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SPEECH ENHANCEMENT SYSTEM USING FISCHER 

DISCRIMINATIVE DICTIONARY LEARNING FDDL 

Dima SHAHEEN1, Oumayma AL-DAKKAK2, Mohiedin WIANAKH3 

 Speech enhancement is one of the challenging tasks in signal processing, 

especially in the case of non-stationary speech-like noise. In this paper we propose a 

new supervised speech enhancement system that uses Fischer Discriminative 

Dictionary Learning (FDDL) algorithm to model both speech and noise amplitude 

spectrum, where the cost function accounts for both “source confusion” and 

“source distortion” errors. In the enhancement stage, we use sparse coding on the 

learnt dictionary to find an estimate for both the clean speech and noise amplitude 

spectrum. In the final stage, a Wiener filter is used to refine the clean speech 

estimate. Experiments on NOIZEUS dataset using two objective speech 

enhancement measures: frequency-weighted segmental SNR and Perceptual 

Evaluation of Speech Quality (PESQ) demonstrate that FDDL outperforms other 

tested dictionary learning algorithms in the presence of considerable noise (0 dB) 

for all studied noise types, and in the presence of structured non-stationary noise 

(ex. car and train noise) for all noise levels. 

 

Keywords: speech enhancement, supervised dictionary learning, generative 

dictionary learning (GDL), sparse coding 

 

1 Introduction 
 

Speech enhancement is the task of extracting clean speech signal from a 

noisy mixture. It is a challenging task as it is hard to remove noise efficiently 

without distorting the estimated clean speech signal. The main goal for speech 

enhancement algorithms is two folds: to enhance “speech quality”, which refers to 

the ease for humans to listen to the enhanced speech for a long time, and to 

ameliorate “speech intelligibility”, which refers to the reduction of word error rate 

when using the enhanced speech. 

The problem we are tackling in this paper is the single channel speech 

enhancement that aims to reconstruct the clean speech signal , based on the 
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received signal , which is an additive mixture of the two unknown signals: the 

clean speech and a noise signal :  

 
 

Traditional speech enhancement methods like Spectral Subtraction (SS) 

[1,2], Wiener filtering [3], statistical-model based methods [4], and SubSpace 

Approach (SSA) [5,6] perform well in the case of white noise, but have limited 

performance in the case of non-stationary speech-like noise. SS is based on 

estimating the noise power spectrum and subtracting it from the noisy power 

spectrum. The main issue with SS is the generation of isolated peaks in the 

estimated clean speech spectrum, which is referred to as musical noise. All these 

methods are unsupervised; they do not use any prior information about the noise 

or the speech. Recently, new supervised methods [7-12,16] based on incorporating 

prior information to build a model for both clean speech and noise signals using 

training samples have been proposed. These methods achieve better results than 

non-supervised ones. 

Motivated by the great success of the sparsity based signal model achieved 

in many signal processing tasks, and notably image denoising [18], Sigg [13] 

proposed using the approximate K-Singular Value Decomposition (K-SVD) 

[19,20] dictionary learning to model the amplitude spectrum of the clean speech 

and the noise separately, and then concatenating both dictionaries in one to 

perform speech enhancement. 

Zhao et al. [14] proposed using the same K-SVD with a non-negative 

constraint at the sparse coding stage to learn a dictionary that models the Power 

Spectral Density (PSD) of the clean speech, and used Least Angle Regression 

algorithm (LARS) [24] to find the sparse code of the noisy speech on the learned 

dictionary. Then clean speech PSD is estimated using the multiplication of the 

sparse code with the dictionary. Luo et al. [15] proposed a complementary joint 

sparse representation, where two mixture dictionaries: “mixture and speech” and 

“mixture and noise” are being added to the Generative Dictionary Learning 

(GDL) problem formulation. Sparse codes of the clean speech are forced to 

represent the noisy mixture on the mixture and clean speech sub-dictionary, while 

sparse codes of the noise are forced to represent the noisy mixture on the “mixture 

and noise” sub-dictionary. Though this joint sparse representation alleviates to 

some extent the problem of source confusion, but it has high complexity due to 

the need of learning four sub-dictionaries instead of two. 

In the previous studies only “signal approximation” is considered in the 

cost function when learning the representative dictionaries, while “source 

confusion” between speech and noisy sub-dictionaries are not taken into account 

in the Dictionary Learning (DL) process. Source confusion means that part of the 
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noise that is coherent to the clean speech will have sparse representation over the 

clean speech dictionary (noise confusion), and part of the clean speech will have 

sparse representation over the noise dictionary (speech confusion), and thus in the 

enhancement stage, noise residual corresponding to “noise confusion” might still 

exist in the estimated clean speech, which will also suffer from extra distortion 

from the original clean speech due to the fact that part of it corresponding to 

“speech confusion” will be omitted as it will be considered as noise. 

In this paper we propose a new speech enhancement system that uses 

Fischer Discriminative Dictionary Learning (FDDL) [21] algorithm to model both 

speech and noise jointly in a way that minimizes source confusion error. 

The paper is organized as follows. In Section 2 we provide a review of the 

main problems: dictionary learning algorithms and speech enhancement using 

sparse coding. In Section 3 the proposed speech enhancement system is being 

described. In Section 4 we present the conducted experiments and results. And in 

Section 5 we summarize and conclude the paper. 

2 Literature Review 

2.1 Dictionary Learning 

Sparsity based signal model approximates a signal by a linear combination 

of few basic signals out of a larger collection of signals that form what is called 

the dictionary. 

In the classical dictionary learning problem, we seek a matrix  

whose  columns are the basic signals that can represent the training signals 

 sparsely as close as possible: 

 
Where k is the maximum number of non-zero elements in the sparse code 

,  is the number of training samples,  is  pseudo norm, which 

represents the number of non-zeros in ,  is the matrix composed of all the 

sparse code vectors . 

This optimization problem is nonconvex when both  and  are unknown, 

however, it becomes convex if one of D or  is fixed, that is why it is generally 

solved iteratively by fixing the dictionary  and updating the sparse codes , and 

then fixing  and updating . 
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How to update the dictionary atoms is the key difference between 

dictionary learning algorithms. Some dictionary learning methods update, in each 

iteration, the whole set atoms. This is the case of one of the early and simple 

dictionary learning MOD (Method of Optimal Direction) [17], which updates the 

whole dictionary using the closed form of the Mean Squared Error (MSE) 

estimator . 

Other dictionary learning algorithms update the dictionary atoms 

successively one by one, like the case of the very famous and successful 

dictionary learning algorithm K-SVD [19]. In the sparse coding stage, K-SVD 

uses greedy Orthogonal Matching Pursuit (OMP) [23] to find the sparse code for 

each training sample. While in the dictionary update stage, for each dictionary 

atom, K-SVD selects only the training samples that use this atom. The update of 

the selected dictionary atom is done in a way that minimizes the restricted error 

(which is the only part of the total sparse representation error that is affected by 

the selected atom), and for this purpose K-SVD evaluates the Singular Value 

Decomposition (SVD  ( of the restricted error [19]. 

The cost function in (2) only measures the representation power of the 

Dictionary D. In the case of classification task, discriminative power of the sparse 

code x should be considered. This leads to a new trend in dictionary learning 

algorithms called “discriminative” or “supervised” dictionary learning in which 

the cost function reflects both the representation and classification error.   

FDDL [21] uses labels information in both the dictionary update stage and 

the sparse coding stage. In FDDL, the sparse codes of the training samples are 

forced to have small within-class scatter but big between-class scatter. Also, each 

class-specific sub-dictionary is forced to have good reconstruction capability for 

the training samples from that class but poor reconstruction capability for other 

classes. Therefore, both the representation residual and the representation 

coefficients of the query sample are discriminative. 

FDDL has been applied to image classification [21], face recognition [34], 

and facial expression recognition [35].  
 

2.2 Speech Enhancement using Sparse Coding 

Sigg [13] proposed a supervised speech enhancement method based on 

learning two dictionaries, one for clean speech and another for noise, according to 

the following formulations: 

 

 
Sigg proposed GDL to solve each of the previous problems. GDL is in 

fact, a variation of the approximate K-SVD [20], the only difference is at the 
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sparse coding stage. Sigg proposed Least Angle Regression with Coherence 

Criterion (LARC) [13] for sparse coding, instead of the greedy OMP [23]. LARC 

is a variation of the LARS [24], where the coherence between the residual error 

and the dictionary is being used as stopping criterion instead of the l2 norm of the 

residual error.  

The problem with GDL is that the two sub-dictionaries and are 

being learnt independently (see equation (3) and (4)), and thus source confusion 

error is not being considered. FDDL algorithm takes into consideration this 

problem, and the objective is to learn a class specific dictionary that has low 

representation error for samples of the same class, and high representation error 

for samples of other classes (low confusion). 

3 Speech Enchantement System using FDDL 

The proposed speech enhancement system is depicted in Fig. 1. The 

system contains two stages: training and enhancement. In the training stage we 

learn the FDDL dictionary that models the amplitude spectrum of the training 

clean speech and noise samples. The amplitude of the Short Time Fourier 

coefficients STFT for the overlapping time frames of the clean speech and noise 

training signals are calculated after applying a Hamming window. The amplitude 

spectrum coefficients for all training frames are concatenated as columns to form 

 and , and fed to the FDDL algorithm that learns the clean speech sub-

dictionary , and the noise sub-dictionary . These two sub-dictionaries are 

concatenated together to form the overall dictionary, that contains  coulmns. 

At the enhancement phase, using LARC and the dictionary , the sparse 

codes  for the amplitude spectrum coefficients of the overlapping frames of the 

noisy signal are calculated. The columns of  are the sparse code vectors  is the 

number of FFT coefficients), which contain  coefficients; the first  ones  

that correspond to the sub-dictionary  are separated from the last  ones  that 

correspond to the sub-dictionary . By multiplying  by , and multiplying 

 by  we get an initial estimation for the amplitude spectrum of the clean 

speech and noise signals respectively. These initial estimations are fed to Wiener 

filter to find the final clean speech amplitude spectrum estimation. Finally, we 

apply Inverse Fourier Transform to the estimated amplitude spectrum combined 

with the noisy phase spectrum to get the estimated clean speech.  
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Fig. 1. The overall speech enhancement system 

 

In the previous setting, FDDL [21] iterates between two steps. After 

initializing the dictionary the first step is to find the sparse codes  of the 

training samples  over the dictionary . This includes finding  the 

sparse codes of the speech samples ( is the number of clean speech 

training frames, and the sparse codes of the noise samples 

 (  is the number of noise training frames) (equations (5),(6)). In the 

second step, the sparse codes  (concatenation of  and ) are fixed while the 

total dictionary  is updated. First, the sub-dictionary specific for representing 

noise samples  is fixed while the sub-dictionary specific for 

representing clean speech samples  is updated (equation (7)), then  

is fixed while  is updated (equation (8)).  and  who has the same number 

of atoms  are concatenated to form the total dictionary , which has  

atoms. 
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1. Update     (  is fixed): 

a. Update  ( ,  are fixed) 

 

b. Update  ( ,  are fixed) 

 

2. Update  (  fixed) 

a. Update    ( ,  are fixed): 

 

 

b. Update  ( ,  fixed):  

 

 

 

In the previous equations:  is matrix formed by the first  rows 

of ,  is the last  rows of . The same applies to 

 (first and last  rows of ), and to  (first and last 

 rows of ). ,  and  are the mean vector matrices (by taking  

the mean of ,  the mean of ,  the mean of as all the columns 

vectors)[21].  represents the speech distortion error,  

represents the noise confusion error,  represents the noise 

distortion error, and  represents the speech confusion error. Thus we can 

see that FDDL tries to minimize both distortion and confusion errors.  

Yang [21] showed that equation (5) and (6) can be solved using Fast 

Iterative Shrinkage and Thresholding Algorithm (FISTA) [25], and problems (7) 

and (8) can be solved using the algorithm described in [33]. Vu [22] proposed an 

efficient implementation for FDDL (E-FDDL) where he used the iterative 

(ADMM) Alternating Direction of Multipliers Method [32] for solving (7) and 
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(8). 

 

4 Experiments 

4.1 Noizeus Dataset 

Noizeus [27] is a noisy database that contains 30 IEEE sentences produced 

by three male and three female speakers, with 5 different sentences per speaker. 

The sentences are corrupted by eight different real-world noises at different SNRs: 

(0,5,10,15) dB. The noise was taken from the AURORA database and includes 

suburban train noise, babble, car, exhibition hall, restaurant, street, airport and 

train-station noise [27]. All speech and noise signals are sampled at 8 kHz. 

As the database contains a small number of speakers, for the speaker 

independent case, we have divided the dataset into two sets: a training set 

containing three speakers and a testing set containing the left three other speakers. 

We have created 10 training/test sets through permutations of three speakers out 

of 6 and averaged the results. All the training sets contain male and female 

speakers. 

To assess the performance of our proposed speech enhancement system we 

compared its performance in terms of two objective measures: Frequency 

Weighted Segmental SNR (fwSegSNR) and Perceptual Evaluation of Speech 

Quality (PESQ) against two other different DL algorithms: K-SVD and GDL. 

FwSegSNR is the estimated mean frequency domain SNR over all the 

time frames, with a perceptually motivated frequency band weighting. 

FwSegSNR can be calculated through the following equation: 

 

Where  are the complex FFT coefficients of the clean speech,  is 

the frame index,  is the frequency component index,  is the total number of 

frames in the speech signal,  is the total number of frequency components,  is 

the corresponding frequency weighting,  is the sum of all the frequency weights, 

and  are the estimated complex spectrum coefficients of the enhanced 

speech. 

PESQ [28] is widely used international measure to assess speech quality 

through telephony network. Its derivation can be found in [28]. For both measure 

we have used the implementation provided by [29]. 
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4.2 Experimental Results  

We have used the same speech enhancement system depicted in Fig. 1, but 

with the different DL algorithms: FDDL, K-SVD and GDL. Different frame 

lengths were investigated; starting with 256 up to 1024 samples (from 32 ms to 

128 ms) with 50% overlapping. We have found that longer frames always give 

better results, as this will increase the dimension of the feature space and thus 

results in lower coherence between the clean speech and noise sub-dictionaries, 

which means lower source confusion error. The frame length used in the reported 

results below is 128 ms, and the number of DFT coefficients is 1024, only half of 

them is kept because of symmetry. For LARC, the stopping residual coherence 

thresholds is set to µ=0.15 in GDL at the training stage, while it is set to µ=0.1 for 

sparse coding at the enhancement stage, as has been noted by Sigg in [13]. For 

FDDL implementation, we have used the efficient implementation provided by Vu 

[22] denoted by E-FDDL, where two parameters are to be tuned: , and  

(equation (6)). Following the same procedure in [21], we have tried different 

values spanning the set {0, 0.001, 0.005, 0.01, 0.05} for both parameters, on a 

validation test group, and found that ,  give the best 

performance in terms of both performance measures. Experiments were conducted 

using Matlab 2015Ra on a laptop with 3.16 GHz Intel core i5 processor and 4 GB 

RAM. The reported results listed below are for the case where the number of 

atoms  (which means that the dimensions of the dictionary are 

), with an initial dictionary built via Online Dictionary Learning 

(ODL) [26] algorithm, as implemented in E-FDDL [22]. We have investigated 

using an initial dictionary formed by  random samples of clean speech and  

random samples of noise, and we found that no gain is achieved by FDDL in this 

case.  

All supervised speech enhancement methods need prior clean speech and 

noise samples training. Noise samples can be obtained either through a Voice 

Activity Detector (VAD) from non-speech segments, or from an offline noise 

database like Noisex-92 [30] (if noise recordings are available for the specific 

noise type we are interested in our speech enhancement system). For Noizeus, we 

have created a noise dataset through the subtraction of clean speech recordings 

from the noisy recordings in the training dataset. Regarding clean speech samples, 

the proposed system can use any clean speech samples we have, as we have tested 

the speaker independent scenario. The need for training data might look as a 

limitation, but we will see that it leads to a considerable superior performance 

compared to non-supervised speech enhancement methods that do not incorporate 

a training stage. To compare the performance of the proposed system with the 
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non-supervised speech enhancement methods, we reported the performance of 

Geometrical Approach (GA) [2] speech enhancement method on Noizeus dataset. 

GA is one of the spectral subtraction method variations that addresses the problem 

of musical noise. We have used the implementation of GA provided by P.Loizou 

[31]. 

Table 1 shows the Frequency weighted segmental SNR for the different 

dictionary learning algorithms and for the GA speech enhancement method, and 

the improvement achieved by FDDL (FDDL gain). We can see that FDDL 

algorithm performs better in terms of FwSegSNR (higher values) in some cases 

(13 out of 27), especially in car and train noises, but not in the case of white noise, 

as it is not a structured noise. 

 
Table 1:  

FwSegSNR for GA method and the three DL methods, and FDDL gain 
Noise dB GA K-SVD GDL FDDL FDDL 

gain% 

babble 0 4.57 6.17 6.13 6.23 0.96 

5 5.75 7.89 7.97 7.91 -0.75 

10 7.40 9.76 9.92 9.70 -2.26 

15 9.24 11.90 12.18 12.13 -0.41 

car 0 4.91 7.14 7.16 7.53 4.91 

5 6.03 8.55 8.58 8.86 3.16 

10 7.27 10.26 10.35 10.63 2.63 

15 8.79 12.57 12.69 12.76 0.54 

restaurant 0 4.69 6.52 6.48 6.54 0.30 

5 6.02 7.83 7.95 7.86 -1.14 

10 7.61 9.66 9.75 9.49 -2.73 

15 9.33 11.44 11.64 11.46 -1.57 

station 0 4.73 6.06 6.10 6.25 2.40 

5 5.95 7.91 8.04 8.07 0.37 

10 7.27 9.88 10.02 9.96 -0.60 

15 9.01 11.96 12.09 11.95 -1.17 

Train 0 5.16 7.57 7.50 7.70 1.68 

5 6.23 8.91 8.56 8.96 0.55 

10 7.62 10.30 10.46 10.74 2.60 

Airport 0 4.61 6.65 6.54 6.74 1.33 

5 5.75 8.16 8.28 8.30 0.24 

10 7.41 10.22 10.19 10.13 -0.88 

15 9.15 12.25 12.31 12.29 -0.16 

White 0 4.61 7.11 6.98 6.92 -2.74 

5 5.71 8.68  8.49 8.44 -2.84 

10 6.99 10.56 10.26 10.28 -2.72 

15 8.36 12.73 12.28 12.63 -0.79 

 

Table 2 shows the PESQ for the different dictionary learning algorithms 

and for the GA speech enhancement method. We notice that FDDL outperforms 
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all other methods for all noise types regardless of the noise level, expect in the 

case of white noise, where K-SVD has the highest performance. 

Results show that in terms of fwSegSNR, FDDL has systematically higher 

performance when the noise level is the highest (0 dB), while in all other cases the 

best approach varies. This hints that “source confusion” error has noticeable effect 

when noise level is high, while has a very marginal impact when noise level is 

low. However, in terms of PESQ, FDDL always has the highest performance for 

all noise types expect in the case of white noise, regardless of the noise level. This 

hints that “source confusion” error is more correlated with speech intelligibility 

than speech quality, and thus lowering this error will enhance speech 

intelligibility, but not necessarily speech quality. In addition, for all noise levels, 

FDDL has superior performance in terms of both fwSegSNR and PESQ in the 

case of car noise and train noise.  
Table 2:  

PESQ for GA method and the three DL methods, and FDDL gain 

Noise dB GA K-SVD GDL FDDL FDDL 

gain% 

babble 0 1.83 1.87 1.89 1.94 2.57 

5 2.16 2.19 2.20 2.23 1.34 

10 2.51 2.46 2.51 2.52 0.39 

15 2.83 2.76 2.85 2.85 0 

car 0 1.84 2.24 2.28 2.36 3.38 

5 2.18 2.43 2.49 2.55 2.35 

10 2.52 2.61 2.68 2.71 1.10 

15 2.83 2.82 2.93 2.93 0 

restaurant 0 1.78 1.87 1.88 1.91 1.57 

5 2.12 2.11 2.13 2.17 1.84 

10 2.48 2.44 2.47 2.49 0.80 

15 2.78 2.68 2.78 2.79 0.35 

station 0 1.81 1.89 1.94 1.98 2.02 

5 2.18 2.23 2.29 2.33 1.71 

10 2.49 2.50 2.57 2.59 0.77 

15 2.80 2.74 2.81 2.82 0.35 

Train 0 1.82 2.32 2.23 2.40 3.33 

5 2.12 2.46 2.40 2.55 3.52 

10 2.44 2.52 2.61 2.74 4.74 

Airport 0 1.70 1.94 1.93 1.99 2.51 

5 2.17 2.25 2.26 2.30 1.73 

10 2.49 2.52 2.53 2.57 1.55 

15 2.83 2.79 2.81 2.85 1.40 

White 0 1.79 2.39 2.32 2.38 -0.42 

5 2.20 2.63 2.54 2.61 -0.76 

10 2.53 2.84 2.75 2.83 -0.35 

15 2.83 3.03 2.95 3.03 0 

 

We also notice that the three supervised DL based speech enhancement 
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methods outperform the unsupervised GA speech enhancement method and have a 

considerable improvement over GA in terms of both fwSegSNR and PESQ. 

 

4.3 Complexity Analysis 

 

Vu provided a complexity analysis for E-FDDL [22], and for the original 

FDDL [21] denoted as O-FDDL. E-FDDL has the advantage of having 

considerably lower complexity compared to O-FDDL. In the context of speech 

enhancement, the number of classes  (clean speech and noise). In our 

experiments we have tuned the internal iteration number  for ADMM algorithm 

in E-FDDL dictionary update stage and found that  is optimal. The number 

of atoms in each sub-dictionary is , the dimension of speech feature 

vectors  and the number of training samples (frames) for both clean 

speech and noise  (on average because we have created 10 training/test 

group and in each group we have different number for ), the sparsity degree 

. Rubinstein provided the implementation and complexity analysis for 

approximate K-SVD [20]. As we need to build two K-SVD dictionaries one for 

clean speech and another for noise, the complexity of using K-SVD for speech 

enhancement will be multiplied by 2. The same multiplication applies to the 

complexity of GDL, which can be calculated as follows: In each iteration we have 

(1) updating the dictionary using the approximate K-SVD algorithm, having a 

complexity of  per iteration [20], (2) updating the 

sparse codes using LARC algorithm (LARC is the same as LARS with different 

stopping criterion), having a complexity of  [24]. Thus, the total 

complexity needed for GDL is : . 

Table 3 shows the complexity analysis (per iteration) for both E-FDDL, K-SVD 

and GDL in the context of speech enhancement, with the plugging numbers.  
 

Table 3:  

Complexity analysis (per iteration) of using the three DL in the context of speech 

enhancement 

Method Complexity Plugging 

numbers 

K-SVD (  
GDL 2   

E-FDDL   
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We notice that E-FDDL has the highest complexity, due to the internal 

ADMM iterations at the dictionary update stage. 

 

5. Conclusions 

 

In this paper we proposed a new speech enhancement system that uses 

FDDL for modeling both the clean speech and noise. FDDL cost function 

accounts for both “source distortion” and “source confusion” errors. The 

performance of the proposed algorithm was evaluated using two objective 

measures: the frequency weighted SNR (FwSegSNR) and PESQ to compare 

against two well-known supervised dictionary learning algorithms: K-SVD, GDL, 

and against GA, which is an unsupervised speech enhancement method. 

Experiments on Noizeus dataset shows that the unsupervised GA method has the 

worst performance. Results shows that FDDL has higher performance in 

comparison to other studied DL in terms of both measures, in almost half of the 

cases, but not in the case of white noise. Specifically, FDDL outperforms other 

studied DL methods in the presence of considerable noise (0 dB) for all studied 

noise types, except in the case of white noise, and in the case of structured non-

stationary noise like car noise and train noise for all noise levels. Hence, it is 

recommended to use FDDL for speech enhancement in these cases.  
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