Note

Sparse graph certificates for mixed connectivity

O. Fülöp

Institute of Mathematics, Technical University of Budapest, Egry József u. 1., H-1521 Budapest, Hungary

Received 14 February 2002; received in revised form 24 April 2003; accepted 18 November 2004

Abstract

We give a short proof for the Mixed Connectivity Certificate Theorem of Even, Itkis and Rajsbaum and provide an upper bound on the edge number of a certificate of local T-mixed connectivity up to k.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Mixed cut; Legal ordering; Greedy forest; Mixed connectivity certificate

1. Introduction

1.1. Basic concepts

Let k be a positive integer, and $G = (V, E)$ an undirected graph with n nodes and m edges. For two distinct nodes x and y of G let $\lambda(x, y; G)$ (respectively $\kappa(x, y; G)$) denote the local edge connectivity (local node connectivity) of x and y in G, that is, the maximum number of edge-disjoint (internally node-disjoint) paths between x and y in G.

A sparse certificate of local node connectivity up to k (local edge connectivity up to k) for G is a subgraph $G' = (V, E')$ of G, $(E' \subseteq E)$, such that G' has $O(kn)$ edges and $\kappa(x, y; G') \geq \min\{k, \kappa(x, y; G)\}$, $\lambda(x, y; G') \geq \min\{k, \lambda(x, y; G)\}$ for every two nodes x and y.

E-mail address: otti@math.bme.hu.

1 Supported by Hungarian National Foundation for Scientific Research (OTKA) Grants no. T029772 and T037547.

0012-365X/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
These notions have been unified in [4] as follows. For a subset T of nodes, G is called T-simple if it does not contain loops and all sets of parallel edges connect nodes in $V - T$; thus nodes from T cannot be incident to parallel edges. All graphs in this note are assumed to be T-simple, and so we omit this condition from the statement of each result.

We say that a family of paths connecting two nodes x and y is T-independent if they are edge-disjoint and every element of T is contained in at most one path as an inner node.

Let $\lambda_T(x, y; G)$ denote the maximum number of T-independent paths connecting x and y in G. Two nodes x and y are said to be T-mixed k-connected if $\lambda_T(x, y; G) \geq k$.

Observe that $\lambda_T = \lambda$ when $T = \emptyset$ and $\lambda_T = \kappa$, when $T = V$. The global T-mixed connectivity of graph G is $\lambda_T(G) := \min_{x,y \in V} \lambda_T(x, y; G)$. G is T-mixed k-connected if $\lambda_T(G) \geq k$.

A sparse certificate of local T-mixed connectivity up to k for G is a subgraph $G' = (V, E')$, $E' \subseteq E$, such that G' has $O(kn)$ edges and for any two nodes x and y, $\lambda_T(x, y; G') \geq \min[k, \lambda_T(x, y; G)]$. Similarly, G' is a sparse certificate of global T-mixed connectivity up to k for G if it has $O(kn)$ edges and $\lambda_T(G') \geq \min[k, \lambda_T(G)]$. Note that certificates of local connectivity up to k are also certificates of global connectivity up to k; the converse is generally not true.

Let $\{Z, A, B\}$ be a partition of V such that $\emptyset \subseteq Z \subseteq T$, $A \neq \emptyset$ and $B \neq \emptyset$, $\Delta_E(A, B)$ denotes the set of all edges from E between A and B and $d_E(A, B) := |\Delta_E(A, B)|$. We say that a pair $C := (Z, \Delta_E(A, B))$ is a T-mixed cut. C separates two nodes x and y if one of them belongs to A and the other belongs to B. The cardinality of C is defined to be $|Z| + d_E(A, B)$. Menger's theorem implies that $\lambda_T(x, y; G)$ is equal to the minimum cardinality of a T-mixed cut separating x and y.

1.2. Previous work

Nishizeki and Poljak [9] showed that the union of k forests F_1, F_2, \ldots, F_k of the graph, where each forest F_i is maximal in the remaining graph $G - (F_1 \cup \cdots \cup F_{i-1})$ is a local edge connectivity certificate up to k of size $< k|V|$.

Nagamochi and Ibaraki [8] constructed sparse certificates of local edge connectivity up to k in linear time in case of simple graphs.

We need some notations and a definition before formulating their results: Let $G = (V, E)$ be an undirected graph with no loops. For an ordering v_1, \ldots, v_n of the nodes, V_i denotes the set of the first i elements. If for two subsets X, Y of nodes $d(X, Y)$ denotes the number of edges connecting $X - Y$ and $Y - X$, and using $d(X) := d(X, V - X)$, we say that an ordering v_1, \ldots, v_n of the nodes is legal if $d(v_i, V_{i-1}) \geq d(v_j, V_{i-1})$ for every pair i, j $(2 \leq i < j \leq n)$. With the help of an appropriate data structure, a legal ordering may be constructed in $O(|E|)$ time.

Each legal ordering v_1, \ldots, v_n of the nodes determines a forest F in the following way (see [8]): for each node v_j, $j \geq 2$ of the legal ordering, we take the smallest index $1 \leq i < j$ such that $\{v_i, v_j\}$ is an edge of the graph and consider all these edges. (In case of parallel edges, we take an arbitrary edge. In this sense, the forest F is not unique.) The union of these edges forms a maximal forest. Note that a legal ordering of G remains legal for the graph obtained by deleting the edges of a forest determined by the legal ordering.

For a legal ordering v_1, \ldots, v_n of the nodes and $i = 2, \ldots, k$, let F_i be the forest determined by the legal ordering of the graph $G - (F_1 \cup \cdots \cup F_{i-1})$. If G is simple,
then the union of these forests is a local node connectivity certificate up to \(k \) for \(G \) (see [3, 4]).

In [4], Frank et al. show that for all \(T \subseteq V \) the algorithm of [8] applied to \(T \)-simple graphs produces certificates of local \(T \)-mixed connectivity up to \(k \).

In [3], we can find the generalization of the main theorem of [4, 2], named the Mixed Connectivity Certificate Theorem.

We give a short proof for this theorem and give an upper bound on the edge number of a small \(T \)-mixed \(k \)-connected subgraph of a \(T \)-mixed \(k \)-connected \(T \)-simple graph and show the existence of a node with degree \(k \) in minimal \(T \)-mixed \(k \)-connected \(T \)-simple graphs.

2. Sparse undirected graph certificates

In [3], the authors define a \(T \)-greedy forest \(F \) in a \(T \)-simple graph as a maximal forest obtained by the following algorithm: initially \(F = \emptyset \). During the procedure, each node is visited at least once. Edges added to \(F \) are incident to the visited node. The first visited node can be arbitrary. Whenever a visit of a node terminates, the next node to be visited can be chosen to be any other node of \(V(F) \), or any node of a component of \(G \) which has no nodes in \(V(F) \) yet. During the first visit of a node \(v \in T \), for every neighbour \(x \) of \(v \) such that \(x \notin V(F) \), add the edge \(\{v, x\} \) to \(F \). When visiting \(v \notin T \) if \(\{v, x\} \) is an edge of the graph and if \(x \notin V(F) \), one is allowed to add \(\{v, x\} \) to \(F \). If an edge is added to \(F \), then its parallel edges, if there are any, may never be added to \(F \). Edges incident to \(v \notin T \) may be added during several visits of the node \(v \). The forests produced by such a procedure are called \(T \)-greedy. In [3], Even et al. prove that any forest determined by a legal ordering of the nodes is a \(T \)-greedy forest, but the converse does not hold.

Theorem 1 (Mixed Connectivity Certificate Theorem of Even, Itkis and Rajsbaum [3]). Let \(G = (V, E) \) be a graph with \(n \) nodes. Let \(k \) be a positive integer and \(F_1 \) a \(T \)-greedy forest of \(G \). For \(i = 2, \ldots, k \), let \(F_i \) be a \(T \)-greedy forest of the graph \(G - (F_1 \cup \cdots \cup F_{i-1}) \), and denote \(E_k := F_1 \cup \cdots \cup F_k \), \(G_k = (V, E_k) \). Then \(\lambda_T(x, y; G_k) \geq \min(k, \lambda_T(x, y; G)) \) for all \(x, y \in V \) (i.e. \(F_1 \cup \cdots \cup F_k \) is a certificate of local \(T \)-mixed connectivity up to \(k \) for \(G \)) and this certificate has at most \(k(n - 1) \) edges.

Lemma 2. If \(x \) and \(y \) are two nodes of the same component of the forest \(F_k \), then \(\lambda_T(x, y; G_k) \geq k \).

Proof. By induction on \(k \), the claim is trivial for \(k = 1 \). Let \(k \geq 2 \) and \((Z, \Delta_E(A, B)) \) a \(T \)-mixed cut such that \(x \in A \), \(y \in B \). Since each \(F_i \) is maximal, we must have \(x \) and \(y \) in the same component of \(F_i \), \(i \leq k \). Consider \(G' := G - F_1 \) and \(J := F_2 \cup \cdots \cup F_k \). If \(F_1 \) contains an edge from \(\Delta_E(A, B) \), then we use the inductive hypothesis for \(G' \) and forests \(F_2, \ldots, F_k \).

\[
|Z| + d_{E_k}(A, B) \geq |Z| + d_J(A, B) + 1 \geq (k - 1) + 1 = k,
\]

so \(\lambda_T(x, y, G_k) \geq k \). Assume now that \(F_1 \) does not contain any edge from \(\Delta_E(A, B) \). Let \(H_1 \) be the component of \(x \) and \(y \) in \(F_1 \). We can assume that the first visited node \(r \) of \(F_1 \)
does not belong to B. Let z_1 be the first visited node of $Z \cap V(H_1)$ in the construction of F_1. Since z_1 belongs to T, on its first visit all edges which connect it to new vertices join F_1. Thus, in J, there are no edges between z_1 and B, i.e. $A' := A + z_1$, where $A' := A + z_1$. If $Z' := Z - z_1$ the inductive hypothesis for G' and F_2, \ldots, F_k gives us

$$|Z| + d_{E_k}(A, B) = 1 + |Z'| + d_{J}(A, B) = 1 + |Z'| + d_{J}(A', B) \geq 1 + (k - 1) = k.$$

Lemma 3. If $F_1 \cup \cdots \cup F_k$ does not contain each edge of a T-mixed cut $(Z, A_E(A, B))$, then the cardinality of the T-mixed cut $(Z, A_{E_k}(A, B))$ is at least k.

Proof. Consider $e = \{x, y\} \in A_E(A, B) - (F_1 \cup \cdots \cup F_k)$. F_k is maximal, and so x and y belong to the same component of F_k. Hence Lemma 2 can be used here. □

Proof of Theorem 1. It is enough to prove the theorem for $k \leq \lambda_T(x, y; G)$. If indirectly $\lambda_T(x, y; G_k) < \min(k, \lambda_T(x, y; G))$ (i.e. $\lambda_T(x, y; G_k) < k$), then there is a T-mixed cut $(Z, A_{E_k}(A, B))$ which separates x and y in G_k with cardinality at most $k - 1$, but no such T-mixed cut may exist in G, and so the cardinality of the T-mixed cut $(Z, A_{E_k}(A, B))$ separating x and y in G is at least k. This means that at least one edge $e \in A_{E_k}(A, B)$ has been left out, i.e. $F_1 \cup \cdots \cup F_k$ does not contain each edge of $A_{E_k}(A, B)$; hence Lemma 3 can be used here and we obtain $|Z| + d_{E_k}(A, B) \geq k$, a contradiction. □

Note, that if x and y are two nodes of the same component of F_k, then the k paths between x and y determined by the forests F_1, F_2, \ldots, F_k are not necessarily T-independent. For example, let $T = V$, $k = 2$ and let us consider the next graph with 9 nodes and 13 edges with $x := v_3$ and $y := v_8$ (see Fig. 1, where solid lines are used for F_1 and dashed lines for F_2). As the authors observed in [3], for $T = V$ in Theorem 1, we obtain the theorem of Cheriyan et al. [2] for sparse certificates for k-node connectivity.

Using Theorem 1, we get the next sparse graph certificate for T-mixed connectivity up to k.

Theorem 4. Each T-mixed k-connected graph $G = (V, E)$ with n nodes contains a T-mixed k-connected subgraph $G_k = (V, E_k)$, such that $|E_k| \leq |T|(|T| + 1)/2 + (n - |T| - 1)k$, if $|T| < k$ and $|E_k| \leq k(k - 1)/2 + (n - k)k$, if $|T| \geq k$.

![Fig. 1. Example with 9 nodes and 13 edges.](image-url)
Proof. $G_k = (V, F_1 \cup \cdots \cup F_k)$ is a certificate of local T-mixed connectivity up to k by Theorem 1. Let s_i denote the first visited node of the forest F_i which is not isolated in F_i. Take s_i from T, if it is possible. If $|T| < k$

$$|E| \leq (n - 1) + (n - 2) + \cdots + (n - |T|) = n|T| - \frac{|T|(|T| + 1)}{2}.$$

We obtain

$$|E_k| \leq n|T| - \frac{|T|(|T| + 1)}{2} + (k - |T|)(n - |T| - 1),$$

because for $|T| + 1 \leq j \leq k$, each F_j has at most $n - |T| - 1$ edges, and thus

$$|E_k| \leq \frac{|T|(|T| + 1)}{2} + (n - |T| - 1)k.$$

If $|T| \geq k$

$$|E_k| \leq (n - 1) + (n - 2) + \cdots + (n - k) = \frac{k(k - 1)}{2} + (n - k)k. \quad \square$$

The special cases of Theorem 4 when $T = \emptyset$ or V were proved by Mader [1,7].

Corollary 5. If G is a T-mixed k-connected graph that is minimal with respect to edge deletion and $|V| \geq 2$, then it has a node with degree k.

Proof. Assume on the contrary that $d(v_n) > k$, where v_n is the last node of a legal ordering, then the edge $e = v_i v_n$ between the greatest indexed node v_i ($i < n$) of legal ordering and v_n does not belong to F_k, if the forests are constructed as in [8].

But $(V, F_1 \cup \cdots \cup F_k)$ is T-mixed k-connected if G is T-mixed k-connected. This means that $G - e$ is also T-mixed k-connected, a contradiction. \quad \square

The special cases of Corollary 5 when $T = \emptyset$ or $T = V$ were proved by Lick [6] and Halin [5], respectively.

Acknowledgements

The author would like to thank András Frank for fruitful discussions.

References