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Abstract

We study the category F(SS ,V) of functors from the category SS , which is the category
of elements of some presheaf S on the category Vf of finite dimensional vector spaces, to V the
category of vector spaces of any dimension on some field k.

In the case where S satisfies some noetherianity condition, we have a convenient description
of the category SS . In this case, we can define a notion of polynomial functors on SS . And, like
in the usual setting of functors from the category of finite dimensional vector spaces to the one
of vector spaces of any dimension, we can describe the quotient Poln(SS ,V)/Poln−1(SS ,V),
where Poln(SS ,V) denote the full subcategory of F(SS ,V) of polynomial functors of degree
less than or equal to n.

Finally, if k = Fp for some prime p and if S satisfies the required noetherianity condition,
we can compute the set of isomorphism classes of simple objects in F(SS ,V).

1 Introduction

Notation 1.1. In the following, for F a functor on a category C, c and c′ objects of C and f : c→ c′

an arrow in C, if there is no ambiguity on F , we will denote by f∗ the induced map F (f) from F (c)
to F (c′) if F is covariant, and by f∗ the induced map from F (c′) to F (c) if F is contravariant.

We denote by Set(Vf )op the category of contravariant functors from Vf the category of finite

dimensional vector spaces over a given field k to Set the category of sets, and by F in(V
f )op the full

subcategory of Set(Vf )op with objects the functors with values in F in the category of finite sets.

1.1 The category F(SS,V)

For S ∈ Set(Vf )op , the category of elements SS is the category whose objects are the pairs (W,ψ)
with W ∈ Vf and ψ in S(W ) and whose morphisms from (W,ψ) to (H, η) are the morphisms γ of
k-vector spaces from W to H satisfying γ∗η = ψ.

The aim of this article is to study the category F(SS ,V) of functors from the category SS to
the category V of k-vector spaces of any dimension, under some conditions on S.

Our motivations to study such categories come from the theory of unstable modules over the
Steenrod algebra. We explain succinctly (see [Blo23]) how such categories appear in the study
of unstable modules over an unstable algebra K over the mod 2 Steenrod algebra. For K in K
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the category of unstable algebras, we consider the functor S that maps the vector space W to
HomK(K,H

∗(W )), for H∗(W ) the cohomology with coefficients in F2 of the classifying space BW .
This functor takes it values in the category of profinite sets.

The functor that maps W to FS(W )
2 (the set of continuous maps from S(W ) to F2) is then an

algebra in the category F(Vf ,V) of functors from Vf to V. For K − U the category of unstable
K-modules, and N il the localising subcategory of nilpotent modules, we have an equivalence of
categories between K − U/N il and the full subcategory of analytic functors in FS2 −Mod.

In the case where K is noetherian, S takes values in Fin and FS2 −Mod ∼= F(SS ,V) (cf [Dja06]).

Since any simple object in K − U is the suspension of a nil-closed simple object in K − U , the
computation of simple objects in F(SS ,V) would allow us to classify simple objects in K − U .

In section 2, we recall the definition of the kernel of an element of Set(Vf )op as well as the
definition of a noetherian functor from [HLS93]. We use those to describe the category SS in the
case where S satisfies a condition slightly weaker than the noetherianity condition of [HLS93].

1.2 Polynomial functors in F(SS,V)
In section 3, we define and study a notion of polynomial functor in F(SS ,Vf ). Polynomial functors
over an additive category are already well studied and have very interesting properties such as
homological finiteness. They have been of importance in computing the simple objects of the
category F(Vf ,V) (see for example [PS98]). The category SS is not additive, yet in the case where
S satisfies the weaker noetherianity condition, we can still introduce a notion of polynomiality. For
Poln(SS ,V) the full subcategory of polynomial functors of degree n on SS , we get the following
theorem, where the category RS , that we will introduce in the first section, is equivalent to a
category with a finite set of objects, in the case where S is noetherian in the sense of [HLS93].

Theorem 3.17. There is an equivalence of categories between Poln(SS ,V)/Poln−1(SS ,V) and
F(RS , k [Σn]−Mod).

1.3 Simple functors in F(SS,V)
In the case where k is a finite field Fp with p prime, using similar techniques to those presented in
[PS98], we are able to describe simple objects in F(SS ,V).

Theorem 4.2. There is a one-to-one correspondence between isomorphism classes of simple objects
of F(SS ,V) and isomorphism classes of simple objects of⊔

(W,ψ),n

Fp [AutSS
(W,ψ)× Σn]−Mod

with (W,ψ) running through the isomorphism classes of objects in RS and n running through N.

Acknowledgements: I am thankful to Geoffrey Powell for his careful proofreading and for his
continued support during and after my PhD. This work has been partially supported by the Labex
CEMPI (ANR-11-LABX-0007-01).
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2 Noetherian functors

In this section, we start by recalling the definition of a noetherian functor from [HLS93] and we
introduce the weaker noetherianity condition that will be needed in the following sections.

For S satisfying the weaker noetherianity condition, the category SS can be described using
Rector’s category RS . We introduce this category, and end this section by comparing the categories
of functor F(SS ,V) and F(RS × Vf ,V).

2.1 Definition and first properties

We start by recalling the definition of the kernel of an element of S(V ), for S ∈ Set(Vf )op and
V ∈ Vf .

Proposition 2.1. [HLS93, Proposition-Definition 5.1] Let S ∈ Set(Vf )op , V ∈ Vf and s ∈ S(V ).
Then, there exists a unique sub-vector space U of V , denoted by ker(s), such that:

1. For all t ∈ S(W ) and all morphism α : V →W such that s = α∗t, ker(α) ⊂ U .

2. There exists W0 in Vf , t0 ∈ S(W0) and α0 : V →W0 such that s = α∗
0t and ker(α0) = U .

3. There exists t0 ∈ S(V/U) such that s = π∗t0, where π is the projection of V onto V/U .

Notice that, since π : W →W/ ker(ψ) is surjective, it admits a right inverse, therefore π∗ has
a left inverse, hence it is injective. We will denote by ψ̃ the unique element of S(W/ ker(ψ)) such
that π∗ψ̃ = ψ.

Definition 2.2. Let S ∈ Set(Vf )op , V ∈ Vf and s ∈ S(V ). We say that s is regular if ker(s) = 0.
Let reg(S)(V ) := {x ∈ S(V ) ; ker(x) = 0}.

We also recall the definition of Rector’s category RS which is the full subcategory of SS whose
objects are the pairs (W,ψ) with ψ regular.

Definition 2.3. Let S be in F in(V
f )op , we say that S is noetherian if it satisfies the following:

1. there exists an integer d such that reg(S)(V ) = ∅ for dim(V ) > d,

2. for all V ∈ Vf and s ∈ S(V ) and for all morphisms α which takes values in V , ker(α∗s) =
α−1(ker(s)).

In [HLS93], the authors proved that S ∈ F in(V
f )op is noetherian if and only if there is a

noetherian unstable algebra K such that S ∼= HomK(K,H
∗( )). In this article, S will not need to

satisfy all conditions of Definition 2.3.

Definition 2.4. We say that S ∈ Set(Vf )op satisfies the weaker noetherianity condition if it satisfies
condition 2 in Definition 2.3.

Yet, our results will be of particular interest in the case where S is noetherian, since in this case
Rector’s category admits a finite skeleton.
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Definition 2.5. An object S ∈ Set(Vf )op is connected if S(0) has a single element ϵ. In this case,
for V an object in Vf , ϵV := πV ∗

0 ϵ for πV0 the unique map from V to 0.

Remark 2.6. In the case where S is not connected, for γ ∈ S(0), we can consider Sγ that maps W
to the set of elements ψ ∈ S(W ) such that 0∗ψ = γ. Sγ is then a subfunctor of S and (Sγ)γ∈S(0)
is a partition of S. We get that SS is the coproduct of the categories SSγ and that a functor on
SS is just a family of functors over each of the categories SSγ .

2.2 The category SS

In this subsection we describe the objects and morphisms in the category SS in the case where S
is connected and satisfies the weaker noetherianity condition.

Proposition 2.7. We consider S ∈ Set(Vf )op connected that satisfies the weaker noetherianity
condition. Then, for any (W,ψ) ∈ SS, there exists a unique element ψ ⊞ ϵV ∈ S(W ⊕ V ), such
that ι∗Wψ ⊞ ϵV = ψ and ι∗V ψ ⊞ ϵV = ϵV , for ιW and ιV the inclusions of W and V in W ⊕ V .

Proof. Let ψ in S(W ). We consider π∗ψ ∈ S(W ⊕ V ) for π the projection from W ⊕ V to W
along V . It satisfies ι∗Wπ

∗ψ = ψ. Furthermore, π ◦ ιV = 0. Hence, ι∗V π
∗ψ = 0∗ψ. Since the

trivial morphism from V to W factorizes through the trivial vector space 0, and since S(0) = {ϵ},
0∗ψ = 0∗ϵ, ι∗V π

∗ψ = ϵV . This proves the existence condition. We now prove the uniqueness.

For γ ∈ S(W ⊕ V ) such that ι∗W γ = ψ and ι∗V γ = ϵV , since S satisfies the weaker noetherianity
condition, V = ker(ι∗V γ) = ι−1

V (ker(γ)). Therefore, V ⊂ ker(γ). By definition of the kernel, there
exists γ̃ ∈ S(W ) such that γ = π∗γ̃. Then, ψ = ι∗Wπ

∗γ̃, since π ◦ ιW = idW , ψ = γ̃. Which prove
the uniqueness condition.

The notation ψ ⊞ ϵV will be convenient in the following, but as we have seen, it is just the
element π∗ψ ∈ S(W ⊕ V ) for π the projection from W ⊕ V onto W .

By definition of the kernel, for any W ∈ Vf and ψ ∈ S(W ), there exists a unique ψ̃ ∈
S(W/ ker(ψ)) such that

ψ = π∗ψ̃ = ψ̃ ⊞ ϵker(ψ).

Since S satisfies the weaker noetherianity condition, ψ̃ is regular (this is because ker(ψ) = π−1(ker(ψ̃))).
We get the following lemma.

Lemma 2.8. For S connected that satisfies the weaker noetherianity condition and for (W,ψ) ∈ SS,
(W,ψ) ∼= (W/ ker(ψ)⊕ ker(ψ), ψ̃ ⊞ ϵker(ψ)), with (W/ ker(ψ), ψ̃) ∈ RS.

We now describe morphisms in SS , using this decomposition.

Proposition 2.9. Let (W,ψ) and (H, η) be two objects in RS, and let U and V be two finite
dimensional vector spaces. The set of morphisms in SS from (W ⊕ U,ψ ⊞ ϵU ) to (H ⊕ V, η ⊞ ϵV )

is the set of morphisms α whose block matrices have the form

(
f 0
g h

)
, with f a morphism from

(W,ψ) to (H, η) in RS, g a morphism from W to V and h a morphism from U to V .
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Proof. First, we prove that for such α, α is a morphism from (W ⊕U,ψ⊞ ϵU ) to (H ⊕V, η⊞ ϵV ) in
SS . We have ι∗Wα

∗(η ⊞ ϵV ) = ι∗Wα
∗π∗(η) for π the projection from H ⊕ V onto H. This is equal

to f∗η = ψ. Also, ι∗Uα
∗(η ⊞ ϵV = h∗ϵV = ϵU . Then, by Proposition 2.7, α∗(η ⊞ ϵV ) = ψ ⊞ ϵU .

We now prove that morphisms from (W ⊕ U,ψ ⊞ ϵU ) to (H ⊕ V, η ⊞ ϵV ) have this form. First,
we have that

U = ker(ψ ⊞ ϵU ) = α−1(ker(η ⊞ ϵV )) = α−1(V ).

Hence, α(U) ⊂ V . Now, we consider the composition πH ◦ α from (W ⊕ U) to H for πH the
projection from H⊕V onto H. We have πH ◦α = f ◦πW for πW the projection from (W ⊕U) onto
W . Then, ψ⊞ ϵU = α∗π∗

Hη = π∗
W (f∗η). We get, since π∗

W is injective, that f∗η = ψ, therefore f is
a map from (W,ψ) to (H, η) in RS . This concludes the proof.

Remark 2.10. It is worth noticing that, since S satisfies the weaker noetherianity condition,
morphisms from (W,ψ) to (H, η) in RS are necessarily injective morphisms from W to H. This is
one reason why functors on RS are a lot easier to understand than functors on SS , and it will be
a key fact in computing simple objects in F(SS ,V).

2.3 The categories F(SS,V) and F(RS × Vf ,V)
In this subsection, we compare the categories F(SS ,V) and F(RS ×Vf ,V), with S connected and
satisfying the weaker noetherianity condition.

By Lemma 2.8, for W ∈ Vf and ψ ∈ S(W ), (W,ψ) is isomorphic as an object of SS with
(W/ ker(ψ) ⊕ ker(ψ), ψ̃ ⊞ ϵker(ψ)). Therefore, we have a faithfull and essentially surjective functor

from RS × Vf to SS that maps the pair ((W,ψ), V ) with ψ regular to (W ⊕ V, ψ ⊞ ϵV ).

This functor is not full, indeed (Proposition 2.9) the set of morphisms between (W ⊕V, ψ⊞ ϵV )

and (H⊕U, η⊞ϵU ) inSS is given by the linear maps whose block matrices are of the form

(
f 0
g h

)
with g and h any linear maps respectively from W and ker(ψ) onto ker(η) and f a morphism in RS

from (W,ψ) to (H, η), whereas the image of RS × Vf contains only maps of the form

(
f 0
0 h

)
.

Yet, it admits a left quasi-inverse that maps (W,ψ) to ((W/ ker(ψ), ψ̃), ker(ψ)) which is full and
essentially surjective but not faithful. More precisely, two maps from (W,ψ) to (H, η) have the
same image if and only if their restriction to ker(ψ) are equal as well as their induced maps from
W/ ker(ψ) to H/ ker(η).

Definition 2.11. Let O be the functor from F(SS ,V) to F(RS × Vf ,V) induced by the functor
from RS ×Vf to SS that maps ((W,ψ), V ) ∈ RS ×Vf to (W ⊕V, ψ⊞ ϵV ) and the morphism (f, h)

in RS × Vf to

(
f 0
0 h

)
in SS .

Let also E be the functor from F(RS × Vf ,V) to F(SS ,V) induced by the functor that maps
(W,ψ) in SS to ((W/ ker(ψ), ψ̃), ker(ψ)) in RS × Vf and f from (W,ψ) to (H, η) to (f̃ , f |ker(ψ))
with f̃ the morphism induced by f from (W/ ker(ψ), ψ̃) to (H/ ker(η), η̃).
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Lemma 2.12. For λ a natural transformation in F(RS × Vf ,V) from G to O(F ), λ extends to a
natural transformation in F(SS ,V) from E(G) to F if and only if, for any (W,ψ) ∈ RS, V ∈ Vf
and f ∈ Homk(W,V ), the following diagram commutes:

F (W ⊕ V, ψ ⊞ ϵV )

α∗

��

G((W,ψ), V )

λ

55

λ
))

F (W ⊕ V, ψ ⊞ ϵV ),

with α the morphism whose block matrix is given by

(
idW 0
f idV

)
.

Proof. The only if part is straightforward. Let’s assume that λ satisfies the required condition.
Then, for (W,ψ) in SS , one can choose arbitrarily a complementary subspace C of ker(ψ), then
for γ the inverse isomorphism of the projection from C to W/ ker(ψ), one can define λ(W,ψ) from

G((W/ ker(ψ), ψ̃), ker(ψ)) to F (W,ψ) as the composition of λ((W/ ker(ψ),ψ̃),ker(ψ)), which values are

in F (W/ ker(ψ)⊕ ker(ψ), ψ̃ ⊞ ϵker(ψ)), with

(γ ⊕ idker(ψ))∗ : F (W/ ker(ψ)⊕ ker(ψ), ψ̃ ⊞ ϵker(ψ)) → F (W,ψ).

The required condition guarantees that this does not depend on the choice of C. Furthermore,
it entails that λ is a natural transformation on SS , since any morphism in SS from (H, η) to

(W,ψ) can be factorised as

(
idC 0
f idker(ψ)

)
◦
(
g 0
0 h

)
with some morphisms f and h and some

injective morphism g.

3 Polynomial functors over SS

Since F(RS ×Vf ,V) is isomorphic to F(RS ,F(Vf ,V)), there is a notion of polynomial functors of
degree n for functors in F(RS×Vf ,V) corresponding to those taking values in polynomial functors
of degree n from Vf to V, in the sense of [Pir88] or [DV15]. We denote by Poln(RS × Vf ,V) the
full subcategory of F(RS × Vf ,V) of polynomial functors of degree less than or equal to n. Using
purely formal arguments, as well as known facts about polynomial functors in F(Vf ,V), one could
easily compute the categorical quotient Poln(RS×Vf ,V)/Poln−1(RS×Vf ,V) and would find that
it is equivalent to F(RS , k [Σn]−Mod). All the difficulties in the following section come from the
fact that the functor from RS × Vf to SS is not full.

In this section we define a notion of polynomial functors on SS and manage to compute the
quotient Poln(SS ,V)/Poln−1(SS ,V).

3.1 Definition

We recall that for F ∈ F(Vf ,V), ∆̄F (W ) is the kernel of the map from F (W ⊕ k) to F (W ) in-
duced by the projection along k. Polynomial functors of degree at most n are functors F such that
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∆̄n+1F = 0 and Poln(Vf ,V) denote the full subcategory of polynomial functors of degree at most
n in F(Vf ,V). We define similar notions for functors on SS .

We start this section by defining a difference functor ∆̄(k,ϵk) on F(SS ,V).

Definition 3.1. ∆̄(k,ϵk) : F(SS ,V) → F(SS ,V) is the functor such that ∆̄(k,ϵk)F (W,ψ) is the
kernel of the map F (W ⊕ k, ψ ⊞ ϵk) → F (W,ψ) induced by the projection from W ⊕ k to W , and
such that, for α a morphism in SS , ∆̄(k,ϵk)F (α) is the map induced by α⊕ idk.

Lemma 3.2. The functor ∆̄(k,ϵk) is exact.

Proof. We consider the following short exact sequence in F(SS ,V) :

0 → F ′ → F → F” → 0.

For (W,ψ) ∈ SS , we get the following commutative diagram whose lines are exact :

0 // F ′(W ⊕ k, ψ ⊞ ϵk) //

��

F (W ⊕ k, ψ ⊞ ϵk) //

��

F”(W ⊕ k, ψ ⊞ ϵk) //

��

0

0 // F ′(W,ψ) // F (W,ψ) // F”(W,ψ) // 0,

whose vertical maps are induced by the projection from W ⊕ k to W . Using the exactness of the
lines and commutativity of the diagram, one checks that it induces a short exact sequence

0 // ∆̄(k,ϵk)F
′(W,ψ) // ∆̄(k,ϵk)F (W,ψ)

// ∆̄(k,ϵk)F”(W,ψ)
// 0.

This exact sequence is natural in (W,ψ).

Definition 3.3. F ∈ F(SS ,V) is polynomial of degree less than n if ∆̄n+1
(k,ϵk)

F = 0. We denote by

Poln(SS ,V) the full subcategory of F(SS ,V) whose objects are the polynomial functors of degree
less than or equal to n.

Proposition 3.4. The category Poln(SS ,V) is a Serre class of Poln+1(SS ,V).

Proof. This is straightforward from Lemma 3.2.

There is a notion of analytic funtors on F(Vf ,V). Those are the functors which are the colimit
of their polynomial sub-functors. Similarly, one can define a notion of analytic functors on SS .

Lemma 3.5. Let F ∈ F(SS ,V). F admits a greatest polynomial sub-functor of degree less than or
equal to n. We denote it by pn(F ).

Proof. For (W,ψ) ∈ SS and x ∈ F (W,ψ), we denote by< x >F the image of k [HomSS
((W,ψ), ( , ))]

under the natural morphism that maps id(W,ψ) to x. We say that x is polynomial of degree less
than or equal to n if and only if < x >F is.
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The functor F is polynomial of degree less than or equal to n if and only if x is polynomial of
degree less than or equal to n for any (W,ψ) ∈ SS and any x ∈ F (W,ψ). The condition is obviously
necessary since ∆̄n+1

(k,ϵk)
< x >F is a sub-functor of ∆̄n+1

(k,ϵk)
F . If we assume that F is not polynomial

of degree less than or equal to n, ∆̄n+1
(k,ϵk)

F is not trivial, therefore there exists (W,ψ) ∈ SS and

x ∈ ∆̄n+1
(k,ϵk)

F (W,ψ) ⊂ F (W ⊕kn+1, ψ⊞ ϵkn+1) different from 0. Then, x is not polynomial of degree

less than or equal to n. The condition is therefore sufficient.

Finally, the set of elements x of F polynomial of degree less than or equal to n defines a sub-
functor of F and is greater than any polynomial sub-functor of F of degree less than or equal to
n.

By definition, we have pn(F ) ⊂ pn+1F .

Definition 3.6. A functor F in F(SS ,V) is said to be analytic if it is the colimit of the pn(F ).

Fω(SS ,V) is the full subcategory of F(SS ,V) of analytic functors.

We end this subsection by computing Pol0(SS ,V), the following subsections will have the pur-
pose of describing the quotients Poln(SS ,V)/Poln−1(SS ,V)

Proposition 3.7. The categories Pol0(SS ,V) and F(RS ,V) are equivalent.

Proof. For F ∈ Pol0(SS ,V), (W,ψ) an object of SS and ψ̃ ∈ F (W/ ker(ψ)) such that π∗ψ̃ = ψ,
π∗ (induced by π the projection in SS from (W,ψ) to (W/ ker(ψ), ψ̃)) is a natural isomorphism
between F (W,π∗ψ) and F (W/ ker(ψ), ψ). Indeed, π∗ may be factorised in the following way

F (W,ψ) ∼= F (W/ ker(ψ)⊕ kk, ψ̃ ⊞ ϵkk) → ...→ F (W/ ker(ψ)⊕ k, ψ̃ ⊞ ϵk) → F (W/ ker(ψ), ψ̃),

where k is the dimension of ker(ψ) and each map is induced by the projection that omits the last
factor k. And since ∆̄(k,ϵk)F = 0, each of those maps is an isomorphism.

The forgetful functor from F(SS ,V) to F(RS ,V) has a right quasi-inverse that maps F ∈
F(RS ,V) to F̄ , where F̄ (W,ψ) := F (W/ ker(ψ), ψ̃) and F̄ (γ), for γ : (W,ψ) → (H, η), is F (γ̃) for
γ̃ the induced map from (W/ ker(ψ), ψ̃) to (H/ ker(η), η̃). By construction, it is a quasi-inverse, if
we restraint the forgetful functor to Pol0(SS ,V).

3.2 The n-th cross effect

In the context where F is a functor over Vf , the n-th cross effect crnF (X1, ..., Xn) is defined as

the kernel of the map from F (X1 ⊕ ... ⊕Xn) to
⊕

1≤i≤n
F (X1 ⊕ ... ⊕ X̂i ⊕ ... ⊕Xn) induced by the

projections from X1 ⊕ ... ⊕ Xn to X1 ⊕ ... ⊕ X̂i ⊕ ... ⊕ Xn. Since Σn acts on crnF (k, ..., k) by
permuting the factors k, F 7→ crnF (k, ..., k) defines a functor from F(Vf ,V) to k [Σn]−Mod.

We consider Tn the functor from Vf to itself that maps V to V ⊗n. Σn has a right-action on
V ⊗n with v1 ⊗ ...⊗ vn · σ = vσ−1(1) ⊗ ...⊗ vσ−1(n). We get the following Proposition from [Pir88].

Proposition 3.8. The functor from Poln(Vf ,V) to k [Σn]−Mod that maps F to crnF (k, ..., k) is
right adjoint to the functor that maps M ∈ k [Σn]−Mod to Tn ⊗Σn M .
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Throughout this subsection n is a fixed positive integer. We want to describe the quotient cat-
egory Poln(SS ,V)/Poln−1(SS ,V). To do so, we introduce a cross effect functor for functors on SS .

Lemma 3.9. Let F ∈ F(SS ,V) and (W,ψ) an object in SS. ∆̄n
(k,ϵk)

F (W,ψ) is the kernel of the

map from F (W ⊕ kn, ψ ⊞ ϵkn) to
n⊕
i=1

F (W ⊕ ki−1 ⊕ k̂ ⊕ kn−i, ψ ⊞ ϵkn−1) induced by the projections

from (W ⊕ kn, ψ ⊞ ϵkn) to (W ⊕ ki−1 ⊕ k̂ ⊕ kn−i, ψ ⊞ ϵkn−1) in SS.

Proof. This is straightforward by induction.

More generally, we consider the n-th cross effect crnF defined as follows.

Definition 3.10. For F ∈ F(SS ,V), crnF is the functor fromSS×(Vf )n to V where crn(W,ψ;X1, ..., Xn)

is the kernel of F (W ⊕X1 ⊕ ...⊕Xn, ψ ⊞ ϵ) to
n⊕
i=1

F (W ⊕X1 ⊕ ...⊕ X̂i ⊕ ...⊕Xn, ψ ⊞ ϵ) induced

by the projections from (W ⊕X1 ⊕ ...⊕Xn, ψ ⊞ ϵ) to (W ⊕X1 ⊕ ...⊕ X̂i ⊕ ...⊕Xn, ψ ⊞ ϵ) in SS .

We can restate Lemma 3.9 as

∆̄n
(k,ϵk)

F (W,ψ) = crnF (W,ψ; k, ..., k).

As in the classical case of functors on Vf , the n-th symmetric group acts on crnF ( , ; k, ..., k)
by permuting the factors k. Therefore, crnF ( , ; k, ..., k) takes values in k [Σn]−Mod, the category
of Σn-representations over k.

Considering functors on RS × Vf , one can check easily that Proposition 3.8 gives rise to a
similar adjunction from Poln(RS × Vf ,V) to F(RS , k [Σn]−Mod) whose left adjoint maps M to
Tn ⊗Σn

M , that maps ((W,ψ), V ) ∈ RS × Vf to V ⊗n ⊗Σn
M(W,ψ).

We want to extend this adjunction to F(SS ,V). To do so, we need to prove that crnF ( , ; k, ..., k)
behaves well with respect to the maps in SS that are not obtained from maps in RS × Vf .

The end of this subsection is devoted to prove that if F ∈ Poln(SS ,V) then crnF ( , ; k, ..., k)
does behave well with respect to those maps.

We notice that for F polynomial of degree n, crnF (W,ψ; , ..., ) is additive in each variable.
More explicitly:

Lemma 3.11. crnF (W,ψ;X1 ⊕ Y1, ..., Xn ⊕ Yn) is isomorphic to
⊕

crnF (W,ψ;A1, ..., An), with
the direct sum going through the families (A1, ..., An) with Ai = Xi or Yi. The isomorphism is
given by the direct sum of the QA1,...,An induced by the projections from Xi ⊕ Yi onto Ai.

Proof. The map QA1,...,An
is induced by the map from crnF (W,ψ;X1 ⊕Y1, ..., Xn⊕Yn) to F (W ⊕

A1⊕...An, ψ⊕ϵ), with Ai = Xi or Yi, induced by the projection fromW⊕(X1⊕Y1)⊕...⊕(Xn⊕Yn)
to W ⊕A1 ⊕ ...⊕An.
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Since ∆̄n+1
(k,ϵk)

F = 0, it’s kernel is precisely the direct sum of the images of the crnF (W,ψ;B1, ..., Bn)

with at least one Bi ̸= Ai, under the injections inW ⊕(X1⊕Y1)⊕ ...⊕(Xn⊕Yn). The restriction to
crnF (W,ψ;A1, ..., An) (seen as a subspace of crnF (W,ψ;X1 ⊕ Y1, ..., Xn ⊕ Yn)) is the identity.

Remark 3.12. The inverse of
⊕

(A1,...,An)

QA1,...,An from crnF (W,ψ;X1 ⊕ Y1, ..., Xn ⊕ Yn) to⊕
crnF (W,ψ;A1, ..., An) is given by the direct sum of the IA1,...,An

which are the maps induced
by the inclusions of the Ai in Xi ⊕ Yi.

We want to emphasize that the image of
⊕

crnF (W,ψ;A1, ..., An) in
⊕

crnF (W,ψ;U1, ..., Un),
for Ai a sub-vector space of Ui for each i, does not depend on the choice of complementary subspaces
Bi, therefore the component of an element of crnF (W,ψ;U1, ..., Un) in crnF (W,ψ;A1, ..., An) under
the isomorphism of Lemma 3.11 is the same for each choice of decomposition of the Ui as Ui =
Ai ⊕Bi. It will have some importance in the proof of Lemma 3.13

We consider F ∈ Poln(SS ,V), (W ⊕X1 ⊕ ...⊕Xn, ψ⊞ ϵ) in SS and a map α from (W ⊕X1 ⊕

... ⊕ Xn, ψ ⊞ ϵ) to itself of the form α =

(
idW 0
f idX1⊕...⊕Xn

)
. We have the following Lemma,

with α∗ the induced map from F (W ⊕X1 ⊕ ...⊕Xn, ψ ⊞ ϵ).

Lemma 3.13. α∗ acts on crnF (W,ψ;X1, ..., Xn) as the identity.

Proof. For πi that maps x1+...+xn with xi ∈ Xi to x1+...+x̂i+...xn, we have that

(
idW 0
0 πi

)
◦α

is equal to (
idW 0
πi ◦ f πi

)
=

(
idW 0
πi ◦ f id

X1⊕...⊕X̂i⊕...⊕Xn

)
◦
(

idW 0
0 πi

)
.

Since crnF (W,ψ;X1, ..., Xn) is the intersection of the kernels of the

(
idW 0
0 πi

)
∗
, this implies

that the restriction of α∗ to crnF (W,ψ;X1, ..., Xn) takes it values in crnF (W,ψ;X1, ..., Xn).

We prove now that it acts as the identity. We consider the diagonal map ∆ from X1 ⊕ ...⊕Xn

to (X1⊕X1)⊕ ...⊕ (Xn⊕Xn) and the map α′ from W ⊕ (X1⊕X1)⊕ ...⊕ (Xn⊕Xn) to itself whose

block matrix is given by

(
idW 0
∆ ◦ f idX⊕2

1 ⊕...⊕X⊕2
n

)
. It fits in the following commutative diagram:

F (W ⊕X1 ⊕ ...⊕Xn, ψ ⊞ ϵ)

F (W ⊕ (X1 ⊕X1)⊕ ...(Xn ⊕Xn), ψ ⊞ ϵ)

F (W ⊕ (X1 ⊕X1)⊕ ...(Xn ⊕Xn), ψ ⊞ ϵ)F (W ⊕X1 ⊕ ...⊕Xn, ψ ⊞ ϵ) F (W ⊕X1 ⊕ ...⊕Xn, ψ ⊞ ϵ),

α′
∗

id∗ α∗
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where the top vertical map is induced by the injection of the Xi in the first factor of Xi ⊕Xi, the
right horizontal one is given by the projection of Xi ⊕Xi on the first factor and the left horizontal
one is the projection onto the first factor along the diagonal ∆(Xi) (i.e. the morphisms that maps
(x, y) in Xi ⊕Xi to x− y in Xi).

As we have seen, α′
∗ maps crnF (W,ψ,X1 ⊕ X1, ..., Xn ⊕ Xn) to itself. Also, the first factor

Xi of Xi ⊕ Xi admits two relevant complementary subspaces in Xi ⊕ Xi. The first one is the
second factor Xi, the second one is the diagonal ∆(Xi), since Xi ⊕ Xi = Xi ⊕ ∆(Xi) using that
(x, y) = (x− y, 0) + (y, y) for x and y in Xi.

By Lemma 3.11, we get

crnF (W,ψ,X1 ⊕X1, ..., Xn ⊕Xn) ∼=
⊕

crnF (W,ψ;A1, ..., An) ∼=
⊕

crnF (W,ψ;A
′
1, ..., A

′
n),

where the Ai are either the first or the second factor in Xi ⊕ Xi, and the A′
i are either the first

factor or the diagonal of Xi ⊕Xi.

The components crnF (W,ψ,X1, ..., Xn) where all Ai and A′
i are taken to be the first factor

identifies under those isomorphism, and they are stable under α′
∗. From the left part of the com-

mutative diagram above, we get that the restriction of α′
∗ to that component is the identity, which

implies that α∗ restricted to crnF (W,ψ;X1, ..., Xn) is also the identity.

3.3 The category Poln(SS,V)/Poln−1(SS,V)
In this subsection, we finally prove that ∆̄n

(k,ϵk)
induces an equivalence of categories between the

localisation Poln(SS ,V)/Poln−1(SS ,V) and the category F(RS , k [Σn]−Mod).

By abuse of notation, for M a functor from RS to k [Σn] − Mod, we denote by Tn ⊗Σn
M

the functor E(Tn ⊗Σn
M) (Definition 2.11), which is the functor on SS that maps (W,ψ) to

ker(ψ)n ⊗Σn M(W/ ker(ψ), ψ̃).
The following lemma is straightforward.

Lemma 3.14. Tn ⊗Σn M ∈ Poln(SS ,V).

Lemma 3.15. ∆̄n
(k,ϵk)

(Tn ⊗Σn M) ∼=M as a functor from RS to k [Σn]−Mod.

Proof. From Lemma 3.9 and for (W,ψ) regular, an element in ∆̄n
(k,ϵk)

(Tn⊗Σn
M)(W,ψ) ⊂ Tn(kn)⊗Σn

M(W,ψ) is mapped to 0 under each map from kn to kn−1 that send one of the factor k to 0. Hence,
an element of ∆̄n

(k,ϵk)
(Tn⊗ΣnM)(W,ψ) admits a unique representing element in Tn(kn)⊗kM(W,ψ)

of the form v1 ⊗ ...⊗ vn ⊗m, with (v1, ..., vn) the canonical basis of kn and m ∈M(W,ψ). We get
the required isomorphism.

Proposition 3.16. The functor M 7→ Tn ⊗Σn
M is left adjoint to

∆̄n
(k,ϵk)

: Poln(SS ,V) → F(RS , k [Σn]−Mod).

Proof. By naturality, a natural transformation from Tn⊗Σn
M to F ∈ F(SS ,V) is fully determined

by the image of the class (for the equivalence relation induced by the actions of Σn on Tn and M)
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of the elements of the form v1 ⊗ ... ⊗ vn ⊗ m with (W,ψ) an object of RS , m ∈ M(W,ψ) and
(v1, ..., vn) the canonical basis of kn. Furthermore, since v1 ⊗ ...⊗ vn ⊗m represents an element in
∆̄n

(k,ϵk)
(Tn ⊗Σn

M)(W,ψ), its image must be in ∆̄n
(k,ϵk)

F (W,ψ). Hence, the application that maps

a natural transformation from Tn ⊗Σn M to F to the induced morphism from M to ∆̄n
(k,ϵk)

F is an
injection.

We consider a morphism in F(RS , k [Σn] − Mod) from M to ∆̄n
(k,ϵk)

F . By Proposition 3.8,

it induces by adjunction a natural transformation of functors on RS × Vf from Tn ⊗Σn
M to

O(F ). Finally, Lemma 3.13 and Lemma 2.12 imply that, if F is polynomial of degree n, this
natural transformation can be extended as a natural transformation from E(Tn ⊗Σn

M) to F in
F(SS ,V).

Theorem 3.17. ∆̄n
(k,ϵk)

induces an equivalence of categories between Poln(SS ,V)/Poln−1(SS ,V)
and F(RS , k [Σn]−Mod).

Proof. ∆̄n
(k,ϵk)

is an exact functor from Poln(SS ,V) to F(RS , k [Σn]−Mod). It maps Poln−1(SS ,V)
to 0, hence it induces a functor from Poln(SS ,V)/Poln−1(SS ,V) to F(RS , k [Σn]−Mod). We con-

sider F ∈ Poln(SS ,V) and the exact sequence 0 → ker(η) → Tn⊗Σn
∆̄n

(k,ϵk)
F

η→ F → coker(η) → 0,

for η the counit of the adjunction. By Lemma 3.15, when we apply to it the functor ∆̄n
(k,ϵk)

, the

middle map becomes an isomorphism. Therefore, ker(η) and coker(η) are in Poln−1(SS ,V), so η is
an isomorphism in Poln(SS ,V)/Poln−1(SS ,V). We get that the functor induced by ∆̄n

(k,ϵk)
from

Poln(SS ,V)/Poln−1(SS ,V) to F(RS , k [Σn]−Mod) and the composition ofM 7→ Tn⊗Σn M with
the localization functor from Poln(SS ,V) to Poln(SS ,V)/Poln−1(SS ,V) are inverses.

4 Simple objects in F(SS,V)
In this section, we describe the simple objects of the category F(SS ,V) for k a finite field Fp with p
prime, using the equivalence between Poln(SS ,V)/Poln−1(SS ,V) and the category F(RS ,Fp [Σn]−
Mod). First, we prove that simple objects of F(SS ,V) are polynomial.

We consider the family of injective cogenerators I(W⊕V,ψ⊞ϵV ) := F
HomSS

( ,(W⊕V,ψ⊞ϵV ))
p .

Proposition 4.1. For any (W,ψ) ∈ RS and any V ∈ Vf , I(W⊕V,ψ⊞ϵV ) is analytic.

Proof. We have a forgetful functor from SS to Vf , it induces a functor U from F(Vf ,V) to
F(SS ,V). For ∆̄ the usual difference functor in F(Vf ,V), ∆̄(k,ϵk)U(F )(H, η) ∼= ∆̄F (H). Therefore,

∆̄n+1
(k,ϵk)

U(F ) = 0 if and only if ∆̄n+1F = 0, so U(F ) ∈ Poln(SS ,V) if and only if F is polynomial

in the usual sense, and F analytic implies U(F ) analytic.

By Proposition 2.9, HomSS
((H, η), (W ⊕ V, ψ ⊞ ϵV )) ∼= HomSS

((H, η), (W,ψ))× Homk(H,V ).
Therefore, I(W⊕V,ψ⊞ϵV )(H, η) is naturally isomorphic to the tensor product

F
HomSS

((H,η),(W,ψ))
p ⊗ FHomk(H,V )

p .

We get that I(W⊕V,ψ⊞ϵV )
∼= I(W,ψ) ⊗ U(IV ), where IV denote the injective object in F(Vf ,V) that

maps H to FHomk(H,V )
p .
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I(W,ψ) is polynomial of degree 0, indeed, since (W,ψ) is regular we have that for any map from
(H⊕Fp, η⊕ϵFp) to (W,ψ) in SS , Fp is mapped to 0. Therefore, the map from I(W,ψ)(H⊕Fp, η⊕ϵFp)
to I(W,ψ)(H, η) induced by the projection from (H ⊕ Fp, η ⊕ ϵFp

) to (H, η) is an isomorphism and
∆̄(k,ϵk)I(W,ψ) = 0.

Since IV is analytic (cf [Kuh94]), U(IV ) is analytic and therefore the tensor product I(W⊕V,ψ⊞ϵV )

is analytic.

Since the I(W⊕V,ψ⊞ϵV ) form a family of injective cogenerators, any simple object S embeds in
some I(W⊕V,ψ⊞ϵV ). Also, since I(W⊕V,ψ⊞ϵV ) is analytic, S embeds in some pn(I(W⊕V,ψ⊞ϵV )) and is
therefore polynomial.

An important feature of the category SS is that, when there is a map γ from (H, η) to (W,ψ)
either (H/ ker(η), η̃) and (W/ ker(ψ), ψ̃) are isomorphic or there is no map from (W,ψ) to (H, η).
Therefore, for (W,ψ) a maximal element among isomorphism classes of objects inRS such that there
exist V with F (W⊕V, ψ⊞ϵV ) ̸= 0, one can consider the subfunctor F̄ of F , with F̄ (H, η) = F (H, η),
if (H/ ker(η), η̃) ∼= (W,ψ) and F̄ = 0 otherwise. We get that, for S simple, there is (W,ψ) ∈ RS

such that S(H, η) non trivial implies that (H/ ker(η), η̃) ∼= (W,ψ).

We can now describe the simple objects of F(SS ,V).

Let S be a simple polynomial functor of degree n, ∆̄n
(k,ϵk)

maps S onto a simple object of

F(RS ,Fp [Σn]−Mod). Those are the functors that map some (W,ψ) ∈ RS to some simple object
in F(AutSS

(W,ψ),Fp [Σn] −Mod) ∼= Fp [AutSS
(W,ψ)× Σn] −Mod, and the (H, η) non isomor-

phic to (W,ψ) to 0.

In the following, we will use standard results about simple objects of F(Vf ,V). We use the
notations of [PS98]. For every 2-regular partition λ, there is an element ϵλ ∈ Fp [Σn], denoted
R̄λC̄λR̄λ in [PS98], such that ϵλFp [Σn] is isomorphic to the simple module parametrized by λ.

It is known (cf [PS98]), that for ϵλT
n the functor on Vf that maps V to the image of V ⊗n

under the right action of ϵλ, ϵλT
n is a polynomial functor of degree n in F(Vf ,V) and admits no

non-trivial subfunctor of degree less than n− 1. It is also known that ∆̄n(ϵλT
n) ∼= ϵλFp [Σn].

Theorem 4.2. There is a one-to-one correspondence between isomorphism classes of simple objects
of F(SS ,V) and isomorphism classes of simple objects of⊔

(W,ψ),n

Fp [AutSS
(W,ψ)× Σn]−Mod

with (W,ψ) running through the isomorphism classes of objects in RS and n running through N.

Proof. We have already described the map from simple objects in F(SS ,V) to simple objects in⊔
(W,ψ),n

F(AutSS
(W,ψ),Fp [Σn]−Mod). We have to prove that it is a one to one correspondence.

Let M be a simple object in F(AutSS
(W,ψ),Fp [Σn] − Mod). Since AutSS

(W,ψ) is a cate-
gory with only one object, M is a Fp [Σn]-module equipped with a left action of AutSS

(W,ψ). As
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a Fp [Σn]-module, it admits an injection from some simple Σn-module ϵλFp [Σn]. Each element of
AutSS

(W,ψ) maps ϵλFp [Σn] to some isomorphic Fp [Σn]-submodule ofM . Those are either disjoint
or equal to each-other. Using that M is simple as an object in F(AutSS

(W,ψ),Fp [Σn]−Mod), we
get an isomorphism of Σn-modules M ∼= (ϵλFp [Σn])⊕i for some i ∈ N (this is because AutSS

(W,ψ)
is finite). We consider Tn⊗Σn

M ∈ F(SS ,V). It admits a quotient of the form (ϵλT
n)⊕i (by abuse

of notation, we omit the action of morphisms in RS from the notation). This subfunctor admits no
sub-functor of degree less than or equal to n− 1 and ∆̄n

(k,ϵk)
(ϵλT

n)⊕i ∼=M , hence it is the quotient

of Tn ⊗Σn
M by pn−1(T

n ⊗Σn
M). Therefore, (ϵλT

n)⊕i is a simple object in F(SS ,V).

Furthermore, let F ∈ F(SS ,V), polynomial of degree n such that ∆̄n
(k,ϵk)

F ∼= M . The unit of

the adjunction between ∆̄n
(k,ϵk)

and Tn ⊗Σn
, gives us a map from Tn ⊗Σn

M to F , since it is an

isomorphism in Poln(SS ,V)/Poln−1(SS ,V), its kernel is included in pn−1(T
n⊗Σn

M). Therefore,
it factorises Tn ⊗Σn

M ↠ (ϵλT
n)⊕i. We get that either F is not simple or it is isomorphic to

(ϵλT
n)⊕i.
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