Otmar Hilliges

Otmar Hilliges
ETH Zurich | ETH Zürich · Department of Computer Science

Professor

About

261
Publications
69,344
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
17,407
Citations

Publications

Publications (261)
Preprint
We present ArtiGrasp, a novel method to synthesize bi-manual hand-object interactions that include grasping and articulation. This task is challenging due to the diversity of the global wrist motions and the precise finger control that are necessary to articulate objects. ArtiGrasp leverages reinforcement learning and physics simulations to train a...
Preprint
Full-text available
We present EMDB, the Electromagnetic Database of Global 3D Human Pose and Shape in the Wild. EMDB is a novel dataset that contains high-quality 3D SMPL pose and shape parameters with global body and camera trajectories for in-the-wild videos. We use body-worn, wireless electromagnetic (EM) sensors and a hand-held iPhone to record a total of 58 minu...
Preprint
Full-text available
Despite the recent development of learning-based gaze estimation methods, most methods require one or more eye or face region crops as inputs and produce a gaze direction vector as output. Cropping results in a higher resolution in the eye regions and having fewer confounding factors (such as clothing and hair) is believed to benefit the final mode...
Preprint
Full-text available
While progress in 2D generative models of human appearance has been rapid, many applications require 3D avatars that can be animated and rendered. Unfortunately, most existing methods for learning generative models of 3D humans with diverse shape and appearance require 3D training data, which is limited and expensive to acquire. The key to progress...
Article
Neural fields have revolutionized the area of 3D reconstruction and novel view synthesis of rigid scenes. A key challenge in making such methods applicable to articulated objects, such as the human body, is to model the deformation of 3D locations between the rest pose (a canonical space) and the deformed space. We propose a new articulation mo...
Preprint
In this paper, we propose a novel hybrid representation and end-to-end trainable network architecture to model fully editable and customizable neural avatars. At the core of our work lies a representation that combines the modeling power of neural fields with the ease of use and inherent 3D consistency of skinned meshes. To this end, we construct a...
Preprint
Full-text available
We propose the first framework to learn control policies for vision-based human-to-robot handovers, a critical task for human-robot interaction. While research in Embodied AI has made significant progress in training robot agents in simulated environments, interacting with humans remains challenging due to the difficulties of simulating humans. For...
Preprint
We propose a method to estimate 3D human poses from substantially blurred images. The key idea is to tackle the inverse problem of image deblurring by modeling the forward problem with a 3D human model, a texture map, and a sequence of poses to describe human motion. The blurring process is then modeled by a temporal image aggregation step. Using a...
Preprint
We propose Hi4D, a method and dataset for the automatic analysis of physically close human-human interaction under prolonged contact. Robustly disentangling several in-contact subjects is a challenging task due to occlusions and complex shapes. Hence, existing multi-view systems typically fuse 3D surfaces of close subjects into a single, connected...
Preprint
Real-world robotic manipulation tasks remain an elusive challenge, since they involve both fine-grained environment interaction, as well as the ability to plan for long-horizon goals. Although deep reinforcement learning (RL) methods have shown encouraging results when planning end-to-end in high-dimensional environments, they remain fundamentally...
Preprint
We present X-Avatar, a novel avatar model that captures the full expressiveness of digital humans to bring about life-like experiences in telepresence, AR/VR and beyond. Our method models bodies, hands, facial expressions and appearance in a holistic fashion and can be learned from either full 3D scans or RGB-D data. To achieve this, we propose a p...
Preprint
Full-text available
We present Vid2Avatar, a method to learn human avatars from monocular in-the-wild videos. Reconstructing humans that move naturally from monocular in-the-wild videos is difficult. Solving it requires accurately separating humans from arbitrary backgrounds. Moreover, it requires reconstructing detailed 3D surface from short video sequences, making i...
Preprint
Full-text available
We study the task of object interaction anticipation in egocentric videos. Successful prediction of future actions and objects requires an understanding of the spatio-temporal context formed by past actions and object relationships. We propose TransFusion, a multimodal transformer-based architecture, that effectively makes use of the representation...
Preprint
In this paper, we take a significant step towards real-world applicability of monocular neural avatar reconstruction by contributing InstantAvatar, a system that can reconstruct human avatars from a monocular video within seconds, and these avatars can be animated and rendered at an interactive rate. To achieve this efficiency we propose a carefull...
Preprint
We present HARP (HAnd Reconstruction and Personalization), a personalized hand avatar creation approach that takes a short monocular RGB video of a human hand as input and reconstructs a faithful hand avatar exhibiting a high-fidelity appearance and geometry. In contrast to the major trend of neural implicit representations, HARP models a hand with...
Preprint
We propose a method that leverages graph neural networks, multi-level message passing, and unsupervised training to enable real-time prediction of realistic clothing dynamics. Whereas existing methods based on linear blend skinning must be trained for specific garments, our method is agnostic to body shape and applies to tight-fitting garments as w...
Preprint
Full-text available
We propose GazeNeRF, a 3D-aware method for the task of gaze redirection. Existing gaze redirection methods operate on 2D images and struggle to generate 3D consistent results. Instead, we build on the intuition that the face region and eyeballs are separate 3D structures that move in a coordinated yet independent fashion. Our method leverages recen...
Preprint
We present Depth-aware Image-based NEural Radiance fields (DINER). Given a sparse set of RGB input views, we predict depth and feature maps to guide the reconstruction of a volumetric scene representation that allows us to render 3D objects under novel views. Specifically, we propose novel techniques to incorporate depth information into feature fu...
Preprint
Full-text available
Traditional tracking of magnetic markers leads to high computational costs due to the requirement for iterative optimization procedures. Furthermore, such approaches rely on the magnetic dipole model for the optimization function, leading to inaccurate results anytime a non-spherical magnet gets close to a sensor in the array. We propose to overcom...
Chapter
The synthesis of human grasping has numerous applications including AR/VR, video games and robotics. While methods have been proposed to generate realistic hand–object interaction for object grasping and manipulation, these typically only consider interacting hand alone. Our goal is to synthesize whole-body grasping motions. Starting from an arbitr...
Chapter
Neural face avatars that are trained from multi-view data captured in camera domes can produce photo-realistic 3D reconstructions. However, at inference time, they must be driven by limited inputs such as partial views recorded by headset-mounted cameras or a front-facing camera, and sparse facial landmarks. To mitigate this asymmetry, we introduce...
Preprint
Full-text available
Garments with the ability to provide kinesthetic force-feedback on-demand can augment human capabilities in a non-obtrusive way, enabling numerous applications in VR haptics, motion assistance, and robotic control. However, designing such garments is a complex, and often manual task, particularly when the goal is to resist multiple motions with a s...
Preprint
Full-text available
The goal of Adaptive UIs is to automatically change an interface so that the UI better supports users in their tasks. A core challenge is to infer user intent from user input and chose adaptations accordingly. Designing effective online UI adaptations is challenging because it relies on tediously hand-crafted rules or carefully collected, high-qual...
Preprint
Full-text available
We present a method for inferring diverse 3D models of human-object interactions from images. Reasoning about how humans interact with objects in complex scenes from a single 2D image is a challenging task given ambiguities arising from the loss of information through projection. In addition, modeling 3D interactions requires the generalization abi...
Preprint
Full-text available
We introduce TempCLR, a new time-coherent contrastive learning approach for the structured regression task of 3D hand reconstruction. Unlike previous time-contrastive methods for hand pose estimation, our framework considers temporal consistency in its augmentation scheme, and accounts for the differences of hand poses along the temporal direction....
Article
Full-text available
A unique challenge in creating high-quality animatable and relightable 3D avatars of real people is modeling human eyes, particularly in conjunction with the surrounding periocular face region. The challenge of synthesizing eyes is multifold as it requires 1) appropriate representations for the various components of the eye and the periocular regio...
Article
Full-text available
We introduce the dynamic grasp synthesis task: given an object with a known 6D pose and a grasp reference, our goal is to generate motions that move the object to a target 6D pose. This is challenging, because it requires reasoning about the complex articulation of the human hand and the intricate physical interaction with the object. We propose a...
Preprint
Full-text available
A unique challenge in creating high-quality animatable and relightable 3D avatars of people is modeling human eyes. The challenge of synthesizing eyes is multifold as it requires 1) appropriate representations for the various components of the eye and the periocular region for coherent viewpoint synthesis, capable of representing diffuse, refractiv...
Preprint
Full-text available
Efficient exploration is a crucial challenge in deep reinforcement learning. Several methods, such as behavioral priors, are able to leverage offline data in order to efficiently accelerate reinforcement learning on complex tasks. However, if the task at hand deviates excessively from the demonstrated task, the effectiveness of such methods is limi...
Article
Kinesthetic garments provide physical feedback on body posture and motion through tailored distributions of reinforced material. Their ability to selectively stiffen a garment's response to specific motions makes them appealing for rehabilitation, sports, robotics, and many other application fields. However, finding designs that distribute a given...
Preprint
We use our hands to interact with and to manipulate objects. Articulated objects are especially interesting since they often require the full dexterity of human hands to manipulate them. To understand, model, and synthesize such interactions, automatic and robust methods that reconstruct hands and articulated objects in 3D from a color image are ne...
Preprint
Full-text available
Kinesthetic garments provide physical feedback on body posture and motion through tailored distributions of reinforced material. Their ability to selectively stiffen a garment's response to specific motions makes them appealing for rehabilitation, sports, robotics, and many other application fields. However, finding designs that distribute a given...
Article
Hugs are complex affective interactions that often include gestures like squeezes. We present six new guidelines for designing interactive hugging robots, which we validate through two studies with our custom robot. To achieve autonomy, we investigated robot responses to four human intra-hug gestures: holding, rubbing, patting, and squeezing. Thirt...
Preprint
Full-text available
Neural face avatars that are trained from multi-view data captured in camera domes can produce photo-realistic 3D reconstructions. However, at inference time, they must be driven by limited inputs such as partial views recorded by headset-mounted cameras or a front-facing camera, and sparse facial landmarks. To mitigate this asymmetry, we introduce...
Preprint
Full-text available
We present a novel method to learn Personalized Implicit Neural Avatars (PINA) from a short RGB-D sequence. This allows non-expert users to create a detailed and personalized virtual copy of themselves, which can be animated with realistic clothing deformations. PINA does not require complete scans, nor does it require a prior learned from large da...
Preprint
Full-text available
Hugs are complex affective interactions that often include gestures like squeezes. We present six new guidelines for designing interactive hugging robots, which we validate through two studies with our custom robot. To achieve autonomy, we investigated robot responses to four human intra-hug gestures: holding, rubbing, patting, and squeezing. Thirt...
Preprint
To make 3D human avatars widely available, we must be able to generate a variety of 3D virtual humans with varied identities and shapes in arbitrary poses. This task is challenging due to the diversity of clothed body shapes, their complex articulations, and the resulting rich, yet stochastic geometric detail in clothing. Hence, current methods to...
Preprint
Full-text available
Human grasping synthesis has numerous applications including AR/VR, video games, and robotics. While some methods have been proposed to generate realistic hand-object interaction for object grasping and manipulation, they typically only consider the hand interacting with objects. In this work, our goal is to synthesize whole-body grasping motion. G...
Preprint
Traditional morphable face models provide fine-grained control over expression but cannot easily capture geometric and appearance details. Neural volumetric representations approach photo-realism but are hard to animate and do not generalize well to unseen expressions. To tackle this problem, we propose IMavatar (Implicit Morphable avatar), a novel...
Preprint
Full-text available
Capturing the dynamically deforming 3D shape of clothed human is essential for numerous applications, including VR/AR, autonomous driving, and human-computer interaction. Existing methods either require a highly specialized capturing setup, such as expensive multi-view imaging systems, or they lack robustness to challenging body poses. In this work...
Preprint
Upsampling videos of human activity is an interesting yet challenging task with many potential applications ranging from gaming to entertainment and sports broadcasting. The main difficulty in synthesizing video frames in this setting stems from the highly complex and non-linear nature of human motion and the complex appearance and texture of the b...
Preprint
Full-text available
In this paper we contribute a simple yet effective approach for estimating 3D poses of multiple people from multi-view images. Our proposed coarse-to-fine pipeline first aggregates noisy 2D observations from multiple camera views into 3D space and then associates them into individual instances based on a confidence-aware majority voting technique....
Preprint
Due to the lack of camera parameter information for in-the-wild images, existing 3D human pose and shape (HPS) estimation methods make several simplifying assumptions: weak-perspective projection, large constant focal length, and zero camera rotation. These assumptions often do not hold and we show, quantitatively and qualitatively, that they cause...
Preprint
Full-text available
We present Hand ArticuLated Occupancy (HALO), a novel representation of articulated hands that bridges the advantages of 3D keypoints and neural implicit surfaces and can be used in end-to-end trainable architectures. Unlike existing statistical parametric hand models (e.g.~MANO), HALO directly leverages 3D joint skeleton as input and produces a ne...
Preprint
Full-text available
In natural conversation and interaction, our hands often overlap or are in contact with each other. Due to the homogeneous appearance of hands, this makes estimating the 3D pose of interacting hands from images difficult. In this paper we demonstrate that self-similarity, and the resulting ambiguities in assigning pixel observations to the respecti...
Preprint
Full-text available
Acquiring accurate 3D annotated data for hand pose estimation is a notoriously difficult problem. This typically requires complex multi-camera setups and controlled conditions, which in turn creates a domain gap that is hard to bridge to fully unconstrained settings. Encouraged by the success of contrastive learning on image classification tasks, w...
Preprint
Full-text available
Hand pose estimation is difficult due to different environmental conditions, object- and self-occlusion as well as diversity in hand shape and appearance. Exhaustively covering this wide range of factors in fully annotated datasets has remained impractical, posing significant challenges for generalization of supervised methods. Embracing this chall...
Preprint
Despite significant progress, we show that state of the art 3D human pose and shape estimation methods remain sensitive to partial occlusion and can produce dramatically wrong predictions although much of the body is observable. To address this, we introduce a soft attention mechanism, called the Part Attention REgressor (PARE), that learns to pred...
Preprint
Full-text available