About
374
Publications
21,777
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
15,389
Citations
Publications
Publications (374)
Obtaining reliable distance estimates to gas clouds within the Milky Way is challenging in the absence of certain tracers. The kinematic distance approach has been used as an alternative, and it is derived from the assumption of circular trajectories around the Galactic centre. Consequently, significant errors are expected in regions where gas flow...
Context. The formation and evolution of protoplanetary disks remains elusive. We have numerous astronomical observations of young stellar objects of different ages with their envelopes and/or disks. Moreover, in the last decade, there has been tremendous progress in numerical simulations of star and disk formation. New simulations use realistic equ...
We present a plausible and coherent view of the evolution of the protosolar disk that is consistent with the cosmochemical constraints and compatible with observations of other protoplanetary disks and sophisticated numerical simulations. The evidence that high-temperature condensates, CAIs and AOAs, formed near the protosun before being transporte...
The threat posed to humanity by global warming has led scientists to question the nature of their activities and the need to reduce the greenhouse gas emissions from research. Until now, most studies have aimed at quantifying the carbon footprints and relatively less works have addressed the ways GHG emissions can be significantly reduced. A factor...
Observational surveys of entire star-forming regions have provided evidence of power-law correlations between the disc-integrated properties and the stellar mass, especially the disc mass ($M_ d M_ star m $) and the accretion rate ($ M M_ star acc $). Whether the secular disc evolution affects said correlations is still a matter of debate: while th...
(Abridged) Observational surveys of entire star-forming regions have provided evidence of power-law correlations between the disc properties and the stellar mass, especially the disc mass (${M_d \propto M_*}^{\lambda_m}$) and the accretion rate ($\dot M \propto {M_*}^{\lambda_{acc}}$). Whether the secular disc evolution affects said correlations is...
Context . Predicting the star formation rate (SFR) in galaxies is crucial to understand their evolution and morphology. To do so requires a fine understanding of how dense structures of gas are created and collapse. In that, turbulence and gravity play a major role.
Aims . Within the gravo-turbulent framework, we assume that turbulence shapes the i...
Context . The star formation rate (SFR), the number of stars formed per unit of time, is a fundamental quantity in the evolution of the Universe.
Aims . While turbulence is believed to play a crucial role in setting the SFR, the exact mechanism remains unclear. Turbulence promotes star formation by compressing the gas, but also slows it down by sta...
The relation between magnetic field strength B and gas density n in the interstellar medium is of fundamental importance to many areas of astrophysics, from protostellar disks to galaxy evolution. We present and compare Bayesian analyses of the B - n relation for a comprehensive observational data set, as well as a large body of numerical MHD simul...
The coupling between the magnetic field and the gas during the collapsing phase of star-forming cores is strongly affected by the dust size distribution, which is expected to evolve. We aim to investigate the influence of key parameters on the evolution of the dust distribution as well as on the magnetic resistivities during the protostellar collap...
Massive star-forming regions are thought to be the most common birth environments in the Galaxy and the only birth places of very massive stars. Their presence in the stellar cluster alters the conditions within the cluster, impacting at the same time the evolution of other cluster members. In principle, copious amounts of ultraviolet radiation pro...
Context. Molecular clouds (MCs) are structures of dense gas in the interstellar medium (ISM) that extend from ten to a few hundred parsecs and form the main gas reservoir available for star formation. Hydrodynamical simulations of a varying complexity are a promising way to investigate MCs evolution and their properties. However, each simulation ty...
Aims . We introduce a new deep-learning approach for the reconstruction of 3D dust density and temperature distributions from multi-wavelength dust emission observations on the scale of individual star-forming cloud cores (<0.2 pc).
Methods . We constructed a training data set by processing cloud cores from the Cloud Factory simulations with the PO...
Context . Protoplanetary disks, which are the natural consequence of the gravitational collapse of the dense molecular cloud cores, host the formation of the known planetary systems in our universe. Substantial efforts have been dedicated to investigating the properties of these disks in the more mature Class II stage, either via numerical simulati...
Many mechanisms have been proposed to alleviate the magnetic catastrophe, which prevents the Keplerian disk from forming inside a collapsing magnetized core. Such propositions include inclined field and nonideal magnetohydrodynamics effects, and have been supported with numerical experiments. Models have been formulated for typical disk sizes when...
Context. Understanding the collapse of dense molecular cloud cores to stellar densities and the subsequent evolution of the protostar is of importance to model the feedback effects such an object has on its surrounding environment, as well as describing the conditions with which it enters the stellar evolutionary track. This process is fundamentall...
Aims: We introduce a new deep learning approach for the reconstruction of 3D dust density and temperature distributions from multi-wavelength dust emission observations on the scale of individual star-forming cloud cores (<0.2 pc). Methods: We construct a training data set by processing cloud cores from the Cloud Factory simulations with the POLARI...
The Cold Neutral Medium (CNM) is an important part of the galactic gas cycle and a precondition for the formation of molecular and star forming gas, yet its distribution is still not fully understood. In this work we present extremely high resolution simulations of spiral galaxies with time-dependent chemistry such that we can track the formation o...
Context. The polarized dust emission observed in Class 0 protostellar cores at high angular resolution with ALMA has raised several concerns about the grain alignment conditions in these regions.
Aims. We aim to study the role of the radiation field in grain alignment mechanisms that occur in the interior (≤1000 au) of Class 0 protostars.
Methods....
Context. Alfvén waves are fundamental magnetized modes that play an important role in the dynamics of magnetized flows such as the interstellar medium (ISM).
Aims. In a weakly ionized medium, their propagation critically depends on the ionization rate as well as on the charge carriers. Depending on the gas density, these may be ions, electrons, or...
Aims. We introduce a new deep learning tool that estimates stellar parameters (such as effective temperature, surface gravity, and extinction) of young low-mass stars by coupling the Phoenix stellar atmosphere model with a conditional invertible neural network (cINN). Our networks allow us to infer the posterior distribution of each stellar paramet...
The polarized dust emission observed in Class 0 protostellar cores at high angular resolution with ALMA has raised several concerns about the grain alignment conditions in these regions. We aim to study the role of the radiation field on the grain alignment mechanisms occurring in the interior (<1000 au) of Class 0 protostars. We produce synthetic...
Alfv\'en waves are fundamental magnetized modes which play an important role in the dynamics of magnetized flows such as the interstellar medium (ISM). In weakly ionised medium, their propagation critically depends on the ionisation rate but also on the charge carriers which, depending on gas density can be ions, electrons or dust grains. The latte...
Context. Among the most central open questions regarding the initial mass function (IMF) of stars is the impact of environment on the shape of the core mass function (CMF) and thus potentially on the IMF.
Aims. The ALMA-IMF Large Program aims to investigate the variations in the core distributions (CMF and mass segregation) with cloud characteristi...
While interstellar gas is known to be supersonically turbulent, the injection processes of this turbulence are still unclear. Many studies suggest a dominant role of gravitational instabilities. However, their effect on galaxy morphology and large-scale dynamics vary across cosmic times, in particular due to the evolution of the gas fraction of gal...
The Cold Neutral Medium (CNM) is an important part of the galactic gas cycle and a precondition for the formation of molecular and star forming gas, yet its distribution is still not fully understood. In this work we present extremely high resolution simulations of spiral galaxies with time-dependent chemistry such that we can track the formation o...
Dust grain dynamics in molecular clouds is regulated by its interplay with supersonic turbulent gas motions. The conditions under which dust grains decouple from the dynamics of gas remain poorly constrained. We first aim to investigate the critical dust grain size for dynamical decoupling, using both analytical predictions and numerical experiment...
Context. Dust grain dynamics in molecular clouds is regulated by its interplay with supersonic turbulent gas motions. The conditions under which interstellar dust grains decouple from the dynamics of gas in molecular clouds remain poorly constrained.
Aims. We first aim to investigate the critical dust grain size for dynamical decoupling, using both...
We present a new derivation of the Milky Way’s current star formation rate (SFR) based on the data of the Herschel InfraRed Galactic Plane Survey (Hi-GAL). We estimate the distribution of the SFR across the Galactic plane from the star-forming clumps identified in the Hi-GAL survey and calculate the total SFR from the sum of their contributions. Th...
Among the most central open questions on the initial mass function (IMF) of stars is the impact of the environment on the shape of the core mass function (CMF) and thus potentially on the IMF. The ALMA-IMF Large Program aims to investigate the variations of the core distributions with cloud characteristics, as diagnostic observables of the formatio...
We present a new derivation of the Milky Way's current star formation rate (SFR) based on the data of the Hi-GAL Galactic plane survey. We estimate the distribution of the SFR across the Galactic plane from the star-forming clumps identified in the Hi-GAL survey and calculate the total SFR from the sum of their contributions. The estimate of the gl...
Context. Whether or not magnetic fields play a key role in dynamically shaping the products of the star formation process is still largely debated. For example, in magnetized protostellar formation models, magnetic braking plays a major role in the regulation of the angular momentum transported from large envelope scales to the inner envelope, and...
Context. In spite of decades of theoretical efforts, the physical origin of the stellar initial mass function (IMF) is still a subject of debate.
Aims. We aim to gain an understanding of the influence of various physical processes such as radiative stellar feedback, magnetic field, and non-ideal magneto-hydrodynamics on the IMF.
Methods. We present...
In spite of decades of theoretical efforts, the physical origin of the stellar initial mass function (IMF) is still debated. We aim at understanding the influence of various physical processes such as radiative stellar feedback, magnetic field and non-ideal magneto-hydrodynamics on the IMF. We present a series of numerical simulations of collapsing...
In this review article, we aim at providing a global outlook on the progresses made in the recent years to characterize the role of magnetic fields during the embedded phases of the star formation process. Thanks to the development of observational capabilities and the parallel progress in numerical models, capturing most of the important physics a...
Aims. The high abundances of CH+ in the diffuse interstellar medium (ISM) are a long-standing issue of our understanding of the thermodynamical and chemical states of the gas. We investigate here the formation of CH ⁺ in turbulent and multiphase environments, where the heating of the gas is almost solely driven by the photoelectric effect.
Methods....
Giant planets can interact with multiple and chemically diverse environments in protoplanetary disks while they form and migrate to their final orbits. The way this interaction affects the accretion of gas and solids shapes the chemical composition of the planets and of their atmospheres. Here we investigate the effects of different chemical struct...
Aims: The large abundances of CH$^+$ in the diffuse interstellar medium (ISM) are a long standing issue of our understanding of the thermodynamical and chemical states of the gas. We investigate, here, the formation of CH+ in turbulent and multiphase environments, where the heating of the gas is almost solely driven by the photoelectric effect. Met...
Context. High-resolution millimeter and submillimeter (mm and submm) polarization observations have opened a new era in the understanding of how magnetic fields are organized in star forming regions, unveiling an intricate interplay between the magnetic fields and the gas in protostellar cores. However, to assess the role of the magnetic field in t...
Giant planets can interact with multiple and chemically diverse environments in protoplanetary discs while they form and migrate to their final orbits. The way this interaction affects the accretion of gas and solids shapes the chemical composition of the planets and of their atmospheres. Here we investigate the effects of different chemical struct...
The mechanisms that maintain turbulence in the interstellar medium (ISM) are still not identified. This work investigates how we can distinguish between two fundamental driving mechanisms: the accumulated effect of stellar feedback versus the energy injection from Galactic scales. We perform a series of numerical simulations describing a stratified...
The mechanisms that maintain turbulence in the interstellar medium (ISM) are still not identified. This work investigates how we can distinguish between two fundamental driving mechanisms: the accumulated effect of stellar feedback versus the energy injection from Galactic scales. We perform a series of numerical simulations describing a stratified...
We present a study of the filamentary structure in the atomic hydrogen (HI) emission at the 21 cm wavelength toward the Galactic plane using the observations in the HI4PI survey. Using the Hessian matrix method across radial velocity channels, we identified the filamentary structures and quantified their orientations using circular statistics. We f...
We present a study of the filamentary structure in the neutral atomic hydrogen (H I ) emission at the 21 cm wavelength toward the Galactic plane using the 16′.2-resolution observations in the H I 4 π (HI4PI) survey. Using the Hessian matrix method across radial velocity channels, we identified the filamentary structures and quantified their orienta...
Context. Understanding the conditions in which stars and stellar clusters form is of great importance. In particular, the role that stellar feedback may have is still hampered by large uncertainties.
Aims. We aim to investigate the role played by ionising radiation and protostellar outflows during the formation and evolution of a stellar cluster. T...
The HyGAL Stratospheric Observatory for Infrared Astronomy legacy program surveys six hydride molecules—ArH ⁺ , OH ⁺ , H 2 O ⁺ , SH, OH, and CH—and two atomic constituents—C ⁺ and O—within the diffuse interstellar medium (ISM) by means of absorption-line spectroscopy toward 25 bright Galactic background continuum sources. This detailed spectroscopi...
Non-ideal magnetohydrodynamic effects that rule the coupling of the magnetic field to the circumstellar gas during the low-mass star formation process depend heavily on the local physical conditions, such as the ionization fraction of the gas. The purpose of this work is to observationally characterize the level of ionization of the circumstellar g...
High resolution (sub-)millimeter polarization observations have opened a new era in the understanding of how B-fields are organized in star forming regions, unveiling an intricate interplay between the B-fields and the gas in protostellar cores. However, to assess the role of the B-field in the process of solar-type star formation, it is key to be...
The ALMA-IMF Large Program observed the W43-MM2-MM3 ridge, whose 1.3mm and 3mm ALMA 12m array continuum images reach a 2500au spatial resolution. We used both the best-sensitivity and the line-free ALMA-IMF images, reduced the noise with the multi-resolution segmentation technique MnGSeg, and derived the most complete and most robust core catalog p...
The HyGAL SOFIA legacy program surveys six hydride molecules -- ArH+, OH+, H2O+, SH, OH, and CH -- and two atomic constituents -- C+ and O -- within the diffuse interstellar medium (ISM) by means of absorption-line spectroscopy toward 25 bright Galactic background continuum sources. This detailed spectroscopic study is designed to exploit the uniqu...
Context. Understanding the conditions in which stars and stellar clusters form is of great importance. In particular the role that stellar feedback may have is still hampered by large uncertainties. Aims. We investigate the role played by ionising radiation and protostellar outflows during the formation and evolution of a stellar cluster. To self-c...
Aims: The high abundances of CH+ in the diffuse interstellar medium (ISM) are a long-standing issue of our understanding of the thermodynamical and chemical states of the gas. We investigate here the formation of CH+ in turbulent and multiphase environments, where the heating of the gas is almost solely driven by the photoelectric effect.
Methods:...
The ALMA-IMF Large Program imaged a total noncontiguous area of 53pc2, covering 15 extreme, nearby protoclusters of the Milky Way. They were selected to span relevant early protocluster evolutionary stages. Our 1.3mm and 3mm observations provide continuum images that are homogeneously sensitive to point-like cores with masses of 0.2 and 0.6Msun, re...
Context. Massive star formation remains one of the most challenging problems in astrophysics, as illustrated by the fundamental issues of the radiative pressure barrier and the initial fragmentation. The wide variety of physical processes involved, in particular the protostellar radiative feedback, increase the complexity of massive star formation...
The role of nonideal magnetohydrodynamics has been proven critical during the formation of protoplanetary disks, particularly in regulating their sizes. We provide a simple model to predict the disk size under the interplay among ambipolar diffusion, the Hall effect, and ohmic dissipation. The model predicts a small disk size of around 20 au that d...
We study mass accretion and ejection in the vicinity of massive star forming cores using high-resolution (5 au) 3D AMR numerical simulations. We investigate the mechanisms at the origin of outflows and characterise the properties of the disc forming around massive protostars. We include both protostellar radiative feedback via PMS evolutionary trac...
Context. The formation of astrophysical structures, such as stars, compact objects, and also galaxies, entail an enhancement of densities by many orders of magnitude, which occurs through gravitational collapse.
Aims. The role played by turbulence during this process is important. Turbulence generates density fluctuations, exerts a support against...
The role of non-ideal magnetohydrodynamics has been proven critical during the formation of the protoplanetary disk, particularly in regulating its size. We provide a simple model to predict the disk size under the interplay among the ambipolar diffusion, the Hall effect, and the Ohmic dissipation. The model predicts a small disk size of around 20...
Protoplanetary disks form through angular momentum conservation in collapsing dense cores. In this work, we perform the first simulations with a maximal resolution down to the astronomical unit (au) of protoplanetary disk formation, through the collapse of 1000 M ⊙ clumps, treating self-consistently both non-ideal magnetohydrodynamics with ambipola...
Protoplanetary disks form through angular momentum conservation in collapsing dense cores. In this work, we perform the first simulations with a maximal resolution down to the astronomical unit (au) of protoplanetary disk formation, through the collapse of 1000 solar mass clumps, treating self-consistently both non-ideal magnetohydrodynamics with a...
The angular resolution of a telescope is the primary observational parameter, along with the detector sensitivity in defining the quality of the observed images and of the subsequent scientific exploitation of the data. During the last decade in star formation research, many studies have targeted low- and high-mass star formation regions located at...
During the last decade in star formation research, many studies have targeted low- and high-mass star formation regions located at different distances, with different telescopes having specific angular resolution capabilities. We present a systematic investigation of the angular resolution effects, with special attention being paid to the derived m...
Context. Between the two research communities that study star formation and protoplanetary disk evolution, only a few efforts have been made to understand and bridge the gap between studies of a collapsing prestellar core and a developed disk. While it has generally been accepted for about a decade that the magnetic field and its nonideal effects p...
Self-gravitating disks are believed to play an important role in astrophysics in particular regarding the star and planet formation process. In this context, disks subject to an idealized cooling process, characterized by a cooling timescale β expressed in unit of orbital timescale, have been extensively studied. We take advantage of the Riemann so...
Self-gravitating disks are believed to play an important role in astrophysics in particular regarding the star and planet formation process. In this context, disks subject to an idealized cooling process, characterized by a cooling timescale $\beta$ expressed in unit of orbital timescale, have been extensively studied. We take advantage of the Riem...
While it is generally accepted that the magnetic field and its non-ideal effects play important roles during the stellar formation, simple models of pure hydrodynamics and angular momentum conservation are still widely employed in the studies of disk assemblage in the framework of the so-called "alpha-disk" model due to their simplicity. There has...
In spite of decades of theoretical efforts, the physical origin of the stellar initial mass function (IMF) is still debated. Particularly crucial is the question of what sets the peak of the distribution. To investigate this issue, we perform high-resolution numerical simulations with radiative feedback exploring, in particular, the role of the ste...
The formation of hot stars out of the cold interstellar medium lies at the heart of astrophysical research. Understanding the importance of magnetic fields during star formation remains a major challenge. With the advent of the Atacama Large Millimeter Array, the potential to study magnetic fields by polarization observations has tremendously progr...
Aims. The main goal of the following analysis is to assess the potential role of magnetic fields in regulating the envelope rotation, the formation of disks and the fragmentation of Class 0 protostars in multiple systems.
Methods. We use the Submillimeter Array to carry out observations of the dust polarized emission at 0.87 mm, in the envelopes of...
To assess the potential role of magnetic fields in regulating the envelope rotation and the fragmentation of Class 0 protostars, we carried out observations of the dust polarized emission at 0.87 mm with the SMA, in the envelopes of a large sample of 20 Class 0 protostars. We estimate the mean magnetic field orientation over the central 1000 au env...
The formation of hot stars out of the cold interstellar medium lies at the heart of astrophysical research. Understanding the importance of magnetic fields during star formation remains a major challenge. With the advent of the Atacama Large Millimeter Array, the potential to study magnetic fields by polarization observations has tremendously progr...
In spite of decades of theoretical efforts, the physical origin of the stellar initial mass function (IMF) is still debated. Particularly crucial is the question of what sets the peak of the distribution. To investigate this issue we perform high resolution numerical simulations with radiative feedback exploring in particular the role of the stella...
We present a study of the filamentary structure in the emission from the neutral atomic hydrogen (H I ) at 21 cm across velocity channels in the 40′′ and 1.5-km s ⁻¹ resolution position-position-velocity cube, resulting from the combination of the single-dish and interferometric observations in The H I /OH/recombination-line survey of the inner Mil...
Context. Recent observational progress has challenged the dust grain-alignment theories used to explain the polarized dust emission routinely observed in star-forming cores.
Aims. In an effort to improve our understanding of the dust grain alignment mechanism(s), we have gathered a dozen ALMA maps of (sub)millimeter-wavelength polarized dust emissi...
Recent observational progress has challenged the dust grain-alignment theories used to explain the polarized dust emission routinely observed in star-forming cores. In an effort to improve our understanding of the dust grain alignment mechanism(s), we have gathered a dozen ALMA maps of (sub)millimeter-wavelength polarized dust emission from Class 0...