An algorithm to find two distance domination parameters in a graph

Gerd H. Frickea, Michael A. Henningb,*, Ortrud R. Oellermannc,
Henda C. Swartd

a Department of Mathematics and Statistics, Wright State University, Dayton, OH 45435, USA
b Department of Mathematics and Applied Mathematics, University of Natal, Private Bag X01,
Pietermaritzburg 3209, South Africa
c Department of Mathematics and Computer Science, Brandon University, Brandon, Mani., Canada
d Department of Mathematics and Applied Mathematics, University of Natal, King George V Avenue,
Durban 4001, South Africa

Received 8 June 1993; revised 16 December 1994

Abstract

Let $n > 1$ be an integer and let G be a graph of order p. A set \mathcal{D} of vertices of G is a total n-dominating set of G if every vertex of $V(G)$ is within distance n from some vertex of \mathcal{D} other than itself. The minimum cardinality among all total n-dominating sets of G is called the total n-domination number and is denoted by $\gamma_n^t(G)$. A set S of vertices of G is n-independent if the distance (in G) between every pair of distinct vertices of S is at least $n + 1$. The minimum cardinality among all maximal n-independent sets of G is called the n-independence number of G and is denoted by $i_n(G)$. In this paper, we present an algorithm for finding a total n-dominating set \mathcal{D} and a maximal n-independent set S in a connected graph with at least $p \geq 2n + 1$ vertices. It is shown that these sets \mathcal{D} and S satisfy the inequality $|S| + n|\mathcal{D}| \leq p$. Using this result, we conclude that if G is a connected graph on $p \geq 2n + 1$ vertices, then $i_n(G) + n \cdot \gamma_n^t(G) \leq p$.

1. Introduction

In this paper, we shall use the terminology of [10]. Specifically, $p(G)$ denotes the number of vertices (order) of a graph G with vertex set $V(G)$ and edge set $E(G)$. If T is a rooted tree with root r and v is a vertex of T, then the level number of v, which we denote by $\ell(v)$, is the length of the unique $r-v$ path in T. The maximum of the level numbers of the vertices of T is called the height of T and is denoted by $h(T)$. If a vertex v of T is adjacent to u and $l(u) > l(v)$, then u is called a child of v. and v is the parent of u. A vertex w is a descendant of v (and v is an ancestor of w) if the level numbers of the vertices on the $v-w$ path are monotonically increasing. We will refer to an end-vertex of T as a leaf.

* Corresponding author.
Let $n \geq 1$ be an integer and let G be a graph. A set \mathcal{D} of vertices of G is defined to be an n-dominating set (resp. total n-dominating set) of G if every vertex in $V(G) - \mathcal{D}$ (resp. $V(G)$) is within distance n from some vertex of \mathcal{D} other than itself. The minimum cardinality among all total n-dominating sets of G is called the total n-domination number of G and is denoted by $\gamma'_n(G)$. A set I of vertices of G is defined to be n-independent in G if every vertex of I is at distance at least $n + 1$ from every other vertex of I in G. Furthermore, I is defined to be an n-independent dominating set of G if I is n-independent and n-dominating in G. The n-independent domination number $i_n(G)$ of G is the minimum cardinality among all n-independent dominating sets of G. Hence, 1-independent dominating sets of G are independent dominating sets of G and $i_1(G) = i(G)$.

Results on the concept of n-domination in graphs have been presented by, among others, Bascó and Tuza [2,3], Beineke and Henning [4], Bondy and Fan [5], Chang [6], Chang and Nemhauser [7–9], Fraisse [11], Fricke et al. [12,13], Hattingh and Henning [14,15], Henning et al. [16–20], Meir and Moon [21], Mo and Williams [22], Slater [23], Topp and Volkmann [24], and Xin He and Yesha [25].

2. Bounds relating $i_n(G)$ and $\gamma'_n(G)$

Allan et al. [1] established the following relationship between the independent domination number and total domination number of a graph.

Theorem A. If G is a connected graph of order $p \geq 3$, then $i(G) + \gamma_n(G) \leq p$.

Henning et al. [18] extended this result for all trees of sufficiently large order.

Theorem B. For an integer $n \geq 2$, if T is a tree of order $p \geq 2n + 1$, then

$$i_n(T) + n \cdot \gamma'_n(T) \leq p.$$

In this paper, we show that if G is a connected graph on at least $p \geq 2n + 1$ vertices, then $i_n(G) + n \cdot \gamma'_n(G) \leq p$ for all integers $n \geq 1$. Note that this result is not an immediate consequence of Theorem B. For suppose T is a spanning tree of a connected graph G. Then any total n-dominating set of T is also a total n-dominating set of G, so $\gamma'_n(G) \leq \gamma'_n(T)$. However, an n-independent set of T is not necessarily an n-independent set of G. For each positive integer n, Hedetniemi et al. [12] establish the existence of a connected graph G every spanning tree T of which satisfies $i_n(T) < i_n(G)$.

In what follows, let n be a positive integer. First, we present an algorithm for finding a total n-dominating set in a connected graph of order at least $2n + 1$.

Algorithm 1. Given a connected graph G on $p \geq 2n + 1$ vertices:

1. Find a rooted spanning tree T of G and let r be the root of T.
2. If $h(T) \leq n$, then let v be a vertex of T different from r. Set $\mathcal{D} = \{v, r\}$, label v and r with the label $L(v) = L(r) = d$ (where d indicates that v and r are...
n-dominated by a vertex of \(\mathcal{D} \) other than itself), and stop. The set \(\mathcal{D} \) is a minimum total \(n \)-dominating set of \(G \). If \(h(T) > n \), then continue.

3. Set \(i = 0 \), let \(T_0 = T \), \(\ell'_0 = h(T_0) \), \(D_0 = \emptyset \), and continue.

4. Select a leaf of \(T_i \) at level \(\ell_i \) and let \(v_{i+1} \) be the ancestor of the leaf at level \(\ell_i - n \).
 Let \(F_{i+1} \) be the subtree of \(T_i \) consisting of \(v_{i+1} \) and all its descendants. (Then \(F_{i+1} \)
 is a rooted tree with root \(v_{i+1} \) of height \(n \).)

5. Let \(\mathcal{D}_{i+1} = \mathcal{D}_i \cup \{ v_{i+1} \} \).

 5.1. Assign the label \(L(v) = d \) to all vertices of \(\mathcal{D}_{i+1} \) that are \(n \)-dominated by some
 other vertex of \(\mathcal{D}_{i+1} \) in \(G \).

 5.2. \(i \leftarrow i + 1 \) and continue.

6. If \(F_i = T_{i-1} \) and \(L(v_i) = d \), then go to Step 13.
 If \(F_i = T_{i-1} \) and \(v_i \) is unlabeled, then consider \(|V(F_i)| \).

 6.1. If \(|V(F_i)| \geq 2n + 1 \), then let \(v_{i+1} \) be a child of \(v_i \) and let \(F_{i+1} = F_i \).
 Also, let the grand family of \(F_i \) be defined by \(GF_i = F_i \). Go to Step 15.

 6.2. If \(|V(F_i)| < 2n + 1 \), then let \(v'_i \) be the vertex that immediately precedes \(v_i \)
 on the path \(v_{i-1} \cdots v_i \) path (of length \(n + 1 \)) in \(T \). Then \(v'_i \) \(n \)-dominates \(F_i \) and
 \(d_T(v'_i, v_{i-1}) = n \). Go to Step 14.

 Otherwise \(F_i \neq T_{i-1} \) and we let \(T_i = T_{i-1} - V(F_i) \). Let \(\ell_i = h(T_i) \) and continue.

7. If each vertex of \(\mathcal{D}_i \) is labeled (with the label \(d \)), then let \(\ell'_i = 0 \). Otherwise, let
 \(\ell'_i \) be the maximum level among all the unlabeled vertices of \(\mathcal{D}_i \). Continue.

8. If \(\ell_i \geq n \) and \(\ell_i > \ell'_i \), then go to Step 4; otherwise, continue.

9. If \(\ell_i \geq n \) and \(\ell_i \leq \ell'_i \), then go to Step 11; otherwise, continue.

10. If \(\ell'_i < n \), then go to Step 12.

11. Let \(v_t \) be the first unlabeled vertex of \(\mathcal{D}_i \) (so \(t \) is the smallest integer such that
 \(v_t \) is unlabeled). Then \(\ell(v_t) = \ell'_i \). Let \(v_{i+1} \) be that vertex at level \(\ell'_i - n \) that
 is an ancestor of \(v_t \). Let \(F_{i+1} \) be the subtree of \(T_i \) consisting of \(v_{i+1} \) and all its
 descendants. Then \(F_{i+1} \) is a rooted tree with root \(v_{i+1} \) of height \(n - 1 \) or \(n \). (Note
 that \(d_T(v_t, v_{i+1}) = n \).)

 11.1. If \(|V(F_{i+1})| \geq n + 1 \), then go to Step 5.

 11.2. If \(|V(F_{i+1})| = n \) (so \(F_{i+1} \) is a path), then form the grand family \(GF_i = \langle V(F_i) \cup V(F_{i+1}) \rangle_T \)
 induced by the vertices of \(F_i \) and \(F_{i+1} \) in \(T \), and return to Step 5.

12. If \(|V(F_i)| \geq n + 1 \), then let \(v_{i+1} \) be the root of \(T_i \) (so \(v_{i+1} = r \)) and let
 \(F_{i+1} = T_i \). (Since \(\ell_i < n \), we note that \(d(v_i, v_{i+1}) \leq n \).) Go to Step 15.

12.2. If \(|V(T_i)| \leq n \) and if there is no unlabeled vertex in \(\mathcal{D}_i \), then let \(F_{i+1} = T_i \)
 and go to Step 16. (Note that \(v_i \) \(n \)-dominates \(F_{i+1} \).)

12.3. If \(|V(T_i)| = n \) and if there is some unlabeled vertex in \(\mathcal{D}_i \), then let \(v_{i+1} \)
 be the root of \(T_i \) (so \(v_{i+1} = r \)) and let \(F_{i+1} = T_i \). Now form the grand family \(GF_i = \langle V(F_i) \cup V(F_{i+1}) \rangle_T \)
 induced by the vertices of \(F_i \) and \(F_{i+1} \) in \(T \) where \(t \) is the smallest integer such that \(v_t \) is unlabeled. (We note that
 \(d(v_t, v_{i+1}) \leq n \).) Go to Step 15.

12.4. If \(|V(T_i)| < n \) and if there is some unlabeled vertex in \(\mathcal{D}_i \), then consider
 \(|V(T_i)| - |V(F_i)| \).
12.4.1. If \(|V(T_i)| + |V(F_i)| \geq 2n + 1\), then let \(v_{i+1}\) be the child of \(v_i\) and let \(F_{i+1} = T_i\). Now form the grand family \(GF_i = \langle V(F_i) \cup V(F_{i+1}) \rangle_T\) induced by the vertices of \(F_i\) and \(F_{i+1}\) in \(T\), and go to Step 15.

12.4.2. If \(|V(T_i)| + |V(F_i)| < 2n + 1\), then set \(F_i := \langle V(T_i) \cup V(F_i) \rangle_T\). Further, let \(v'_i\) be the vertex that immediately precedes \(v_i\) on the \(v_{i-1} - v_i\) path (of length \(n + 1\)) in \(T\). Then \(v'_i\) \(n\)-dominates \(F_i\) and \(d_T(v'_i, v_{i-1}) = n\). Go to Step 14.

13. Let \(\mathcal{D} = \mathcal{D}_i\) and let \(F = \{F_1, F_2, ..., F_i\}\), and go to Step 17.

14. Let \(\mathcal{D}' = \mathcal{D}_i - \{v_i\}\). Let \(v_i \leftarrow v'_i\) and let \(\mathcal{D} = \mathcal{D}' \cup \{v_i\}\). Set \(F = \{F_1, F_2, ..., F_i\}\), and go to Step 17.

15. Let \(\mathcal{D} = \mathcal{D}_i \cup \{v_{i+1}\}\) and let \(F = \{F_1, F_2, ..., F_{i+1}\}\), and go to Step 17.

16. Let \(\mathcal{D} = \mathcal{D}_i\) and let \(F = \{F_1, F_2, ..., F_{i+1}\}\), and go to Step 17. (Note that \(|F| = |\mathcal{D}| + 1\).)

17. Label each \(v \in \mathcal{D}\) that is \(n\)-dominated by some other vertex of \(\mathcal{D}\) in \(G\) by \(L(v) = d\).

Let \(GF\) be the set of all grand families \(GF_j\). Output \(\mathcal{D}, F\) and \(GF\), and stop.

We now verify the validity of the algorithm.

Theorem 1. Algorithm 1 determines a total \(n\)-dominating set \(\mathcal{D}\) of a given connected graph on \(p \geq 2n + 1\) vertices.

Proof. It is evident that \(\mathcal{D}\) is an \(n\)-dominating set of \(G\). It remains to show that each member \(v\) in \(\mathcal{D}\) is \(n\)-dominated by some other vertex of \(\mathcal{D}\) in \(G\). It suffices to prove that at the completion of the algorithm, \(L(v) = d\) for all \(v \in \mathcal{D}\). If \(v \in \mathcal{D}\) belongs to some grand family \(GF_k\) for some \(k\), then it is evident that \(v\) is labeled. We now prove three claims.

Claim 1. In Step 6.2, the root \(v_i\) of \(F_i\) is the only unlabeled vertex in \(\mathcal{D}_i\).

Proof. Since the root \(v_i\) of \(F_i\) is unlabeled, it is evident that \(F_i = T_{i-1}\) was constructed in Step 4, so \(\ell(T_{i-1}) > \ell'_{i-1}\) (see Step 8). Furthermore, the root \(v_i\) of \(F_i\) is in fact the root \(r\) of \(T\), so \(\ell(T_{i-1}) = n\) and \(\ell(v_j) \geq n + 1\) for every \(j < i\) (for otherwise, \(d(v_i, v_j) \leq n\)). Hence, if \(\mathcal{D}_{i-1}\) contains an unlabeled vertex, then \(\ell'_{i-1} \geq n + 1 > \ell(T_{i-1})\), which produces a contradiction. Thus, each vertex of \(\mathcal{D}_{i-1}\) is labeled (so \(\ell'_{i-1} = 0\)).

Claim 2. In Step 12.4, the root \(v_i\) of \(F_i\) is the only unlabeled vertex of \(\mathcal{D}_i\).

Proof. Suppose \(v_j\) is unlabeled where \(j < i\). Then it is evident that every internal vertex of the \(v_j-v_i\) path belongs to \(T_i\). Since \(|V(T_i)| < n\), this path has length at most \(|V(T_i)| + 1 < n + 1\), so \(d(v_i, v_j) \leq n\). This contradicts the fact that \(v_j\) is unlabeled. Hence, \(v_i\) is labeled for each \(j < i\), so \(v_i\) is the only unlabeled vertex of \(\mathcal{D}_i\).

Claim 3. In Step 12.4.2, the \(v_{i-1}-v_i\) path in \(T\) does not contain \(r\), where \(v_i\) is the root of \(F_i\).
Proof. By Claim 2, v_i is the only unlabeled vertex of \mathcal{D}_i. Since v_i is unlabeled, it is evident that F_i was constructed in Step 4, so $|V(F_i)| \geq n + 1$. We show that for each $j < i$, the v_j-v_i path in T does not contain r. If this is not the case, then let j be the largest integer for which the v_j-v_i path contains r. Then every internal vertex of the v_j-v_i path belongs to T_i, so $d(v_i,v_j) \leq n$, contradicting the fact that v_i is unlabeled. Hence, for each $j < i$, the v_j-v_i path in T does not contain r. In particular, the $v_{i-1}-v_i$ path in T does not contain r. □

In the view of Claims 1 - 3, it is easily seen that each vertex v of \mathcal{D} is labeled at the completion of the algorithm. Hence, \mathcal{D} is a total n-dominating set of G. □

Theorem 2. If G is a connected graph on $p \geq 2n + 1$ vertices, then

$$i_n(G) + n\gamma^*_n(G) \leq p.$$

Proof. Apply Algorithm 1 to the graph G. If $h(T) \leq n$, then $\mathcal{D} = \{v,r\}$ is a minimum total n-dominating set of G and $S = \{r\}$ is a minimum n-independent dominating set of G, so $p = |V(G)| \geq 2n + 1 = n|\mathcal{D}| + |S| = i_n(G) + n\gamma^*_n(G)$. Hence, we may assume that $h(T) > n$, for otherwise there is nothing left to prove.

Let $\mathcal{D} = \{v_1,v_2,\ldots,v_m\}$ be the set \mathcal{D} described by the algorithm where v_m is the last vertex chosen by the algorithm. Then, by Theorem 1, \mathcal{D} is a total n-dominating set of G, so $\gamma^*_n(G) \leq |\mathcal{D}|$. Let GF be the set of all grand families GF_k described by the algorithm, and let $S' = \{v_k \in \mathcal{D} | v_k \in GF_k$ for some $k\}$. Note, S' contains exactly one vertex from each grand family. It is easily seen that S' is an n-independent set in G. Let S be any maximal n-independent set in G that contains S', so $i_n(G) \leq |S|$. For $j = 1,2,\ldots,[F]$, let $b_j = \beta_n(F_j)$, where the n-independent number $\beta_n(F_j)$ of F_j is the maximum cardinality among the n-independent sets of vertices of F_j in G.

For each $GF_k \in GF$, we have $S \cap V(GF_k) = \{v_k\}$ since $S' \subseteq S$. Thus, any grand family GF_k in GF contains two members of \mathcal{D} and one member of S. Hence, since each grand family GF_k has at least $2n + 1$ vertices, it follows that

$$|V(GF_k)| \geq 2n + 1 = |\mathcal{D} \cap V(GF_k)| \cdot n + |S \cap V(GF_k)|.$$

If $|F| = |\mathcal{D}| + 1$, then $|\mathcal{D} \cap V(F_{m+1})| = 0$ and $|S \cap V(F_{m+1})| \leq |V(F_{m+1})|$, so $|V(F_{m+1})| \geq |\mathcal{D} \cap V(F_{m+1})| \cdot n + |S \cap V(F_{m+1})|$. If $|F| = |\mathcal{D}|$, and if $F_j \in F$ is not labeled, then $|\mathcal{D} \cap V(F_j)| = \{v_j\}$ and $|S \cap V(F_j)| \leq b_j$. Furthermore, since F_j is not labeled, F_j was constructed in Steps 4, 6.2, 11.1, 12.1 or 12.4.2. In all cases, however, $|V(F_j)| \geq n + 1$ and any n-independent set of F_j is of cardinality at most $|V(F_j)| - n$. Hence, if $|F| = |\mathcal{D}|$, and $F_j \in F$ is not labeled, then

$$|V(F_j)| \geq n + \beta_n(F_j)$$

$$= |\mathcal{D} \cap V(F_j)| \cdot n + \beta_n(F_j)$$

$$\geq |\mathcal{D} \cap V(F_j)| \cdot n + |S \cap V(F_j)|.$$
Hence,

\[p = |V(G)| = \sum_{GF_k \in GF} |V(GF_k)| + \sum_{F_j \text{ unlabeled}} |V(F_j)| \]
\[\geq \sum_{GF_k \in GF} \left[(\emptyset \cap V(GF_k)) \cdot n + |S \cap V(GF_k)| \right] \]
\[+ \sum_{F_j \text{ unlabeled}} \left[(\emptyset \cap V(F_j)) \cdot n + |S \cap V(F_j)| \right] \]
\[= |\emptyset| \cdot n + |S| \geq n \cdot \gamma_n^1(G) + i_n(G), \]

so

\[i_n(G) + n \cdot \gamma_n^1(G) \leq p. \]

That the bound in Theorem 2 is best possible may be seen by considering the graph \(G \) obtained from a star \(K(1,k), k \geq 1 \), by subdividing each edge \(2n \) times. Then \(p(G) = (2n+1)k + 1, \gamma_n^1(G) = 2k \) and \(i_n(G) = k + 1 \), so that \(i_n(G) + n \cdot \gamma_n^1(G) = p(G) \).

References