
Oskar Backman- Åbo Akademi University
Oskar Backman
- Åbo Akademi University
About
8
Publications
1,211
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
95
Citations
Current institution
Publications
Publications (8)
Organic electrochemical transistors (OECTs) have been proven beneficial for bioelectronic applications. However, the demand for reliable and fast fabrication methods has not yet been fully met. In this work, OECTs are fabricated using direct ink writing (DIW). This method is cleanroom‐free and can be done without using lithography techniques. These...
The design of lignin nanostructures where interfacial interactions enable enhanced entanglement of colloidal networks can broaden their applications in hydrogel‐based materials and light‐based 3D printing. Herein, an approach for fabricating surface‐active dendritic colloidal microparticles (DCMs) characterized by fibrous structures using nanostruc...
Photosynthetic microbes entrapped within a novel photocurable bioink demonstrate enhanced chemical productivity and longevity in 3D-printed films. This approach holds promise for the sustainable and scalable production of solar chemicals and fuels.
The use of lignin in three-dimensional (3D) printing materials has been considered a viable strategy to generate sustainable 3D printing objects. However, complex molecular structures, high viscosity, and charring of...
Herein, a dual-functioning deep eutectic solvent system based on triethylmethylammonium chloride and imidazole was harnessed as a swelling agent and a reaction medium for the esterification of cellulose with n-octyl succinic anhydride (OSA). The modified or amphiphilic cellulose nanofibers (ACNFs), synthesized using three different OSA-to-anhydrogl...
Microgel assembly as void‐forming bioinks in 3D bioprinting has evidenced recent success with a highlighted scaffolding performance of these bottom‐up biomaterial systems in supporting the viability and function of the laden cells. Here, a ternary‐component aqueous emulsion is established as a one‐step strategy to integrate the methacrylated gelati...
Lithography-based digital light processing (DLP) 3D printing has gained increasing interest in the fabrication of custom-designed hydrogel scaffolds. Current research development calls for the versatility of the bio-based resin formulations...
Biomaterial inks based on cellulose nanofibers (CNFs) and photo-crosslinkable biopolymers have great potential as a high-performance ink system in light-aided, hydrogel extrusion-based 3D bioprinting. However, the colloidal stability of surface charged nanofibrils is susceptible to mono-cations in physiological buffers, which complexes the applicat...