-rotations for fixed and known angles. The optimized scale-factors are also derived and dedicated shift-add circuits are designed to implement the scaling. The fixed-point mean-squared-error of the proposed CORDIC circuit is analyzed statistically, and strategies for reducing the error are given. We have synthesized the proposed CORDIC cells by Synopsys Design Compiler using TSMC 90nm library, and find that the proposed designs offer higher throughput, less latency and less area-delay compared to the reference CORDIC design for fixed and known-angle rotations. We find similar results of synthesis for different Xilinx FPGA platforms.

Index Terms—CORDIC, digital arithmetic, digital signal processing chip, VLSI.

I. INTRODUCTION

CORDIC stands for COordinate Rotation DIgital Computer. The key concept of CORDIC arithmetic is based on the simple and ancient principles of two-dimensional geometry. But the iterative formulation of a computational algorithm for its implementation was first described in 1959 by Jack E. Volder [1], [2] for the computation of trigonometric functions, multiplication and division. Not only a wide variety of applications of CORDIC have been suggested over the time, but also a lot of progress has taken place in the area of algorithm design and development of architectures for high-performance and low-cost hardware solutions [3]–[12].

Rotation of vectors through a fixed and known angle has wide applications in robotics, graphics, games and animation [4], [13], [14]. Locomotion of robots is very often performed by successive rotations through small fixed angles and translations of the links. The translation operations are realized by simple additions of coordinate values while the new coordinates of a rotational step could be accomplished by suitable successive rotations through a small fixed angle which could be performed by a CORDIC circuit for fixed rotation [4]. Similarly, interpolation of orientations between key-frames in computer graphics and animation could be performed by fixed CORDIC rotations [14]. There are plenty of examples of uniform rotation starting from electrons inside an atom to the planets and satellites. A simple example of uniform rotations is the hands of an animated mechanical clock which perform one degree rotation each time. There are several cases where high-speed constant rotation are required in games, graphic and animation. The objects with constant rotations are very often used in simulation, modelling, games and animation. Efficient implementation of rotation through a known small angle to be used in these areas could be implemented efficiently by simple and dedicated CORDIC circuits. Similarly, the multiplication of complex number with a known complex constant (which is the same as the rotation of vectors through a fixed and known angle) is often encountered in communication, signal processing and many other scientific and engineering applications. In some early works, CORDIC circuits have been developed for the implementation of complex multiplications to be used for digital signal processing (DSP) applications [16]–[18], but we do not find any detailed study pertaining to efficient CORDIC realization of fixed and known-angle rotations and constant complex multiplication.

Latency of computation is the major issue with the implementation of CORDIC algorithm due to its linear-rate convergence [19]. It requires \(n + 1 \) iterations to have \(n \)-bit precision of the output. Overall latency of computation increases linearly with the product of the word-length and the CORDIC iteration period. The speed of CORDIC operations is, therefore, constrained either by the precision requirement (iteration count) or the duration of the clock period. The angle encoding (AR) schemes [5]–[9] could be applied for reducing the iteration count for CORDIC implementation of constant complex multiplications by encoding the angle of rotation as a linear combination of a set of selected elementary angles of micro-rotations. In the conventional CORDIC, any given rotation angle is expressed as a linear combination of \(n \) values of elementary angles that belong to the set \(\{ (\sigma \cdot \arctan(2^{-r})) : \sigma \in \{-1,1\}, r \in \{1,2,...,n-1\}\} \) to obtain an \(n \)-bit value of \(\theta = \Sigma_{i=0}^{n-1} [\sigma_i \cdot \arctan(2^{-r})] \). However, in AR methods, this constraint is relaxed by adding zero into the linear combination to obtain the desired angle using relatively fewer terms of the form \((\sigma \cdot \arctan(2^{-r})) \) for \(\sigma \in \{1,0,-1\} \). The elementary-angle-set (EAS) used by AR scheme is given by \(S_{EAS} = \{ (\sigma \cdot \arctan(2^{-r})) : \sigma \in \{-1,0,1\}, r \in \{1,2,...,n-1\}\} \). Hu and Naganathan [5] have proposed an AR method based on the greedy algorithm that tries to represent the remaining angle using the closest elementary angle \(\pm \arctan(2^{-r}) \). Using this recoding schemes the total number of iterations could be reduced to less than half of the conventional CORDIC algorithm for the same accuracy. Wu et al [7] have suggested an AR scheme based on an extended elementary-angle-set.
(EAS), that provides a more flexible way of decomposing the target rotation angle. In the EAS approach, the set S_{EAS} of the elementary-angle set is extended further to $S_{EEAS} = \{(\arctan(\sigma_1 \cdot 2^{-r_1} + \sigma_2 \cdot 2^{-r_2})) : \sigma_1, \sigma_2 \in \{-1,0,1\} \text{ and } r_1,r_2 \in \{1,2,...,n-1\}\}$. EAS has better recoding efficiency in terms of the number of iterations and can yield better error performance than the AR scheme based on EAS. But the iteration period for EAS is longer, and involves double the numbers of adders/subtractors in the CORDIC cell compared with that of the other. Most of the advantages gained in the AR schemes are amortized by the hardware and time involved in scaling the pseudo-rotated vector.

Since the angle of rotation for the fixed rotation case is known a priori, it is desirable to perform exhaustive search to obtain an optimal EAS instead of greedy search. Moreover, it is observed that the hardware-complexity of barrel-shifters alone is nearly half of that of a CORDIC circuit. We therefore aim at suggesting some techniques to minimize the complexity of barrel shifters. CORDIC computation is inherently sequential. Therefore, CORDIC is not suitable for parallel implementation but it is a natural candidate for pipeline implementation. But, the efficient pipelined realization of CORDIC for fixed-angle vector rotations is yet to be exploited.

Keeping these in view, in this paper, we present the optimization schemes for reducing the number of micro-rotations and for reducing the complexity of barrel-shifters for fixed-angle vector-rotation. We also derive a cascaded pipelined circuit for this class of problem which is faster and involves less area-delay complexity than the existing approaches. The contributions of this paper are as follows:

i) Optimized set of micro-rotations are derived for the implementation of fixed-angle vector-rotation.

ii) Shift-add operations for corresponding scaling circuits are derived.

iii) A novel hardware pre-shifting scheme is suggested for reduction of barrel-shifter complexity.

iv) Single-rotation and bi-rotation CORDIC circuits are designed and used to derive cascaded CORDIC for high-speed fixed-angle vector rotations.

v) The fixed-point mean-squared-error (MSE) of the proposed CORDIC circuit is analyzed, and an efficient strategy for reducing the error is described.

The remainder of this paper is organized as follows: Section II deals with the optimization of elementary angle set for different accuracies of implementation. Efficient circuits for implementation of micro-rotations for fixed rotations are presented in Section III. Implementation of scaling is discussed in Section IV. Section V analyzes the mean-squared-error (MSE) of the proposed CORDIC. Hardware and time complexities are given and synthesis results of the proposed designs are compared with the conventional and a reference designs in Section VI. Conclusions are presented in Section VII.

II. OPTIMIZATION OF ELEMENTARY ANGLE SET

The rotation-mode CORDIC algorithm to rotate a vector $\mathbf{V} = [V_x \ V_y]^T$ through an angle ϕ to obtain a rotated vector

\[(U_x)_{i+1} = (U_x)_i - \sigma_i \cdot (U_y)_i \cdot 2^{-i} \]
\[(U_y)_{i+1} = (U_y)_i + \sigma_i \cdot (U_x)_i \cdot 2^{-i} \]
\[\phi_{i+1} = \phi_i - \sigma_i \tan^{-1}(2^{-i}) \]

such that when n is sufficiently large

\[\begin{bmatrix} V_x \\ V_y \\ \phi \end{bmatrix} \leftarrow T \begin{bmatrix} (U_x)_n \\ (U_y)_n \\ 0 \end{bmatrix} \]

where, $\sigma_i = -1$ if $\phi_i < 0$ and $\sigma_i = 1$ otherwise, and T is the scale-factor of the CORDIC algorithm, given by

\[T = \prod_{i=0}^{n-1} [1 + 2^{-2i}]^{-1/2} \]

In case of fixed rotation, ϕ_i could be pre-computed and the sign-bits corresponding to σ_i could be stored in a sign-bit register (SBR) in CORDIC circuit. The CORDIC circuit therefore need not compute the remaining angle ϕ_i during the CORDIC iterations [3].

A reference CORDIC circuit for fixed rotations according to (1a) and (1b) is shown in Fig.1. X_0 and Y_0 are fed as set/reset input to the pair of input registers and the successive feedback values X_i and Y_i at the ith iteration are fed in parallel to the input registers. Note that conventionally we feed the pair of input registers with the initial values X_0 and Y_0 as well as the feedback values X_i and Y_i through a pair of multiplexers.

We show here that for rotation of a vector through a known and fixed angle of rotation using a rotation-mode CORDIC circuit, we can find a set of a small number of predetermined elementary angles $\{\alpha_i, \text{ for } 0 \leq i \leq m-1\}$, where $\alpha_i = \arctan(2^{-k(i)})$ is the elementary angle to be used for the ith micro-rotation in the CORDIC algorithm (1), and m is the minimum necessary number of micro-rotations. Meanwhile, it is well known that the rotation through any angle, $0 < \theta \leq 2\pi$ can be mapped into a positive rotation through $0 < \phi \leq \pi/4$ without any extra arithmetic operations [10]. Hence, as a first step of optimization, we perform the rotation mapping so that the rotation angle lies in the range of $0 < \phi \leq \pi/4$. In the next step, we minimize the number of elementary angles in the set $\{\alpha_i\}$ according to the accuracy requirements. The rotation mode CORDIC algorithm of (1), therefore, can be modified accordingly to have

\[\begin{bmatrix} (U_x)_{i+1} \\ (U_y)_{i+1} \end{bmatrix} = \begin{bmatrix} 1 & -\sigma_i 2^{-k(i)} \\ \sigma_i 2^{-k(i)} & 1 \end{bmatrix} \begin{bmatrix} (U_x)_i \\ (U_y)_i \end{bmatrix} \]

such that for a minimum number m

\[\begin{bmatrix} U'_x \\ U'_y \\ \phi_A \end{bmatrix} \leftarrow K \begin{bmatrix} (U_x)_m \\ (U_y)_m \\ 0 \end{bmatrix} \]

The scale-factor K now depends on the the set $\{\alpha_i\}$. The accuracy of CORDIC algorithm depends on how closely the resultant rotation ϕ_A due to all the micro-rotations in (1) approximates to the desired rotation angle ϕ, which in turn determines the deviation of actual rotation vector from the estimated value. We show here that only a few elementary
angles are sufficient to have a CORDIC rotation in the range \([0, \pi/4]\), and different sets of elementary angles can be chosen according to the accuracy requirement.

\begin{table}[h]
\centering
\caption{Optimization of Full Rotations with Four Micro-rotations}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
\(\phi\) & \(k(0), s_0\) & \(k(1), s_1\) & \(k(2), s_2\) & \(k(3), s_3\) & \(\Delta \phi\) \\
\hline
45 & 0.1 & 5.0 & 8.0 & -- & -- & 0.0001 \\
43 & 0.1 & 5.0 & 8.0 & -- & -- & 0.014 \\
41 & 0.1 & 4.0 & 7.0 & -- & -- & 0.024 \\
39 & 0.1 & 3.0 & 6.1 & 8.1 & -- & 0.006 \\
37 & 0.1 & 3.0 & 6.0 & -- & -- & 0.020 \\
35 & 2.1 & 2.1 & 2.1 & 3.0 & -- & 0.016 \\
33 & 1.1 & 2.3 & 3.2 & 4.0 & -- & 0.019 \\
31 & 1.1 & 4.1 & 6.1 & -- & -- & 0.037 \\
29 & 2.1 & 2.1 & 6.1 & -- & -- & 0.032 \\
27 & 1.1 & 7.1 & -- & -- & -- & 0.013 \\
25 & 1.1 & 5.0 & 8.1 & -- & -- & 0.001 \\
23 & 1.1 & 4.0 & 9.0 & -- & -- & 0.011 \\
21 & 2.1 & 2.1 & 3.0 & 10.1 & 0.003 \\
19 & 1.1 & 3.0 & 7.0 & -- & -- & 0.008 \\
17 & 1.1 & 2.0 & 4.1 & 6.1 & -- & 0.000 \\
15 & 2.1 & 6.1 & 10.1 & -- & -- & 0.013 \\
13 & 3.1 & 2.0 & 7.1 & 10.1 & -- & 0.024 \\
11 & 3.1 & 4.1 & 8.1 & 10.1 & 0.019 \\
9 & 3.1 & 5.1 & 9.1 & -- & -- & 0.027 \\
7 & 3.1 & 9.0 & -- & -- & -- & 0.013 \\
5 & 3.1 & 5.0 & 7.0 & 9.1 & 0.001 \\
3 & 4.1 & 7.0 & 9.0 & -- & -- & 0.017 \\
1 & 6.1 & 9.1 & -- & -- & -- & 0.007 \\
\hline
\end{tabular}
\end{table}

\(s_i\) is the sign-bit corresponding to the sign term \(\sigma_i\), such that \(s_i = 1\) and \(0\) for \(\sigma_i = 1\) and \(-1\), respectively. \(\Delta \phi = |\phi - \phi_A|\).

\begin{table}[h]
\centering
\caption{Optimization of Small Rotations with Four Micro-rotations}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
\(\phi\) & \(k(0), s_0\) & \(k(1), s_1\) & \(k(2), s_2\) & \(k(3), s_3\) & \(\Delta \phi\) \\
\hline
2.0 & 5.1 & 8.1 & 12.0 & -- & -- & 0.0003 \\
1.9 & 5.1 & 9.1 & 13.0 & -- & -- & 0.0018 \\
1.8 & 5.1 & 13.1 & -- & -- & -- & 0.0031 \\
1.7 & 5.1 & 9.0 & 12.1 & 13.1 & -- & 0.0010 \\
1.6 & 5.1 & 8.0 & 11.1 & 13.1 & -- & 0.0011 \\
1.5 & 1.0 & 2.1 & 2.1 & 13.0 & -- & 0.0004 \\
1.4 & 6.1 & 7.1 & 10.1 & 13.0 & -- & 0.0013 \\
1.3 & 5.1 & 7.0 & 11.0 & 12.0 & -- & 0.0003 \\
1.2 & 5.1 & 7.0 & 9.0 & 11.0 & -- & 0.0024 \\
1.1 & 6.1 & 8.1 & 12.0 & 14.0 & 0.0015 \\
1.0 & 6.1 & 9.1 & 13.0 & -- & -- & 0.0001 \\
0.9 & 6.1 & 14.1 & -- & -- & -- & 0.0013 \\
0.8 & 6.1 & 9.0 & 12.1 & -- & -- & 0.0027 \\
0.7 & 7.1 & 8.1 & 11.1 & -- & -- & 0.0006 \\
0.6 & 6.1 & 8.1 & 10.0 & 12.0 & 0.0014 \\
0.5 & 7.1 & 10.0 & 13.1 & -- & -- & 0.0036 \\
0.4 & 7.1 & 9.0 & 11.0 & 13.0 & 0.0007 \\
0.3 & 8.1 & 11.0 & 14.1 & -- & -- & 0.0007 \\
0.2 & 8.1 & 12.0 & -- & -- & -- & 0.0021 \\
0.1 & 9.1 & 12.0 & -- & -- & -- & 0.0021 \\
\hline
\end{tabular}
\end{table}

Algorithm 1 obtains the optimal micro-rotations.

1: \(m := 1\)
2: \(\Delta \phi := \min |\phi - \sum_{i=0}^{m-1} \arctan \sigma_i 2^{-k(i)}|, \quad \forall \sigma_i \in \pm 1, \ k(i) \) is nonnegative integer.
3: \(m := m + 1\)
4: while \((\Delta \phi > \epsilon)\)
5: \(\) end while

The simple pseudo code to optimize a set of micro-rotations is described in Algorithm 1. If the maximum accuracy \(\epsilon\) which is defined as the maximum tolerable error between desired angle and approximated angle is given as an input, the optimization algorithm searches the parameters \(k(i)\) and \(\sigma_i\) that can minimize an objective function \(\Delta \phi\). The algorithm starts with the single micro-rotation, i.e., \(m = 1\), then if the micro-rotation that has smaller angle deviation than \(\epsilon\) cannot be found, the number of micro-rotations is increased by one and the optimization algorithm is run again. Exhaustive search is employed in the optimization algorithm to search the entire parameter space for all the combinations of \(k(i)\) and \(\sigma_i\). Based on the obtained micro-rotations, the parameters for scaling operation can be searched with the different objective function, which is described in Section IV. The sub-optimal set of micro-rotations may be used in some cases, if the optimal set of micro-rotations cannot satisfy the design constraint for scaling. We have used sub-optimal solutions specifically for the scaling with the angle of 31 deg and 35 deg in Table I since the scaling requires more terms in these two cases if optimal solutions are used.

In the experiment with the maximum input angular deviation \(\epsilon = 0.04\) deg, we found that a set of four selected micro-rotations is enough. In Table I, it is shown that rotations through any angle in the range \(0 < \phi \leq 45\) deg (in odd integer degrees) could be achieved with maximum angular deviation \(\Delta \phi = 0.037\) deg \((0.646 \times 10^{-3}\) radian), where \(\Delta \phi = |\phi - \phi_A|\). Using a maximum of two selected micro-rotations, the rotations could be achieved with maximum angular deviation with \(\Delta \phi = 1.875\) deg \((0.033\) radian). In case of six micro-rotations, angular deviation \(\Delta \phi\) could be reduced to \(\sim 0.5 \times 10^{-3}\) deg.

In Table II, it is shown further that rotations through \(0.1^\circ \leq |\phi| \leq 2.0^\circ\) in an interval of \(0.1^\circ\) could be obtained by four micro-rotations with angular deviation, \(\sim 3 \times 10^{-3}\) deg. Here we can make an observation that we can always achieve higher accuracy with more number of micro-rotations. From Table II, we find that higher accuracy could be achieved in case of small rotation angles like 1 or 2 degrees, compared to the most of the larger angles when the same number of micro-rotations is used.

III. Implementation of Micro-Rotations

Since the elementary angles and direction of micro-rotations are predetermined for the given angle of rotation, the angle estimation data-path is not required in the CORDIC circuit for fixed and known rotations. Moreover, because only a few elementary angles are involved in this case, the corresponding
control-bits could be stored in a ROM of few words. A CORDIC circuit for complex constant multiplications is shown in Fig.2. The ROM contains the control-bits for the number of shifts corresponding the micro-rotations to be implemented by the barrel-shifter and the directions of micro-rotations are stored in the sign-bit register (SBR). The major contributors to the hardware-complexity in the implementation of a CORDIC circuit are the barrel-shifters and the adders. There are several options for implementation of adders [22], from which a designer can always choose depending on the constraints and requirements of the application. But, we have some scope to develop techniques for reducing the complexity of barrel-shifters over the conventional designs as discussed in the followings.

1) Minimization of Barrel-Shifters Complexity by Hardwired Pre-shifting: A barrel-shifter for maximum of \(S \) shifts for word-length \(L \) is implemented by \(\lceil \log_2(S + 1) \rceil \)-stages of de-multiplexors, where each stage requires \(L \) number of 1:2 line MUXes. The hardware-complexity of barrel-shifter, therefore, increases linearly with the word-length and logarithmically with the maximum number of shifts. We can reduce the effective word-length in the MUXes of the barrel-shifters, and so also the number of stages of MUXes by simple hardwired pre-shifting as shown in Fig.3. If \(l \) is the minimum number of shifts in the set of selected micro-rotations, we can load only the \((L - l) \) more-significant bits (MSBs) of an input word from the registers to the barrel-shifters, since the \(l \) less significant bits (LSBs) would get truncated during shifting. The barrel-shifter, therefore, needs to implement a maximum of \(s - l \) shifts only, where \(s \) is the maximum number of shifts in the set of selected micro-rotations. The output of the barrel-shifters are loaded as the \((L - l) \) LSBs to the add/subtract units, and the \(l \) MSBs of the corresponding operand of add/subtract unit are hardwired to 0. Therefore, the hardware-complexity of a barrel-shifter could be reduced by the hardwired pre-shifting approach. The time involved in a barrel-shifter could also be reduced by hardwired pre-shifting, since the delay of the barrel-shifter is proportional to the number of stages of MUXes, and it is also be possible to reduce the number stages by hardwired pre-shifting.

In Table I, we find that the minimum shifts \(l \) is greater than one in more than 75% of the cases. Similarly, in Tables II, we find that \(l \) is always greater than 5 except the angle 1.5 deg. Using hardwired pre-shifting, it would therefore be possible to considerably reduce the total number of shifts to be implemented by barrel-shifters, so as to substantially reduce the hardware-complexity and delay of the barrel-shifters. A conventional barrel-shifter for maximum of \(S \) shifts is implemented by \(\lceil \log_2(S + 1) \rceil \)-stages of 2:1 MUXes. But, when the number of shifts are known \(a \) priori, one can design the barrel-shifter to include the specific shifts. For implementing 4 discrete shifts (Table I) irrespective of the maximum number of shifts, the barrel-shifter would require 3 stages of 2:1 MUXes by hardwiring the shifts.

2) Bi-rotation CORDIC Cell: We find that using only two micro-rotations, it is possible to get an accuracy up to 0.033 radian. Although the accuracy achieved by two micro-rotations is inadequate in many situations, but can be used for some applications where the outputs are quantized, e.g., in case of speech and image compression etc. [23], [24]. Besides, the rotations with four and six micro-rotations can also be implemented successively by two and three pairs of micro-rotations, respectively. Therefore, we design an efficient CORDIC circuit to implement a pair of micro-rotations, and named as “bi-rotation CORDIC”. The proposed circuit for bi-rotation CORDIC is shown in Fig.4. It consists of an adder-module, two 2:1 multiplexers and a sign-bit register (SBR) of two bit size. The adder-module consists of a pair of adders/subtractors. The adders/subtractors perform additions or subtractions according to the sign-bit available from the SBR. The components of the input vector (real and the imaginary parts of the input complex operand) are loaded to the input-registers through set/reset input. The output of the registers are sent in two lines where the content of the register is fed to one of the adder/subtractor directly while that in the other line is loaded to the barrel-shifter pre-shifted by \(k(0) \) bit-locations to right by hardwired pre-shifting technique. The
output of the adders are loaded back to the input registers for the second CORDIC iteration. The bi-rotation CORDIC involves only a pair of barrel-shifters consisting of only one stage of 2:1 MUXes. The control-bit for the barrel-shifters is 0 for the first micro-rotation (no shift) and 1 for the second micro-rotation (shift through \(k(1) - k(0) \)). The control bits are generated by a T flip-flop, since they are 1 and 0 in each alternate cycle.

3) High-Throughput Implementation using Cascaded Multi-Stage CORDIC: For the implementation of small rotations (the remaining angle after the first two micro-rotations), as shown in Tables II, \(l \geq 9 \) except the angle 1.5 deg. Similarly, in Tables I, we can notice that the second half of the micro-rotations has the minimum shifts \(l \geq 5 \). It would be possible to take the best advantage of hardwired-pre-shifting, if the micro-rotations are implemented in more than one CORDIC modules in separate stages in a cascade. Moreover, since the a cascade of CORDIC modules are inherently pipelined, it would provide high-throughput pipelined implementation. To implement the CORDIC rotations with higher accuracy without affecting the throughput of computation, we can therefore have cascaded-multi-stage CORDIC consisting of single-rotation cells and bi-rotation CORDIC as described in the followings.

Cascaded CORDIC with Single-Rotation Cells: A multi-stage-cascaded pipelined-CORDIC circuit consisting of single-rotation modules is shown in Fig.5. Each stage of the cascaded design consists of a dedicated rotation-module that performs a specific micro-rotation. The structure and function of a rotation-module is depicted in Fig.5(b). Each rotation-module consists of a pair of adders or subtractors (depending on the direction of micro-rotation which it is required to implement). Each of the adders/subtractors loads one of the pair of inputs directly and loads the other input in a pre-shifted form at \(\frac{L}{2} s(i) \) LSB locations, where \(s(i) \) is the number of right-shifts required to be performed to implement the \(i \)th micro-rotation. The \(s(i) \) MSB locations are hardwired to be zero. The rotation-module in this case does not require input from SBR since each adder module always performs either addition or subtraction. It also does not require barrel-shifter since it has to implement only one fixed micro-rotation. The output of each stage is latched to the input of its preceding stage as shown in the figure. The critical-path in this case amounts to only one addition/subtraction operation in the adder module. Total latency of \(n \)-stage single-rotation cascade amounts to \(n(T_A + T_FF) \), where \(T_A \) and \(T_FF \), are the addition/subtraction time and D flip-flop delay, respectively.

We find that in more than two-third of the rotation angles as shown in the Table I, only three micro-rotations are adequate to have the maximum deviation of \(\phi \) up to 0.04 deg radian. The complex multiplications involving three such micro-rotations could be implemented by three-stage-cascaded CORDIC circuit shown in Fig.5 (for \(n = 3 \)). The rotation using 4 and 6 micro-rotations, similarly, would require 4 and 6 stages of rotation module for pipelined implementation. This can also be implemented in non-pipelined form using \((n - 1) \) carry-propagate adders with total latency of \(T_A + (2^{n-1} k(i)) \times T_FF \), where \(T_A \) and \(T_FF \), are respectively the time required for \(L \)-bit addition-time and full-adder delay, \(L \) being word-length of implementation. \(k(i) \) is the number of shifts of the \(i \)th stages.

Cascaded CORDIC with Bi-Rotation Cells: For reduction of adder complexity over the cascaded single-rotation CORDIC, the micro-rotations could be implemented by a cascaded bi-rotation CORDIC circuit. A two-stage cascaded bi-rotation CORDIC is shown in Fig.6. The first two of the micro-rotations as shown in Table I out of the four-optimized micro-rotations could be implemented by stage-1, while the rest two
are performed by stage-2. The structure and function of the bi-rotation CORDIC is shown in Fig.4. For implementing six selected micro-rotations, we can use a three-stage-cascade of bi-rotation CORDIC cells. The three-stage bi-rotation cells could however be extended further when higher accuracy is required.

IV. SCALING OPTIMIZATION AND IMPLEMENTATION

We discuss here the optimization of scaling to match with the optimized set of elementary angles for the micro-rotations.

A. Scaling Approximation for Fixed Rotations

The generalized expression for the scale-factor given by (2) can be expressed explicitly for the selected set of m_1 micro-rotations as

$$K = \prod_{i=0}^{m_1-1} \left[1 + 2^{-2k(i)}\right]^{-1/2}. \quad (4)$$

where $k(i)$ for $0 \leq i < m_1$ is the number of shifts in the i-th micro-rotation. Except for $k(i) = 0$ (i.e., rotation by 45 deg), by binomial expansion, any term in (4) can be written as

$$1 - \frac{1}{2} x + \frac{3x^2}{8} - \frac{5x^3}{16} + \frac{35x^4}{128} - \frac{63x^5}{256} + \frac{231x^6}{1024} + \cdots \quad (5)$$

where $x = 2^{-2i}$, i being the number of shifts in a micro-rotation, and can be expressed alternatively in terms of x as

$$1 - \frac{1}{2^{2i+1}} + \frac{3}{2^{2i+3}} - \frac{5}{2^{2i+4}} + \frac{35}{2^{2i+7}} - \frac{63}{2^{2i+8}} + \frac{231}{2^{2i+10}} - \cdots \quad (6)$$

Replacing each term in (4) by the expression of (6), we can obtain an approximate scale-factor as a product of shift-add terms of form:

$$K_A = \prod_{i=0}^{m_2-1} \left[1 + \delta_i 2^{-s(i)}\right]. \quad (7)$$

where $s(i)$ is the number of shifts performed for the ith iteration of scaling, $\delta_i = \pm 1$, and m_2 is maximum number of scaling iterations required for the approximation.

The number of terms of (6), those are required to be accounted for to obtain the approximate scale-factor K_A [given by (7)] can be estimated according to value of i and the desired output accuracy which is limited by the number of micro-rotations used for the pseudorotation. The number of shifts-add/subtract terms in the expression of (7) is therefore minimized separately for the CORDIC implementations by four micro-rotations and six micro-rotations for different angles of rotation. It can be found that for four micro-rotation CORDIC implementation, where the error in ϕ is ~ 0.04 deg, only the first two terms in (6) contribute for $(0 \leq i \leq 4)$, while up to the third and the fifth terms contribute for $(0 \leq i \leq 2)$ and $(0 \leq i \leq 1)$, respectively. Similarly, for six micro-rotation CORDIC implementation, where the error in ϕ is $\sim 0.5 \times 10^{-3}$ deg, the first two terms in (6) contribute for $(0 \leq i \leq 8)$, while up to the third, fourth and fifth terms contribute for $(0 \leq i \leq 3)$, $(0 \leq i \leq 2)$ and $(0 \leq i \leq 1)$, respectively. Accordingly, we have obtained the recursive shift-add expressions of scale-factor K_A in the form of (7).

Algorithm 2 obtains the optimal scaling.

1: $K := \prod_{i=0}^{m_1-1} \left[1 + 2^{-2k(i)}\right]^{-1/2}$
2: $m_2 := 1$
3: do
4: $\Delta K := \min \{1 - \prod_{i=0}^{m_2-1} \left[1 + \delta_i 2^{-s(i)}\right] / K\}, \forall \delta_i \in \{\pm 1\}, s(i)$ is nonnegative integer.
5: $m_2 := m_2 + 1$
6: while $(\Delta K > \epsilon_K)$

TABLE III

<table>
<thead>
<tr>
<th>α_i</th>
<th>$s(0), t_0$</th>
<th>$s(1), t_1$</th>
<th>$s(2), t_2$</th>
<th>K</th>
<th>K_A</th>
<th>ΔK</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>2.0</td>
<td>4.0</td>
<td>8.1</td>
<td>0.7057</td>
<td>0.7059</td>
<td>0.2315</td>
</tr>
<tr>
<td>39</td>
<td>2.0</td>
<td>4.0</td>
<td>9.0</td>
<td>0.7016</td>
<td>0.7018</td>
<td>0.2798</td>
</tr>
<tr>
<td>37</td>
<td>2.0</td>
<td>4.0</td>
<td>9.0</td>
<td>0.7016</td>
<td>0.7018</td>
<td>0.2721</td>
</tr>
<tr>
<td>35</td>
<td>3.0</td>
<td>5.1</td>
<td>8.1</td>
<td>0.9060</td>
<td>0.9059</td>
<td>0.1721</td>
</tr>
<tr>
<td>33</td>
<td>3.0</td>
<td>6.1</td>
<td>10.0</td>
<td>0.8875</td>
<td>0.8878</td>
<td>0.0758</td>
</tr>
<tr>
<td>31</td>
<td>4.0</td>
<td>4.0</td>
<td>6.1</td>
<td>0.8926</td>
<td>0.8926</td>
<td>0.0703</td>
</tr>
<tr>
<td>29</td>
<td>4.0</td>
<td>8.1</td>
<td>-</td>
<td>0.9411</td>
<td>0.9412</td>
<td>0.0108</td>
</tr>
<tr>
<td>27</td>
<td>4.0</td>
<td>5.0</td>
<td>6.0</td>
<td>0.8944</td>
<td>0.8940</td>
<td>0.0332</td>
</tr>
<tr>
<td>25</td>
<td>4.0</td>
<td>5.0</td>
<td>6.0</td>
<td>0.8940</td>
<td>0.8940</td>
<td>0.0319</td>
</tr>
<tr>
<td>23</td>
<td>4.0</td>
<td>4.0</td>
<td>6.1</td>
<td>0.8927</td>
<td>0.8926</td>
<td>0.0518</td>
</tr>
<tr>
<td>21</td>
<td>4.0</td>
<td>8.0</td>
<td>-</td>
<td>0.9339</td>
<td>0.9338</td>
<td>0.0752</td>
</tr>
<tr>
<td>19</td>
<td>3.0</td>
<td>6.1</td>
<td>10.0</td>
<td>0.8875</td>
<td>0.8878</td>
<td>0.0502</td>
</tr>
<tr>
<td>17</td>
<td>3.0</td>
<td>7.0</td>
<td>9.0</td>
<td>0.8659</td>
<td>0.8665</td>
<td>0.0620</td>
</tr>
<tr>
<td>15</td>
<td>5.0</td>
<td>10.1</td>
<td>-</td>
<td>0.9700</td>
<td>0.9697</td>
<td>0.0377</td>
</tr>
<tr>
<td>13</td>
<td>3.0</td>
<td>7.0</td>
<td>-</td>
<td>0.8677</td>
<td>0.8682</td>
<td>0.0540</td>
</tr>
<tr>
<td>11</td>
<td>7.0</td>
<td>9.0</td>
<td>-</td>
<td>0.9903</td>
<td>0.9903</td>
<td>0.0887</td>
</tr>
<tr>
<td>9</td>
<td>7.0</td>
<td>-</td>
<td>-</td>
<td>0.9918</td>
<td>0.9922</td>
<td>0.0398</td>
</tr>
<tr>
<td>7</td>
<td>7.0</td>
<td>-</td>
<td>-</td>
<td>0.9923</td>
<td>0.9922</td>
<td>0.0982</td>
</tr>
<tr>
<td>5</td>
<td>7.0</td>
<td>-</td>
<td>-</td>
<td>0.9918</td>
<td>0.9922</td>
<td>0.0495</td>
</tr>
<tr>
<td>3</td>
<td>9.0</td>
<td>-</td>
<td>-</td>
<td>0.9980</td>
<td>0.9980</td>
<td>0.0267</td>
</tr>
<tr>
<td>1</td>
<td>13.0</td>
<td>-</td>
<td>-</td>
<td>0.9999</td>
<td>0.9999</td>
<td>0.0019</td>
</tr>
</tbody>
</table>

K is the required scale factor and K_A is the approximated scale factor. $s(i)$ is the number of shifts, t_i is the sign-bit corresponding to the sign term δ_i, such that $t_i = 1$ and 0 for $\delta_i = 1$ and -1, respectively. $\Delta K = |1 - K_A/K| \times 10^3$.
The scaling and micro-rotations for the proposed bi-rotation could be implemented either in the same circuit in interleaved manner or in two separate stages. The implementation of scaling as well as the micro-rotation would however depend on the level of desired accuracy, and the implementation of scaling also depends on the implementation of micro-rotations. Therefore, we discuss here the realization of the scaling circuits corresponding to different implementations of micro-rotations.

1) Generalized Implementation of Scaling: The shift-add scaling circuit based scaling according to (7) is shown in Fig.7. The scaling circuit of Fig.7 can use hardwired pre-shifting for minimizing barrel-shifter complexity and could be placed after the CORDIC cell of Fig.2 to perform micro-rotation and scaling in two separate stages. The generalized CORDIC circuit for fixed rotation to perform the micro-rotation and the scaling in interleaved manner in alternate cycles is shown in Fig.8. The circuit of Fig.8 is similar to that of Fig.2. It involves only an additional line-changer circuit to change the path of un-shifted (direct) input. The structure and function of line-changer is shown in Fig.8(b). The line-changer is placed on the un-shifted input data line to keep the critical path the same as that of Fig.2.

2) Implementation of Scaling for Bi-rotation CORDIC: The scaling and micro-rotations for the proposed bi-rotation CORDIC could be implemented in two separate pipelined stages, where the pair of micro-rotations are implemented by the CORDIC circuit of (Fig.4) and scaling is implemented by a shift-add circuit. The scale factor for this case can be represented by two shift-add terms as

\[
K_A = \left(1 + \delta_0 2^{-s(0)}\right) \times \left(1 + \delta_1 2^{-s(1)}\right). \quad (10)
\]

The two-factor scaling of (10) can be implemented by the shift-add circuit of Fig.9. It consists of a pair of adder/subtractor and a pair of single-stage barrel-shifter. Each barrel-shifter consists of only one stage of 2:1 MUXes. The input of each of the barrel-shifters is hardwired pre-shifted by \(s(0)\) locations to right. Each of the barrel-shifters shifts the input through \([s(1) - s(0)]\) locations to right, when the control-bit is 1. No additional shifts are required when control-bit is 0. The control-bit can be generated by a T flip-flop since it toggles in each cycle. The add-subtract cell performs addition if \(s_1=1\) and performs subtraction if \(s_1=0\), which could be controlled through a two-bit SBR.

3) Implementation of Scaling for Cascaded Single-rotation CORDIC: The shift-add circuit for single-rotation-cascaded CORDIC is shown in Fig.10. It consists of a pair of dedicated adder-subtractors. It does not require any multiplexer or sign-bit register. A pair of input is fed to the adder/subtractor from the register, where one of the inputs is obtained directly from the content of the registers, while the other input is shifted by \(s(i)\) locations to right before being fed to the adder/subtractor. The choice of adder or subtractor depend on the sign-factor in the shift-add term to be implemented by the circuit.

4) Implementation of Scaling for Cascaded Bi-rotation CORDIC: The cascaded bi-rotation CORDIC could either be used for implementing in two or three stages for four and six micro-rotations, respectively. For scaling by three shift-add-factors as shown in Table III, we can use one two-factor-scaling circuit of Fig.9 and the third scaling factor could be implemented by a multiplexed shift-add circuit of Fig.11.
Fig. 11. Time-multiplexed shift-add circuit for one-factor scaling.

The scaling for six micro-rations, which involves five shift-add factors, could be implemented by a pair of two-factor scaling circuit and a multiplexed circuit.

5) Implementation of Scaling for Large Rotations: The scaling circuit for rotation through 43 and 45 deg based on (9) is shown in Fig.12. We can implement this scaling also by simple modifications of cascaded forms of single-factor scaling circuit, two-factor scaling circuits and time-multiplexed scaling circuits of Figs.9, 10 and 11.

V. ANALYSIS OF ERROR

There are two types of error encountered during the rotation mode CORDIC iterations. Those are: approximation error and round-off error. Approximation error arises due to approximation of angle of rotation and scaling factor, while the round-off error arises due to the finite word-length of the output components. We derive the expression for these two errors in the following subsections.

A. Approximation Error

Fig.13 illustrates the CORDIC iteration which consists of a pseudo-micro-rotations and a scaling. In the figure, \(\mathbf{U} \) is an input vector to be rotated through angle \(\phi \). It is assumed that scaling and micro-rotations are implemented in two separate stages. \(\mathbf{P}_1 \) be the rotated vector after \(m_1 \) micro-rotations given by

\[
\mathbf{P}_1 = \prod_{i=0}^{m_1-1} \mathbf{R}(i) \mathbf{U}.
\]

The rotation matrix \(\mathbf{R}(i) \) is given by (3). The \(i \)-th scaling factor is given by

\[
S(i) \triangleq 1 + \delta_i 2^{-s(i)}.
\]

such that after \(m_2 \) iterations of scaling we get

\[
\mathbf{P}_2 = \prod_{i=0}^{m_2-1} S(i) \mathbf{P}_1
\]

where \(K_A = \prod_{i=0}^{m_2-1} S(i) \) as in (7).

After the micro-rotations, there is a discrepancy \(\Delta \phi \) between the desired angle and the resultant angle due to the limited number of micro-rotations. Moreover, \(\mathbf{P}_1 \) cannot reach \(\mathbf{P} \) on the circle after the scaling since \(K_A \) is an approximated value which is not same as the required \(K \) given as (4). Similar to the method used in [20], the approximation error is evaluated as a distance between the desired output \(\mathbf{V} \) and the actual CORDIC output \(\mathbf{P}_2 \) as follows.

\[
e_a = |\mathbf{V} - \mathbf{P}_2|.
\]

Without loss of generality, \(\Delta \phi \) is assumed to be greater than zero and \(K_A/K \) is greater than one as shown in Fig.13. Then,

\[
|e_a|^2 = |\mathbf{V}|^2 + K_A^2|\mathbf{P}_1|^2 - 2K_A|\mathbf{V}||\mathbf{P}_1|\cos \Delta \phi.
\]

If \(\Delta \phi \) is sufficiently small,

\[
|e_a|^2 \approx (|\mathbf{V}| - K_A|\mathbf{P}_1|)^2 + K_A|\mathbf{V}||\mathbf{P}_1|\Delta \phi^2.
\]

Since \(|\mathbf{V}| = |\mathbf{U}| = K|\mathbf{P}_1| \),

\[
|e_a|^2 \approx \left(1 - \frac{K_A}{K}\right)^2 + \Delta \phi^2 |\mathbf{U}|^2.
\]

For the known and fixed angle, an expectation of the approximation error can be estimated once we know the input statistics as:

\[
E(|e_a|^2) = \left(1 - \frac{K_A}{K}\right)^2 + \Delta \phi^2 E(|\mathbf{U}|^2).
\]

Fig. 10. Shift-add circuit for single-rotation-cascaded-scaling using hard-wired pre-shifting.

Fig. 12. Scaling circuit for 43 and 45 deg rotation. (a) \(\sigma_0 = 0 \) and 1 correspond to addition and subtraction, respectively. \(\sigma_0 = 0 \) and 1 correspond to two right-shifts and four right-shifts, respectively in the barrel-shifter.

Fig. 13. The proposed CORDIC operation and approximation error.
It can be seen that the accuracy of CORDIC depends on how closely the angle difference $\Delta \phi$ approximates to zero, and also the ratio of scale-factors K_A/K approximates to one.

B. Round-off Error

As the CORDIC iteration progresses through shift-add operations, the word-length increases, and consequently requires rounding after each CORDIC iteration. Let e_r be the round-off error. The magnitude of round-off error depends on the word-length in a data-path, especially the length of fractional bits which is denoted as b. The mean and variance of e_r are estimated separately and added to obtain $E(\{e_i\}^2)$ as

$$E(\{e_i\}^2) = [E(e_r)]^2 + \text{Var}(e_r(0)) + \text{Var}(e_r(1))$$ \hspace{1cm} (19)

where $e_r = [e_r(0) \ e_r(1)]^T$. When a data with b fractional bits is shifted by i, the mean and variance of resultant round-off error are calculated in [21] as

$$M_{b,i} = 2^{-b-1}(2^{-i} - 1) \text{ and }$$ \hspace{1cm} (20a)

$$V_{b,i} = \frac{2^{-2b}}{12}(1 - 2^{-2i}), \text{ (20b)}$$

respectively. The round-off error generated from each micro-rotation and scaling is propagated forward through the CORDIC iterations, and get accumulated in the output vector P_2. The magnitude of accumulated round-off error in the estimation of vector P_1 after m_1 micro-rotations is:

$$E(e_i') = \sum_{i=0}^{m_1-1} \prod_{j=i+1}^{m_1-1} R(j) \left[-\sigma_i M_{b,k(i)} \right]$$ \hspace{1cm} (21a)

$$\text{Var}(e_r(0)) = \text{Var}(e_r(1))$$

$$= \sum_{i=0}^{m_1-1} \prod_{j=i+1}^{m_1-1} \det R(j) V_{b,k(i)}, \text{ (21b)}$$

The final round-off error accumulated in the output vector P_2 after scaling is calculated by using (22) as shown at the top of the next page.

C. Error of the Proposed CORDIC

For the case of $m_1 = 4$ and $m_2 = 3$, all the necessary values in (18) and (22) can be obtained from Tables I and III. Additionally, the number of fractional bit b and average power $E(|U|^2)$ are needed for the estimation of round-off and approximation error, respectively. Equation (22) is valid only for the case when the micro-rotations and scaling are performed in two separated stages. If the micro-rotations and scaling are deployed in interleaved manner, the sequence of $R(i)$ and $S(i)$ in (21) and (22) should be changed accordingly in order to represent the transfer function in interleaved manner.

If we want to reduce the total error and the approximation error is dominant error source, it would be a better strategy to increase the number of micro-rotations and scaling iterations. It would make $\Delta \phi$ and/or $|1 - K_A/K|$ approach to zero. If the round-off error is greater than approximation error, we need to increase the number of fractional bits b in order to reduce the total error.

VI. Complexity Considerations

We discuss here the hardware and time complexities of the proposed design. In the existing literature we do not find similar work on CORDIC implementation of known and fixed rotations. Therefore, we compare the proposed design with the conventional CORDIC design for the rotation of unknown angle. We have used the basic CORDIC processor in Fig. 2 of [3] for the implementation of conventional CORDIC. In addition, we have designed a reference architecture (Fig.1) for straight-forward implementation of fixed rotations, and we have compared the complexities and speed performance of the proposed design with the conventional and reference design. Maximum deviation of ϕ amounting to ~ 0.04 deg is assumed to be accuracy level-1 (AL-1) and that amounting to $\sim 0.5 \times 10^{-3}$ deg is assumed to be accuracy level-2 (AL-2), so that AL-1 and AL-2 would correspond to the proposed CORDIC implementations of rotation through four and six micro-rotations, respectively.

A. Complexity of the Conventional and Reference CORDIC

The conventional rotation-mode CORDIC requires three L-bit adders, three L-bit registers, two barrel-shifters and four MUXes, where L is the word-length. The complexity of barrel-shifter, however, depends on the accuracy of implementation. Considering that the rotations are mapped to the first quadrant, the conventional CORDIC would involve 11 iterations and 17 iterations, respectively for AL-1 and AL-2. Each of its pair of barrel-shifters would thus involve 4 and 5 stages, where each stage requires 2 L MUXes, for AL-1 and AL-2, respectively. Apart from that, all the three input registers are to be loaded through MUXes to allow direct input as well as the input through the feedback path. The ROM needs to store L bits arctan angles for 11 and 17 iterations for AL-1 and AL-2, respectively. The duration of minimum a clock period in conventional CORDIC is $T = T_A + T_FF + 5T_{MX}$ and $T = T_A + T_FF + 6T_{MX}$ for AL-1 and AL-2, where T_A, T_FF and T_{MX} are the L-bit addition-time, D flip flop delay and delays of 2:1 MUX, respectively.

The reference CORDIC for the fixed rotation (shown in Fig.1), consists of two adders, two barrel-shifters, one sign-bit-register and 2 input registers with MUXes. The MUXes accompanied by the input registers are, however, not shown in the reference as well as the proposed designs (as discussed in Section II for the description of Fig.1). We assume that the rotation is mapped to half quadrant range so that for accuracy of AL-1 and AL-2, it requires 10 and 16 iterations. It has the same barrel-shifter complexity and time-complexity as the conventional CORDIC.

B. Complexity of the Proposed CORDIC Designs

Each of the proposed CORDIC designs involves a latency of 7 cycles and 11 cycles for accuracy level-1 and 2, respectively. But the hardware requirement, duration of clock period and throughput rate differ from one another. We discuss these complexities of proposed CORDIC designs in four categories (i) Single CORDIC cell with interleaved-scaling (ii) Single...
CORDIC cell with separate-scaling (iii) Single-rotation cascade and (iv) Bi-rotation cascade.

1) CORDIC Cell with Interleaved Scaling and Micro-rotations: As shown in Fig.8, the CORDIC implementation by interleaved scaling requires an additional ROM and a line changer over that of reference design of Fig.1. The line changer requires 4L number of tri-state buffer and a T flip flop to generate the control-bit. Using hardwired pre-shifting, each of the pair of barrel-shifters involves 4 stages of 2:1 MUXes for implementing all the necessary shifts for micro-rotations as well as scaling for both accuracy levels. Accordingly, the duration of minimum a clock period for the proposed interleaved CORDIC can be found to be $T = T_A + T_{FF} + 5T_{MX}$ for both the accuracy levels. It involves 7 and 11 iterations for AL-1 and AL-2, respectively, to implement both scaling and micro-rotations. The ROM therefore needs to store 7 and 11 control words of 4-bit size to be used by the barrel-shifter, and the SBR is of 7 and 11 bit size for AL-1 and AL-2, respectively.

2) CORDIC Cell With Separate Scaling and Micro-rotation Stages: CORDIC implementation of fixed rotation could be performed in two pipelined stages, where micro-rotations are implemented by Fig.2 and scaling is implemented by Fig.7. Using hardwired pre-shifting, the barrel-shifter involves 3 and 4 stages of 2:1 MUXes to implement the necessary shifts for micro-rotation and 2 and 4 stages for scaling for accuracy levels-1 and -2, respectively. The ROM therefore needs to store 4 control words of 3 bit size for micro-rotation and 3 control words of 2 bit size for scaling to be used by the barrel-shifter for AL-1 and 11 control words of 4 bit size for AL-2, along with SBR of 7 and 11 bit size for AL-1 and AL-2, respectively. Accordingly, the duration of minimum a clock period for this implementation is found to be $T = T_A + T_{FF} + 4T_{MX}$ and $T = T_A + T_{FF} + 5T_{MX}$ for both accuracy levels-1 and 2, respectively. Although it involves 3 and 5 iterations for scaling, it involves 4 and 6 iterations for micro-rotations for AL-1 and AL-2, respectively. Therefore, the iteration count in this case is 4 and 6 for these two cases.

3) Single-Rotation Cascade: The single-rotation cascaded CORDIC for fixed-angle rotation is shown in Fig.5. For accuracy level-1 it involves 7 stages out of which 4 stages perform the micro-rotations and the 3 remaining stages perform scaling. The rotation modules are modified to implement shift operations for scaling. Each stage requires two adders and two pipelining registers (except that the last stage does not require pipeline register). All the shifting are hardwired and there is no feed-back path in this circuit. Therefore, it does not require any ROM, SBR, barrel-shifters or MUXes. The duration of minimum clock period for this implementation is $T = T_A$ for both accuracy levels and produces one output in each cycle.

4) Bi-Rotation Cascade: For accuracy level-1, it requires a cascaded two-stage bi-rotation CORDIC as shown in Fig.6 for micro-rotation. To implement scaling, it requires a two-factor scaling circuit of Fig.9 and time-multiplexed circuit of Fig.11 for one-factor scaling. For accuracy level-2, it requires a cascaded three-stage bi-rotation CORDIC (Fig.6) for micro-rotation. To implement scaling, it requires three cascaded stages consisting of two stages of two-factor scaling circuit of Fig.9 and one stage of a time-multiplexed circuit of Fig.11. The duration of minimum a clock period for both the accuracy levels is $T = T_A + T_{FF} + 2T_{MX}$ and it gives an output in every alternate cycle.

C. Comparative Performances

The expressions of clock periods of the architectures are listed in Table IV. The single-rotation CORDIC has the minimum of clock period of one addition-time and bi-rotation CORDIC has slightly higher clock period. The hardware and time-complexities of different architectures are listed comprehensively in Table V. The CORDIC algorithms are written in hardware description language and synthesized by Synopsys Design Compiler using the TSMC 90nm library to obtain the complexities of proposed and the reference designs. Word size $L = 16$ and 32 are used for accuracy level-1 and 2, respectively. The area, clock period, latency, throughput, average computation time (ACT), area-delay product (ADP) are listed in Table VI.

The reference design has the same clock-period as the conventional CORDIC but yields $\sim 9\%$ more throughput and involves $\sim 18\%$ less area, $\sim 8\%$ less latency and $\sim 25\%$ less area-delay product (ADP), over the conventional one, in average over the two levels of accuracy. The proposed design of single CORDIC cell with interleaved-scaling has $\sim 4\%$ more area but offers $\sim 43\%$ more throughput and involves $\sim 30\%$ less latency and $\sim 27\%$ less ADP, in average over

| Table IV Minimum Clock Period of Different Architectures. |
|-----------------|-----------------|-----------------|
| designs | accuracy level-1 | accuracy level-2 |
| conventional CORDIC | $T_A + T_{FF} + 5T_{MX}$ | $T_A + T_{FF} + 6T_{MX}$ |
| reference design | $T_A + T_{FF} + 5T_{MX}$ | $T_A + T_{FF} + 6T_{MX}$ |
| interleaved scaling | $T_A + T_{FF} + 5T_{MX}$ | $T_A + T_{FF} + 5T_{MX}$ |
| separated-scaling | $T_A + T_{FF} + 4T_{MX}$ | $T_A + T_{FF} + 5T_{MX}$ |
| single-rotation cascade | T_A | T_A |
| bi-rotation cascade | $T_A + T_{FF} + 2T_{MX}$ | $T_A + T_{FF} + 2T_{MX}$ |
TABLE V
AREA AND TIME COMPLEXITIES OF DIFFERENT ARCHITECTURES

<table>
<thead>
<tr>
<th>complexity</th>
<th>conventional CORDIC</th>
<th>reference design</th>
<th>interleaved-scaling</th>
<th>separated-scaling</th>
<th>single-rotation cascade</th>
<th>bi-rotation cascade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AL-1</td>
<td>AL-2</td>
<td>AL-1</td>
<td>AL-2</td>
<td>AL-1</td>
<td>AL-2</td>
</tr>
<tr>
<td>L-bit adder</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>register (bits)</td>
<td>3L</td>
<td>3L</td>
<td>2L+10</td>
<td>2L+16</td>
<td>2L+8</td>
<td>2L+12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:1 MUX</td>
<td>12L</td>
<td>14L</td>
<td>10L</td>
<td>12L</td>
<td>10L</td>
<td>14L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROM (bits)</td>
<td>11L</td>
<td>17L</td>
<td>0</td>
<td>0</td>
<td>28</td>
<td>44</td>
</tr>
<tr>
<td>tri-state buffer</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>throughput</td>
<td>1/11</td>
<td>1/17</td>
<td>1/10</td>
<td>1/16</td>
<td>1/7</td>
<td>1/11</td>
</tr>
<tr>
<td>latency</td>
<td>11</td>
<td>17</td>
<td>10</td>
<td>16</td>
<td>7</td>
<td>11</td>
</tr>
</tbody>
</table>

L is word-length. AL-1 and AL-2 stand for accuracy-level-1 and 2, respectively, which corresponds to error of 0.04 deg and 0.5 × 10⁻³ deg. (1) Reference design and (2) Interleaved scaling are implemented by the circuits of Figs.1, and 8, respectively. (3) Separated scaling is implemented by the circuit of Fig.2 for micro-rotations and that of Fig.10 for scaling.

TABLE VI
AREA-TIME COMPLEXITIES OF DIFFERENT ARCHITECTURES BASED ON SYNTHESIS RESULT USING TSMC 90NM LIBRARY.

<table>
<thead>
<tr>
<th>designs</th>
<th>area</th>
<th>clock</th>
<th>TPT</th>
<th>latency</th>
<th>ACT</th>
<th>ADP</th>
<th>area</th>
<th>clock</th>
<th>TPT</th>
<th>latency</th>
<th>ACT</th>
<th>ADP</th>
</tr>
</thead>
<tbody>
<tr>
<td>conventional CORDIC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2987</td>
<td>2.52</td>
<td>36.07</td>
<td>27.72</td>
<td>27.72</td>
<td>82799</td>
<td>6545</td>
<td>4.24</td>
<td>13.87</td>
<td>72.08</td>
<td>72.08</td>
<td>471763</td>
</tr>
<tr>
<td>reference design</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2471</td>
<td>2.49</td>
<td>40.16</td>
<td>24.90</td>
<td>24.90</td>
<td>61527</td>
<td>5323</td>
<td>4.22</td>
<td>14.81</td>
<td>67.52</td>
<td>67.52</td>
<td>359408</td>
</tr>
<tr>
<td>interleaved-scaling</td>
<td>2674</td>
<td>2.56</td>
<td>55.8</td>
<td>17.92</td>
<td>17.92</td>
<td>47918</td>
<td>5320</td>
<td>4.18</td>
<td>21.74</td>
<td>45.98</td>
<td>45.98</td>
<td>246413</td>
</tr>
<tr>
<td>separated-scaling</td>
<td>4074</td>
<td>2.29</td>
<td>109.17</td>
<td>16.03</td>
<td>9.16</td>
<td>37317</td>
<td>9508</td>
<td>4.17</td>
<td>39.96</td>
<td>45.87</td>
<td>25.02</td>
<td>237890</td>
</tr>
<tr>
<td>single-rotation cascade</td>
<td>6920</td>
<td>1.81</td>
<td>552.48</td>
<td>12.67</td>
<td>1.81</td>
<td>12525</td>
<td>23070</td>
<td>3.58</td>
<td>279.32</td>
<td>39.38</td>
<td>3.58</td>
<td>82590</td>
</tr>
<tr>
<td>bi-rotation cascade</td>
<td>5819</td>
<td>2.21</td>
<td>226.24</td>
<td>15.47</td>
<td>4.4</td>
<td>25719</td>
<td>17997</td>
<td>3.96</td>
<td>126.26</td>
<td>43.56</td>
<td>7.92</td>
<td>142536</td>
</tr>
</tbody>
</table>

TPT stands for throughput and calculated per micro-second. ACT stands for average computation time measured in nano-seconds. ADP stands for area-delay product, calculated as the product of area in sq.um and ACT in nanoseconds. Word-size L = 16 and 32 are, respectively, used for accuracy-level 1 and 2.

TABLE VII
AREA AND TIME COMPLEXITIES COMPARISON OF DIFFERENT ARCHITECTURES ON FPGA

<table>
<thead>
<tr>
<th>designs</th>
<th>Xilinx Spartan-3A DSP (XC3S180A-4FG676)</th>
<th>Xilinx Virtex-4 (XC4VSX35-10FF668)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>accuracy level-1</td>
<td>accuracy level-2</td>
</tr>
<tr>
<td></td>
<td>area</td>
<td>MUF</td>
</tr>
<tr>
<td>conventional CORDIC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>reference design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>interleaved-scaling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>separated-scaling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>single-rotation cascade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bi-rotation cascade</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOS stands for the number of slices. MUF stands for maximum operating frequency in MHz. SDP stands for slice-delay product.

TABLE VIII
RELATIVE ADVANTAGES OF PROPOSED DESIGNS OVER THE REFERENCE DESIGN FOR FIXED ROTATIONS.

<table>
<thead>
<tr>
<th>parameters</th>
<th>single-rotation cascade</th>
<th>bi-rotation cascade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AL-1</td>
<td>AL-2</td>
</tr>
<tr>
<td></td>
<td>AL-1</td>
<td>AL-2</td>
</tr>
<tr>
<td>area</td>
<td>2.80</td>
<td>4.33</td>
</tr>
<tr>
<td>clock period</td>
<td>−27.30</td>
<td>−15.17</td>
</tr>
<tr>
<td>throughput</td>
<td>13.76</td>
<td>18.86</td>
</tr>
<tr>
<td>latency</td>
<td>−1.97</td>
<td>−1.71</td>
</tr>
<tr>
<td>area-delay</td>
<td>−4.91</td>
<td>−4.35</td>
</tr>
</tbody>
</table>

Except the clock period all other entries in this table are in number of times. Positive sign implies that the value of the parameter for the proposed design is higher than that of the reference design and negative sign implies it lower.

The relative advantages of single-rotation cascade and bi-rotation cascade are shown in Table VII. In average over both the levels of accuracy, the single-rotation and bi-rotation cascades, respectively, involve nearly 3.6 times and 2.9 times more area over the reference design, but offer nearly 16.3 times and 7.0 times more throughput, and involve 4.6 and 2.5 times less ADP with nearly half and two-third less latency over the other.

The reference and proposed designs are also implemented on the field programmable gate-array (FPGA) platform of Xilinx devices. The number of slices (NOS), maximum operating frequency (MUF) and slice-delay product (SDP) using two different devices of Spartan-3A (XC3S180A-4FG676) and Virtex-4 (XC4VSX35-10FF668) are listed in Table VIII. The proposed design of single-rotation cascade involves smaller number of slices and faster operating frequency over the conventional and reference designs for two devices. In average over both levels of accuracy and devices, the single-rotation cascade offers nearly 23.5 times and 32.2 times less SDP over both the levels of accuracy, compared to the reference design. The proposed design of single CORDIC unit with separate-scaling similarly, has nearly ~72% more area but offers nearly 2.7 times the throughput and involves ~37% less ADP and two-third of the latency over the reference design. The
the reference design and conventional design, respectively.

VII. CONCLUSIONS

The number of micro-rotations for rotation of vectors through known and fixed angles are optimized and several possible dedicated circuits are explored for rotation-mode CORDIC processing with different levels of accuracy. The proposed CORDIC cell with interleaved scaling involves \(~ \approx \) 4% more area, but offers \(~ \approx \) 43% more throughput and involves nearly 30% less latency and \(~ \approx \) 20% less ADP, than the reference design for known and fixed rotations. The proposed single-rotation cascade and birotation cascade require, respectively, \(~ \approx \) 3.6 and \(~ \approx \) 2.9 times more area over the reference design, but offer nearly 16.3 and 7.0 times more throughput, and involve nearly 4.6 and 2.5 times less ADP with nearly half and two-third of the latency of the other. With progressing scaling trends, since the silicon area is getting continually cheaper, it appears to be a good idea to use the cascaded designs for their potential for high-throughput and low-latency implementation. It is found that higher accuracy could be achieved in case of smaller angles of rotation when the same number of micro-rotations is used. The small angle rotators could therefore be very much useful for shape design and curve tracing for animation and gaming devices. The fixed-angle CORDIC rotation would have wide applications in signal processing, games, animation, graphics and robotics, as well.

REFERENCES

Pramod Kumar Meher is currently working as a Senior Scientist with the Institute for Infocomm Research, Singapore. His research interest includes design of dedicated and reconfigurable architectures for computation-intensive algorithms pertaining to signal, image and video processing, communication, bio-informatics and intelligent computing. He has contributed more than 180 technical papers to various reputed journals and conference proceedings. Dr. Meher is a Fellow of the Institution of Electronics and Telecommunication Engineers, India and a Fellow of the Institute of Engineering and Technology, UK. He has served as Associate Editor for the IEEE Transactions on Circuits and Systems-II: Express Briefs during 2008-2011. Currently, he is serving as a speaker for the Distinguished Lecturer Program (DLP) of IEEE Circuits Systems Society, and Associate Editor for the IEEE Transactions on Circuits and Systems-I: Regular Papers. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, and Journal of Circuits, Systems, and Signal Processing. He was the recipient of the Samanta Chandrasekhar Award for excellence in research in engineering and technology for the year 1999.

Sang Yoon Park received the B.S., M.S., and Ph.D. degrees from Seoul National University, Seoul, Korea, in 2000, 2002, and 2006, respectively. He was a Research Fellow with Nanyang Technological University, Singapore from 2007 to 2008. He joined Institute for Infocomm Research, Singapore in 2008, where he is currently a Research Scientist. His research interests include architectures and algorithms for low-power/high-performance digital signal processing and communication systems.