A new upper bound on the largest normalized Laplacian eigenvalue

Oscar Rojo and Ricardo L. Soto

(Communicated by Richard A. Brualdi)

Abstract. Let G be a simple undirected connected graph on n vertices. Suppose that the vertices of G are labelled 1, 2, ..., n. Let d_i be the degree of the vertex i. The Randić matrix of G, denoted by R, is the $n \times n$ matrix whose (i,j)-entry is $\sqrt{d_i d_j}$ if the vertices i and j are adjacent and 0 otherwise. The normalized Laplacian matrix of G is $\mathcal{L} = I - R$, where I is the $n \times n$ identity matrix. In this paper, by using an upper bound on the maximum modulus of the subdominant Randić eigenvalues of G, we obtain an upper bound on the largest eigenvalue of \mathcal{L}. We also obtain an upper bound on the largest modulus of the negative Randić eigenvalues and, from this bound, we improve the previous upper bound on the largest eigenvalue of \mathcal{L}.

1. Introduction

Let $G = (V, E)$ be a simple undirected graph on n vertices. Some matrices on G are the adjacency matrix A, the Laplacian matrix $L = D - A$ and the signless Laplacian matrix $Q = D + L$, where D is the diagonal matrix of vertex degrees. It is well known that L and Q are positive semidefinite matrices and that $(0, 1)$ is an eigenpair of L where 1 is the all ones vector. Fiedler [16] proved that G is a connected graph if and only if the second smallest eigenvalue of L is positive. This eigenvalue is called the algebraic connectivity of G. The signless Laplacian matrix has recently attracted the attention of several researchers. Recent papers on this matrix are [5, 6, 7, 8, 9] and some of its basic properties [6] are:

1. For a connected graph, the smallest eigenvalue of Q is equal to 0 if and only if the graph is bipartite. In this case, 0 is a simple eigenvalue. Then, for a connected graph, the smallest eigenvalue of Q is positive if and only if the graph is not bipartite.

2. If G is a bipartite graph then Q and L have the same characteristic polynomial.

Keywords and phrases: normalized Laplacian matrix, Randić matrix, upper bound, largest eigenvalue, subdominant eigenvalue.

This research was supported by Project Fondecyt 1100072, Chile. It was finished when the first author was a visitor at the Department of Mathematics, Universidade de Aveiro, Aveiro, Portugal.
Other matrices on the graph G are the normalized Laplacian matrix and the Randić matrix of G. Suppose that the vertices of G are labelled $1, 2, \ldots, n$. Let d_i be the degree of the vertex i. Let $D^{-\frac{1}{2}}$ be the diagonal matrix whose diagonal entries are

$$\frac{1}{\sqrt{d_1}}, \frac{1}{\sqrt{d_2}}, \ldots, \frac{1}{\sqrt{d_n}}$$

whenever $d_i \neq 0$. If $d_i = 0$ for some i then the corresponding diagonal entry of $D^{-\frac{1}{2}}$ is defined to be 0. The normalized Laplacian matrix of G, denoted by \mathcal{L}, was introduced by F. Chung [15] as

$$\mathcal{L} = D^{-\frac{1}{2}}LD^{-\frac{1}{2}} = I - D^{-\frac{1}{2}}AD^{-\frac{1}{2}}. \quad (1)$$

The eigenvalues of \mathcal{L} are called the normalized Laplacian eigenvalues of G. From (1), we have

$$D^{\frac{1}{2}} \mathcal{L} D^{\frac{1}{2}} = D - A = L$$

and thus

$$D^{\frac{1}{2}} \mathcal{L} D^{\frac{1}{2}} 1 = L 1 = 01.$$

Hence 0 is an eigenvalue of \mathcal{L} with eigenvector $D^{\frac{1}{2}} 1$.

We recall the following results on \mathcal{L} [15] :

1. The eigenvalues of \mathcal{L} lie in the interval $[0, 2]$.
2. 0 is a simple eigenvalue of \mathcal{L} if and only if G is connected.
3. 2 is an eigenvalue of \mathcal{L} if and only if a connected component of G is bipartite and nontrivial.

Among papers on \mathcal{L}, we mention [10, 11, 13, 14] and [17].

From now on, we assume that G is connected graph. Then $d_i > 0$ for all i. The notation $i \sim j$ means that the vertices i and j are adjacent. The matrix $R = D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$ in (1) is the Randić matrix of G in which the (i, j)-entry is $\frac{1}{\sqrt{d_i d_j}}$ if $i \sim j$ and 0 otherwise. Moreover

$$I - \mathcal{L} = R.$$

The eigenvalues of R are called the Randić eigenvalues of G. Clearly \mathcal{L} and R are both real symmetric matrices. The Randić matrix was earlier studied in connection with the Randić index [1, 2, 18] and [19]. Two recent papers on the Randić matrix are [3] and [4].

Throughout this paper

$$0 = \lambda_n \leq \lambda_{n-1} \leq \ldots \leq \lambda_1$$

and

$$\rho_n \leq \rho_{n-1} \leq \ldots \leq \rho_1.$$
are the normalized Laplacian eigenvalues and the Randić eigenvalues of \(\mathcal{G} \), respectively. It follows that
\[
\lambda_i = 1 - \rho_{n-i+1} \quad (1 \leq i \leq n).
\]

If \(M \) is a nonnegative matrix then, by the Perron-Frobenius Theorem, \(M \) has an eigenvalue equal to its spectral radius, called the Perron root of \(M \). In addition, if \(M \) is irreducible then the Perron root of \(M \) is a simple eigenvalue with a corresponding positive eigenvector, called the Perron vector of \(M \). Since \(\mathcal{G} \) is a connected graph, Randić matrix of \(\mathcal{G} \) is an irreducible nonnegative matrix. Let \(\mathbf{v} = D^{\frac{1}{2}} \mathbf{1} \). Then
\[
\mathbf{v} = \begin{bmatrix} \sqrt{d_1}, \sqrt{d_2}, \ldots, \sqrt{d_n} \end{bmatrix}^T.
\]

An easy computation shows that
\[
R\mathbf{v} = \mathbf{v}.
\]

Hence, 1 and \(\mathbf{v} \) are the Perron root and the Perron vector of \(R \), respectively.

Let \(\Delta \) and \(\delta \) be the largest and smallest vertex degrees of \(\mathcal{G} \), respectively, and let \(q_n \) be the smallest eigenvalue of \(Q \).

A recent result involving the largest eigenvalue of \(L \) and the smallest eigenvalue of \(Q \) is

THEOREM 1. [17] Let \(\mathcal{G} \) be a connected graph. Then
\[
2 - \frac{q_n}{\delta} \leq \lambda_1 \leq 2 - \frac{q_n}{\Delta}. \tag{2}
\]

We may consider \(2 - \frac{q_n}{\Delta} \) as an upper bound on \(\lambda_1 \). Observe that \(2 - \frac{q_n}{\Delta} = 2 \) if and only if \(\mathcal{G} \) is a bipartite graph.

In this paper, we search for a new upper bound on \(\lambda_1 \) not exceeding the trivial upper bound 2.

2. Searching for an upper bound on \(\lambda_1 \)

Since \(\sum_{i=1}^{n} \rho_i = tr(R) = 0 \), it follows that \(\rho_n < 0 \). We have
\[
\lambda_1 = 1 - \rho_n = 1 + |\rho_n|.
\]

In order to find an upper bound on \(\lambda_1 \) not exceeding 2, we look for an upper bound on \(|\rho_n| \) not exceeding 1.

An eigenvalue of a nonnegative matrix \(M \) which is different from the Perron root is called a subdominant eigenvalue of \(M \). Let \(\xi(M) \) be the maximum modulus of the subdominant eigenvalues of \(M \). Special attention has been devoted to find upper bounds on \(\xi(M) \). In [20], we can find a unified presentation of results concerning upper bounds on \(\xi(M) \). These upper bounds are important because \(\xi(M) \) plays a major role in convergence properties of powers of \(M \). Since
\[
\lambda_1 \leq 1 + \xi(R), \tag{3}
\]
we focus our attention on upper bounds on \(\xi(R) \). We recall the result [12, p. 295]:
THEOREM 2. If \(M = (m_{i,j}) \geq 0 \) of order \(n \times n \) has a positive eigenvector \(w = [w_1, w_2, \ldots, w_n]^T \) corresponding to the spectral radius \(\rho(M) \) of \(M \) then
\[
\xi(M) \leq \frac{1}{2} \max_{i<j} \sum_{k=1}^{n} w_k \left| \frac{m_{i,k}}{w_i} - \frac{m_{j,k}}{w_j} \right|.
\]
where the maximum is taken over all pairs \((i, j)\), \(1 \leq i < j \leq n\).

In order to apply Theorem 2, it is convenient to observe that the Randić matrix of \(G \) is diagonally similar to the row stochastic matrix
\[
S = D^{-\frac{1}{2}}RD^{\frac{1}{2}}.
\]
(4)

The following lemma gives some immediate properties of \(S \).

LEMA 1. 1. The \((i, j)\)–entry of \(S \) is \(\frac{1}{d_i} \) if \(j \sim i \) and \(0 \) otherwise.
2. \(S1 = 1 \) where \(1 \) is the all ones vector.
3. \(u \) is an eigenvector for \(R \) corresponding to the eigenvalue \(\alpha \) if and only if \(D^{-\frac{1}{2}}u \) is an eigenvector for \(S \) corresponding to the eigenvalue \(\alpha \).
4. If \(G \) is an \(r \)–regular graph then \(S = R \).

Let \(N_i \) be the set of neighbours of the vertex \(v_i \) and let \(|N_i| \) be the cardinality of \(N_i \).

THEOREM 3. Let \(G \) be a simple undirected connected graph. If \(\lambda_1 \) is the largest eigenvalue of \(L \) then
\[
|\lambda_1| \leq 2 - \min_{i<j} \left\{ \frac{|N_i \cap N_j|}{\max\{d_i, d_j\}} \right\}
\]
where the minimum is taken over all pairs \((i, j)\), \(1 \leq i < j \leq n\).

Proof. We know that the Randić matrix of \(G \) is similar to the row stochastic matrix \(S \) defined in (4). Then \(\xi(R) = \xi(S) \). The eigenvector corresponding to the spectral of \(S \) is \(w = 1 \). Applying Theorem 2 to \(S = (s_{i,j}) \), we have
\[
\xi(S) \leq \frac{1}{2} \max_{i<j} \sum_{k=1}^{n} |s_{i,k} - s_{j,k}|
= \frac{1}{2} \max_{i<j} \left(\sum_{k \in N_i - N_j} \frac{1}{d_i} + \sum_{k \in N_j - N_i} \frac{1}{d_j} + \sum_{k \in N_i \cap N_j} \left| \frac{1}{d_i} - \frac{1}{d_j} \right| \right)
= \frac{1}{2} \max_{i<j} \left(\frac{|N_i - N_j|}{d_i} + \frac{|N_j - N_i|}{d_j} + \sum_{k \in N_i \cap N_j} \left| \frac{1}{d_i} - \frac{1}{d_j} \right| \right)
= \frac{1}{2} \max_{i<j} \left(2 - \frac{|N_i \cap N_j|}{d_i} - \frac{|N_j \cap N_i|}{d_j} + \sum_{k \in N_i \cap N_j} \left| \frac{1}{d_i} - \frac{1}{d_j} \right| \right).
\]
Suppose \(d_i = \max \{d_i, d_j\} \). In this case
\[
2 - \frac{|N_i \cap N_j|}{d_i} - \frac{|N_j \cap N_i|}{d_j} + \sum_{k \in N_i \cap N_j} \left| \frac{1}{d_i} - \frac{1}{d_j} \right|
= 2 - \frac{|N_i \cap N_j|}{d_i} - \frac{|N_j \cap N_i|}{d_j} + \left(\frac{1}{d_j} - \frac{1}{d_i} \right) |N_i \cap N_j|
= 2 - 2 \frac{|N_i \cap N_j|}{d_i}.
\]

Similarly, if \(d_j = \max \{d_i, d_j\} \) then
\[
2 - \frac{|N_i \cap N_j|}{d_i} - \frac{|N_j \cap N_i|}{d_j} + \sum_{k \in N_i \cap N_j} \left| \frac{1}{d_i} - \frac{1}{d_j} \right|
= 2 - 2 \frac{|N_j \cap N_i|}{d_j}.
\]

Hence
\[
\xi(S) \leq \frac{1}{2} \max_{i < j} \sum_{k=1}^{n} \left| s_{i,k} - s_{j,k} \right|
= \frac{1}{2} \max_{i < j} \left\{ 2 - 2 \frac{|N_j \cap N_i|}{\max \{d_i, d_j\}} \right\}
= 1 - \min_{i < j} \left\{ \frac{|N_i \cap N_j|}{\max \{d_i, d_j\}} \right\}
\]

Since \(\lambda_1 \leq 1 + \xi(R) = 1 + \xi(S) \), the upper bound in (5) follows. □

Remark 1. If \(G \) is a bipartite graph then \(|N_i \cap N_j| = 0 \), for some \(i < j \), and consequently the upper bound in (5) is equal to 2. This is sufficient condition but it is not a necessary condition. In fact, there are other instances in which \(N_i \cap N_j = 0 \) for some \(i < j \). One of them is given by a nonbipartite graph having a bridge. However, if \(\min_{i < j} |N_i \cap N_j| \geq 1 \) and \(q_n < 1 \) then
\[
2 - \min_{i < j} \left\{ \frac{|N_i \cap N_j|}{\max \{d_i, d_j\}} \right\} < 2 - \frac{q_n}{\Delta}. \tag{6}
\]

In fact
\[
q_n < 1 \leq |N_i \cap N_j| \text{ for } i < j
\]
and
\[
\frac{q_n}{\Delta} \leq \frac{1}{\max \{d_i, d_j\}} \text{ for } i < j.
\]
Then
\[\frac{q_n}{\Delta} < \frac{|N_i \cap N_j|}{\max \{d_i, d_j\}} \quad \text{for } i < j. \]

It follows
\[2 - \frac{q_n}{\Delta} > 2 - \min_{i < j} \frac{|N_i \cap N_j|}{\max \{d_i, d_j\}}. \]

Hence, if \(\min_{i < j} |N_i \cap N_j| \geq 1 \) and \(q_n < 1 \) then (5) gives a better upper bound for \(\lambda_1 \) than the second inequality in (2) does.

3. Improving the upper bound on \(\lambda_1 \)

We have
\[\lambda_1 = u1 + |q_n| \leq 1 + \xi (R) = 1 + \xi (S). \]

The upper bound on \(\lambda_1 \) in (5) was obtained by using an upper bound on \(\xi (R) \). In this section, in order to get an improved upper bound on \(\lambda_1 \), we search for an upper bound on \(|q_n| \), that is, on the largest modulus of the negative Randić eigenvalues.

Theorem 4. Let \(G \) be a simple undirected connected graph. If \(\rho_n \) is eigenvalue with the largest modulus among the negative Randić eigenvalues of \(G \) then
\[|\rho_n| \leq 1 - \min_{i \sim j} \left\{ \frac{|N_i \cap N_j|}{\max \{d_i, d_j\}} \right\}, \]
where the minimum is taken over all pairs \((i, j)\), \(1 \leq i < j \leq n\), such that the vertices \(i \) and \(j \) are adjacent.

Proof. Let \(\rho_n \) be the largest modulus of the negative Randić eigenvalues of \(G \). Let
\[\mathbf{x} = [x_1, x_2, \ldots, x_n]^T \]
be such that
\[S\mathbf{x} = \rho_n \mathbf{x}. \quad (7) \]
From Lemma 1, we have \(\mathbf{x} = D^{-\frac{1}{2}} \mathbf{u} \) where \(R\mathbf{u} = \rho_n \mathbf{u} \). Since \(\mathbf{u} \) is orthogonal to the Perron vector \(\mathbf{v} = [\sqrt{d_1}, \sqrt{d_2}, \ldots, \sqrt{d_n}]^T \), the vector \(\mathbf{u} \) has at least one positive component and at least one negative component. Since \(\mathbf{x} = D^{-\frac{1}{2}} \mathbf{u} \), this is also true for the vector \(\mathbf{x} \). Let
\[\max \{x_1, x_2, \ldots, x_n\} = x_i \]
and let
\[x_j = \min \{x_k : k \sim i\}. \]
Since \(\mathbf{x} \) has at least one positive component, \(x_i > 0 \). Let \(S = (s_{i,j}) \). From (7)
\[\rho_n x_j = \sum_{k=1}^{n} s_{j,k} x_k = \frac{1}{d_j} \sum_{k \in N_j} x_k \quad (8) \]
and

$$\rho_n x_i = \sum_{k=1}^{n} s_{i,k} x_k = \frac{1}{d_i} \sum_{k \in N_i} x_k. \quad (9)$$

Subtracting (9) from (8), we get

$$\rho_n (x_j - x_i) = \frac{1}{d_j} \sum_{k \in N_j} x_k - \frac{1}{d_i} \sum_{k \sim i} x_k. \quad (10)$$

Then

$$q_n (x_j - x_i) = \frac{1}{d_j} \sum_{k \in N_j - N_i} x_k + \frac{1}{d_j} \sum_{k \in N_j \cap N_i} x_k - \frac{1}{d_i} \sum_{k \in N_i - N_j} x_k - \frac{1}{d_i} \sum_{k \in N_i \cap N_j} x_k. \quad (10)$$

By definition, $x_j \leq x_k$ for all $k \sim i$ and $x_k \leq x_i$ for all k. Hence

$$\sum_{k \in N_j - N_i} x_k \leq |N_j - N_i| x_i \quad (11)$$

and

$$- \sum_{k \in N_i - N_j} x_k \leq - |N_i - N_j| x_j. \quad (12)$$

Replacing the inequalities (11) and (12) in (10), we obtain

$$q_n (x_j - x_i) \leq \frac{1}{d_j} |N_j - N_i| x_i - \frac{1}{d_i} |N_i - N_j| x_j + \sum_{k \in N_j \cap N_i} \left(\frac{1}{d_j} - \frac{1}{d_i} \right) x_k.$$

Thus

$$q_n (x_j - x_i) \leq \frac{1}{2} \frac{1}{d_j} |N_j - N_i| (x_i - x_j) + \frac{1}{2} \frac{1}{d_i} |N_i - N_j| (x_i - x_j)$$

$$+ \frac{1}{2} \left(\frac{1}{d_j} |N_j - N_i| - \frac{1}{d_i} |N_i - N_j| \right) (x_i + x_j)$$

$$+ \sum_{k \in N_j \cap N_i} \left(\frac{1}{d_j} - \frac{1}{d_i} \right) x_k.$$

Clearly

$$\frac{1}{d_j} |N_j - N_i| - \frac{1}{d_i} |N_i - N_j| = \left(\frac{1}{d_i} - \frac{1}{d_j} \right) |N_i \cap N_j|. $$
Hence
\[
\rho_n(x_j - x_i) \leq \frac{1}{2} \left(\frac{1}{d_j} |N_j - N_i| (x_i - x_j) + \frac{1}{2} d_i |N_i - N_j| (x_i - x_j) \right)
+ \frac{1}{2} \left(\frac{1}{d_j} - \frac{1}{d_i} \right) |N_i \cap N_j| (x_i + x_j) + \frac{1}{2} \sum_{k \in N_i \cap N_j} \left(\frac{1}{d_j} - \frac{1}{d_i} \right) (x_k + x_k)
= \frac{1}{2} \left(\frac{1}{d_j} |N_j - N_i| (x_i - x_j) + \frac{1}{2} d_i |N_i - N_j| (x_i - x_j) \right)
+ \frac{1}{2} \sum_{k \in N_i \cap N_j} \left(\frac{1}{d_j} - \frac{1}{d_i} \right) (x_i - x_k + x_j - x_k).
\]
Moreover
\[
\sum_{k \in N_i \cap N_j} \left(\frac{1}{d_i} - \frac{1}{d_j} \right) (x_i - x_k + x_j - x_k)
\leq \sum_{k \in N_i \cap N_j} \left(\frac{1}{d_i} - \frac{1}{d_j} \right) (x_i - x_k) + \sum_{k \in N_i \cap N_j} \left(\frac{1}{d_i} - \frac{1}{d_j} \right) (x_k - x_j)
= \sum_{k \in N_i \cap N_j} \left(\frac{1}{d_i} - \frac{1}{d_j} \right) (x_i - x_j).
\]
Therefore
\[
\rho_n(x_j - x_i) \leq \frac{1}{2} \left(\frac{1}{d_j} |N_j - N_i| (x_i - x_j) + \frac{1}{2} d_i |N_i - N_j| (x_i - x_j) \right)
+ \frac{1}{2} \sum_{k \in N_i \cap N_j} \left(\frac{1}{d_i} - \frac{1}{d_j} \right) (x_i - x_j).
\]
If \(x_j = x_i\) then \(x_k = x_i\) for all \(k \sim i\). Consequently, from \(Sx = \rho_n x\), we have
\[
q_n x_i = \sum_{k \in N_i} \frac{1}{d_i} x_k = \frac{1}{d_i} \sum_{k \in N_i} x_i = \frac{x_i}{d_i} d_i = x_i.
\]
Thus \(\rho_n = 1\), which is a contradiction. Hence \(x_i - x_j > 0\). Dividing both sides of (13) by \((x_i - x_j)\), we obtain
\[
-\rho_n \leq \frac{1}{2} \left(\frac{1}{d_j} |N_j - N_i| + \frac{1}{2} d_i |N_i - N_j| + \frac{1}{2} \sum_{k \in N_i \cap N_j} \left(\frac{1}{d_i} - \frac{1}{d_j} \right) \right).
\]
As in the proof of Theorem 3, we get
\[
\frac{1}{2} \frac{1}{d_j} |N_j - N_i| + \frac{1}{2} \frac{1}{d_i} |N_i - N_j| + \frac{1}{2} \sum_{k \in N_i \cap N_j} \left(\frac{1}{d_i} - \frac{1}{d_j} \right)
= 1 - \frac{|N_i \cap N_j|}{\max \{d_i, d_j\}}.
\]
Consequently

\[|\rho_n| \leq 1 - \frac{|N_i \cap N_j|}{\max \{d_i, d_j\}}. \]

Observe that the vertices \(v_i \) and \(v_j \) are adjacent. Hence

\[|\rho_n| \leq \max_{i \sim j} \left\{ 1 - \frac{|N_i \cap N_j|}{\max \{d_i, d_j\}} \right\} = 1 - \min_{i \sim j} \left\{ \frac{|N_i \cap N_j|}{\max \{d_i, d_j\}} \right\}. \]

The proof is complete. \(\square \)

Finally, we have

Theorem 5. Let \(\mathcal{G} \) be a simple undirected connected graph. If \(\lambda_1 \) is the largest normalized Laplacian eigenvalue of \(\mathcal{G} \) then

\[\lambda_1 \leq 2 - \min_{i \sim j} \left\{ \frac{|N_i \cap N_j|}{\max \{d_i, d_j\}} \right\} \]

where the minimum is taken over all pairs \((i, j)\), \(1 \leq i < j \leq n\), such that the vertices \(i\) and \(j\) are adjacent.

Proof. Since \(\lambda_1 = 1 - \rho_n = 1 + |\rho_n| \), the proof is immediate using the upper bound on \(|\rho_n| \) given by Theorem 4. \(\square \)

Example 1. \(\mathcal{G} \):

Let

\[b(i, j) = \frac{|N_i \cap N_j|}{\max \{d_i, d_j\}} \]

For this graph

\[b(1, 2) = \frac{1}{2}, \quad b(1, 3) = b(2, 3) = b(3, 4) = b(3, 5) = \frac{1}{5}, \quad b(3, 6) = \frac{2}{5}, \quad b(4, 6) = b(5, 6) = \frac{1}{3}. \]

Then \(\min_{i \sim j} b(i, j) = \frac{1}{5} \). Hence the largest modulus of the negative Randić eigenvalues is bounded above by \(\frac{4}{5} \) and the largest normalized Laplacian eigenvalue is bounded above by \(\frac{9}{5} = 1.8 \). To four decimal places the smallest signless Laplacian eigenvalue of \(\mathcal{G} \) is 0.7411. Since \(\Delta = 5 \), the upper bound in (2) becomes \(2 - \frac{0.7411}{5} = 1.8518 \).
REFERENCES

(Received November 19, 2011)

Oscar Rojo
Department of Mathematics
Universidad Católica del Norte
Antofagasta, Chile
e-mail: orojo@ucn.cl

Ricardo L. Soto
Department of Mathematics
Universidad Católica del Norte
Antofagasta, Chile
e-mail: rsoto@ucn.cl

Operators and Matrices
www.ele-math.com
oam@ele-math.com