Ottmar Möhler

Ottmar Möhler
Karlsruhe Institute of Technology | KIT · Institute of Meteorology and Climate Research

Dr.

About

373
Publications
36,795
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
13,312
Citations
Introduction
My team uses the AIDA cloud simulation chambers for ice-nucleation research, measures aerosols and ice-nucleating particles in field campaigns, and develops instruments like the Portable Ice Nucleation Experiment (PINE) for ice-nucleating particle (INP) measurements and for use on unmanned aerial vehicles (UAVs).

Publications

Publications (373)
Article
Full-text available
New particle formation in the upper free troposphere is a major global source of cloud condensation nuclei (CCN) 1–4 . However, the precursor vapours that drive the process are not well understood. With experiments performed under upper tropospheric conditions in the CERN CLOUD chamber, we show that nitric acid, sulfuric acid and ammonia form parti...
Article
Full-text available
The formation of ice particles in Earth's atmosphere strongly influences the dynamics and optical properties of clouds and their impacts on the climate system. Ice formation in clouds is often triggered heterogeneously by ice-nucleating particles (INPs) that represent a very low number of particles in the atmosphere. To date, many sources of INPs,...
Article
Intense new particle formation events are regularly observed under highly polluted conditions, despite the high loss rates of nucleated clusters. Higher than expected cluster survival probability implies either ineffective scavenging by pre-existing particles or missing growth mechanisms. Here we present experiments performed in the CLOUD chamber a...
Article
Full-text available
Laboratory measurements at the AIDA cloud chamber and airborne in situ observations suggest that the homogeneous freezing thresholds at low temperatures are possibly higher than expected from the so-called “Koop line”. This finding is of importance, because the ice onset relative humidity affects the cirrus cloud coverage and, at the very low tempe...
Preprint
Full-text available
Dust particles emitted from high latitudes (≥ 50° N and ≥ 40° S, including Arctic as a subregion ≥ 60° N), have a potentially large local, regional, and global significance to climate and environment as short-lived climate forcers, air pollutants and nutrient sources. To understand the multiple impacts of the High Latitude Dust (HLD) on the Earth s...
Article
Full-text available
Here, we present a multi‐season study of ice‐nucleating particles (INPs) active via the immersion freezing mechanism, which took place in north‐central Argentina, a worldwide hotspot for mesoscale convective storms. INPs were measured untreated, after heating to 95°C, and after hydrogen peroxide digestion. No seasonal cycle of INP concentrations wa...
Article
Full-text available
Biogenic organic precursors play an important role in atmospheric new particle formation (NPF). One of the major precursor species is α-pinene, which upon oxidation can form a suite of products covering a wide range of volatilities. Highly oxygenated organic molecules (HOMs) comprise a fraction of the oxidation products formed. While it is known th...
Article
Full-text available
Primary ice formation in mixed-phase clouds is initiated by a minute subset of the ambient aerosol population, called ice-nucleating particles (INPs). The knowledge about their atmospheric concentration, composition, and source in cloud-relevant environments is still limited. During the 2017 joint INUIT/CLACE (Ice Nuclei research UnIT/CLoud–Aerosol...
Preprint
The formation of ice particles in Earth’s atmosphere strongly influences the dynamics and optical properties of clouds and their impacts on the climate system. Ice formation in clouds is often triggered heterogeneously by ice nucleating particles (INPs) that represent a very low number of particles in the atmosphere. To date, many sources of INPs,...
Article
Full-text available
Formation of ice particles in clouds at temperatures of −10 ∘C or warmer was documented by using ground-based radar observations. At these temperatures, the number concentration of ice-nucleating particles (INPs) is not only expected to be small, but this number is also highly uncertain. In addition, there are a number of studies reporting that the...
Article
Full-text available
Homogeneous freezing of aqueous solution aerosol particles is an important process for cloud ice formation in the upper troposphere. There the air temperature is low, the ice supersaturation can be high and the concentration of ice-nucleating particles is too low to initiate and dominate cirrus cloud formation by heterogeneous ice nucleation proces...
Article
Full-text available
In this work, an abundance of ice-nucleating particles (INPs) from livestock facilities was studied through laboratory measurements from cloud-simulation chamber experiments and field investigation in the Texas Panhandle. Surface materials from two livestock facilities, one in the Texas Panhandle and another from McGregor, Texas, were selected as d...
Article
Full-text available
Sea spray aerosol particles are a recognised type of ice-nucleating particles under mixed-phase cloud conditions. Entities that are responsible for the heterogeneous ice nucleation ability include intact or fragmented cells of marine microorganisms as well as organic matter released by cell exudation. Only a small fraction of sea spray aerosol is t...
Article
Full-text available
Volcanic ash (VA) from explosive eruptions contributes to aerosol loadings in the atmosphere. Aside from the negative impact of VA on air quality and aviation, these particles can alter the optical and microphysical properties of clouds by triggering ice formation, thereby influencing precipitation and climate. Depending on the volcano and eruption...
Article
Full-text available
The abundance of aerosol particles and their ability to catalyze ice nucleation are key parameters to correctly understand and describe the aerosol indirect effect on the climate. Cirrus clouds strongly influence the Earth's radiative budget, but their effect is highly sensitive to their formation mechanism, which is still poorly understood. Sulfat...
Preprint
Full-text available
New Particle Formation (NPF) from biogenic organic precursors is an important atmospheric process. One of the major species is α-pinene, which upon oxidation, can form a suite of products covering a wide range of volatilities. A fraction of the oxidation products is termed Highly Oxygenated Organic Molecules (HOM). These play a crucial role for nuc...
Preprint
Full-text available
Primary ice formation in mixed-phase clouds is initiated by a minute subset of the ambient aerosol population, called ice-nucleating particles (INPs). The knowledge about their atmospheric concentration, their composition, and source in cloud-relevant environments is still limited. During the joint INUIT/CLACE (Ice Nuclei research UnIT/ CLoud–Aeros...
Article
Full-text available
Formation of ice particles in clouds at the temperatures of -10 $^\circ$C or warmer is documented by using ground-based remote sensing observations. At these temperatures, the number concentration of ice nucleating particles (INPs) is not only expected to be small, but also this number is highly uncertain. In addition, there are a number of studies...
Preprint
Full-text available
Laboratory measurements at the AIDA cloud chamber and airborne in-situ observations suggest that the homogeneous freezing thresholds at low temperatures are possibly higher than expected from the so-called “Koop-line”. This finding is of importance, because the ice onset relative humidity affects the cirrus cloud coverage and, at the very low tempe...
Preprint
Full-text available
Homogeneous freezing of aqueous solution aerosol particles is an important process for cloud ice formation in theupper troposphere. There the air temperature is low, the ice supersaturation can be high, and the concentration of ice-nucleating particles is too low to initiate and dominate cirrus cloud formation by heterogeneous ice nucleation proces...
Preprint
Full-text available
Sea spray aerosol particles are a recognised type of ice-nucleating particles under mixed-phase cloud conditions. Entities that are responsible for the heterogeneous ice nucleation ability include intact or fragmented cells of marine microorganisms as well as organic matter released by cell exudation. Only a small fraction of sea salt aerosol is tr...
Article
Full-text available
Ice-nucleating particles (INPs) trigger the formation of cloud ice crystals in the atmosphere. Therefore, they strongly influence cloud microphysical and optical properties and precipitation and the life cycle of clouds. Improving weather forecasting and climate projection requires an appropriate formulation of atmospheric INP concentrations. This...
Article
Full-text available
Infrared spectroscopic observations have shown that crystalline ammonium nitrate (AN) particles are an abundant constituent of the upper tropospheric aerosol layer which is formed during the Asian summer monsoon period, the so-called Asian Tropopause Aerosol Layer (ATAL). At upper tropospheric temperatures, the thermodynamically stable phase of AN...
Article
Full-text available
Atmospheric ice-nucleating particles (INPs) play an important role in determining the phase of clouds, which affects their albedo and lifetime. A lack of data on the spatial and temporal variation of INPs around the globe limits our predictive capacity and understanding of clouds containing ice. Automated instrumentation that can robustly measure I...
Preprint
Full-text available
The abundance of aerosol particles and their ability to catalyze ice nucleation are key parameters to correctly understand and describe the aerosol indirect effect on the climate. Cirrus clouds strongly influence the Earth's radiative budget, but their effect is highly sensitive to their formation mechanism, which is still poorly understood. Sulfat...
Article
Full-text available
Iodic acid (HIO 3 ) is known to form aerosol particles in coastal marine regions, but predicted nucleation and growth rates are lacking. Using the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber, we find that the nucleation rates of HIO 3 particles are rapid, even exceeding sulfuric acid–ammonia rates under similar conditions. We also find th...
Article
Full-text available
Glaciation in mixed-phase clouds predominantly occurs through the immersion-freezing mode where ice-nucleating particles (INPs) immersed within supercooled droplets induce the nucleation of ice. Model representations of this process currently are a large source of uncertainty in simulating cloud radiative properties, so to constrain these estimates...
Preprint
Full-text available
This study presents a comprehensive investigation of ice-nucleating particles (INPs) in the surface materials and aerosol 20 particles from U.S. cattle feeding facilities. Using a modern suite of online and offline aerosol particle characterization instruments, we conducted a three-year field survey (2016-2019), Aerosol Interaction and Dynamics in...
Conference Paper
Full-text available
We present our field results of ice-nucleating particle (INP) measurements from the commercialized version of the Portable Ice Nucleation Experiment (PINE) chamber from two different campaigns. Our first field campaign, TxTEST, was conducted at West Texas A&M University (July–August 2019), and the other campaign, ExINP-SGP, was held at the Atmosphe...
Conference Paper
Full-text available
This study considers how feedlot dust size and composition contribute to atmosphericice nucleation and the formation of local cloud and precipitation in the Texas Panhandle. [...]
Article
Full-text available
Quantifying the impact of complex organic particles on the formation of ice crystals in clouds remains challenging, mostly due to the vast number of different sources ranging from sea spray to agricultural areas. In particular, there are many open questions regarding the ice nucleation properties of organic particles released from terrestrial sourc...
Article
Full-text available
In recent years, sea spray as well as the biological material it contains has received increased attention as a source of ice-nucleating particles (INPs). Such INPs may play a role in remote marine regions, where other sources of INPs are scarce or absent. In the Arctic, these INPs can influence water–ice partitioning in low-level clouds and thereb...
Preprint
Full-text available
Atmospheric ice-nucleating particles (INP) play an important role in determining the phase of clouds, which affects their albedo and lifetime. A lack of data on the spatial and temporal variation of INPs around the globe limits our predictive capacity and understanding of clouds containing ice. Automated instrumentation that can robustly measure IN...
Preprint
Full-text available
Infrared spectroscopic observations have shown that crystalline ammonium nitrate (AN) particles are an abundant constituent of the upper tropospheric aerosol layer which is formed during the Asian summer monsoon period, the so-called Asian Tropopause Aerosol Layer (ATAL). At upper tropospheric temperatures, the thermodynamically stable phase of AN...
Preprint
Full-text available
Ice-nucleating particles (INPs) trigger the formation of cloud ice crystals in the atmosphere. Therefore, they strongly influence cloud microphysical and optical properties, as well as precipitation and the life cycle of clouds. Improving weather forecasting and climate projection requires an appropriate formulation of atmospheric INP concentration...
Presentation
Full-text available
EGU2020 Sharing Geoscience Online - the PINE presentation video available - if you have any comments, please post directly on the following web. https://meetingorganizer.copernicus.org/EGU2020/EGU2020-12385.html
Article
Full-text available
Recent satellite observations and high‐altitude aircraft measurements have demonstrated the presence of solid ammonium nitrate particles in the Asian monsoon upper troposphere. Most likely, these particles are formed by a heterogeneous crystallization mechanism, given that efflorescence is strongly inhibited for pure ammonium nitrate solution dropl...
Article
We describe a new tunable diode laser (TDL) absorption instrument, the Chicago Water Isotope Spectrometer, designed for measurements of vapor-phase water isotopologues in conditions characteristic of the upper troposphere [190–235 K temperature and 2–500 parts per million volume (ppmv) water vapor]. The instrument is primarily targeted for measurin...
Preprint
Full-text available
Abstract. In recent years, sea spray and the biological material it contains has received increased attention as a source of ice nucleating particles (INPs). Such INPs may play a role in remote marine regions, where other sources of INPs are scarce or absent. Marine aerosol is of diverse nature, so identifying sources of INPs is challenging. One fr...
Article
Full-text available
High-altitude cirrus clouds are climatically important: their formation freeze-dries air ascending to the stratosphere to its final value, and their radiative impact is disproportionately large. However, their formation and growth are not fully understood, and multiple in situ aircraft campaigns have observed frequent and persistent apparent water...
Preprint
Full-text available
Abstract. Glaciation in mixed-phase clouds predominately occurs through the immersion freezing mode where ice nucleating particles (INPs) immersed within supercooled droplets induce nucleation of ice. Currently, model representations of this process are a large source of uncertainty in simulating cloud radiative properties, and to constrain these e...
Poster
Full-text available
Abstract: We present our first laboratory calibration and field results of a newly developed commercial ice nucleation chamber, the so-called PINE. The PINE instrument is developed based on the design of the AIDA cloud chamber (Möhler et al., 2003) to advance online atmospheric ice nucleation research. A unique aspect of the PINE chamber includes i...
Article
A porous composite of 3-dimensional (3D) reduced graphene oxide (rGO) and silica dioxide nanoparticles (PrGO-SN) was synthesized via a single-step hydrothermal process, which can initiate facile ice nucleation and growth starting from temperature as high as - 8 oC and 5 – 8 % RH supersaturation and sustain rapid ice crystal growth. The excellent ic...
Preprint
Full-text available
Abstract. Quantifying the impact of complex organic particles on the formation of ice crystals in clouds remains challenging, mostly due to the vast number of different sources ranging from sea spray to agricultural areas. In particular, there are many open questions regarding the ice nucleation properties of organic particles released from terrest...
Article
Full-text available
As part of the A-LIFE (Absorbing aerosol layers in a changing climate: aging, LIFEtime and dynamics) campaign, ground-based measurements were carried out in Paphos, Cyprus, to characterize the abundance, properties, and sources of aerosol particles in general and cloud condensation nuclei (CCN) and ice-nucleating particles (INP) in particular. New...
Article
Full-text available
The rise of ammonia emissions in Asia is predicted to increase radiative cooling and air pollution by forming ammonium nitrate particles in the lower troposphere. There is, however, a severe lack of knowledge about ammonia and ammoniated aerosol particles in the upper troposphere and their possible effects on the formation of clouds. Here we employ...
Article
Full-text available
Ice-nucleating particles (INPs), which are precursors for ice formation in clouds, can alter the microphysical and optical properties of clouds, thereby impacting the cloud lifetimes and hydrological cycles. However, the mechanisms with which these INPs nucleate ice when exposed to different atmospheric conditions are still unclear for some particl...
Article
Full-text available
Ice nucleation abilities of surface collected mineral dust particles from the Sahara (SD) and Asia (AD) are investigated for the temperature (T) range 253–233 K and for supersaturated relative humidity (RH) conditions in the immersion freezing regime. The dust particles were also coated with a proxy of secondary organic aerosol (SOA) from the dark...
Article
Full-text available
We present the laboratory results of immersion freezing efficiencies of cellulose particles at supercooled temperature (T) conditions. Three types of chemically homogeneous cellulose samples are used as surrogates that represent supermicron and submicron ice-nucleating plant structural polymers. These samples include microcrystalline cellulose (MCC...
Article
Full-text available
High-altitude cirrus clouds are climatically important: their formation freeze-dries air ascending to the stratosphere to its final value, and their radiative impact is disproportionately large. However, their formation and growth are not fully understood, and multiple in-situ aircraft campaigns have observed frequent and persistent apparent water...
Article
Full-text available
As part of the A-LIFE (Absorbing aerosol layers in a changing climate: aging, lifetime and dynamics) campaign, ground-based measurements were carried out in Paphos, Cyprus, for characterizing the abundance, properties and sources of aerosol particles in general, and cloud condensation nuclei (CCN) and ice nucleating particles (INP), in particular....
Article
The contribution of heterogeneous ice nucleation to the formation of cirrus cloud ice crystals is still not well quantified. This results in large uncertainties when predicting cirrus radiative effects and their role in Earth's climate system. The goal of this case study is to simulate the composition, and thus activation conditions, of ice nucleat...
Article
Full-text available
The mineralogy and mixing state of dust particles originating from the African continent influences climate and marine ecosystems in the North Atlantic due to its effect on radiation, cloud properties and biogeochemical cycling. However, these processes are difficult to constrain because of large temporal and spatial variability, and the lack of in...