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Abstract Neuroimaging has been identified as a potentially
powerful probe for the in vivo study of drug effects on the
brain with utility across several phases of drug development
spanning preclinical and clinical investigations. Specifically,
neuroimaging can provide insight into drug penetration and
distribution, target engagement, pharmacodynamics, mecha-
nistic action and potential indicators of clinical efficacy. In
this review, we focus on machine learning approaches for
neuroimaging which enable us to make predictions at the
individual level based on the distributed effects across the
whole brain. Crucially, these approaches can be trained on
data from one study and applied to an independent study
and, unlike group-level statistics, can be readily use to as-
sess the generalisability to unseen data. In this review, we
present examples and suggestions for how machine learning
could help answer fundamental questions spanning the drug
discovery pipeline: (1) Who should I recruit for this study?
(2) What should I measure and when should I measure it?
(3) How does the pharmacological agent behave using an
experimental medicine model?, and (4) How does a
compound differ from and/or resemble existing compounds?
Specifically, we present studies from the literature and we
suggest areas for the focus of future development. Further
refinement and tailoring of machine learning techniques
may help realise their tremendous potential for drug
discovery and drug validation.
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Introduction

Advancing technological developments have greatly in-
creased the amount of information that can be ascertained
about the effect of neuropharmacologically active com-
pounds. This information can be highly disparate and collect-
ed at various stages of central nervous system (CNS) drug
development. However, despite these technological advances,
many of the new drugs treatments that have come to the mar-
ket have been derived from the pharmacology of well-
established targets with development in this case focused on
increased potency, tolerability and ease of administration.
Drug development for CNS disorders, and psychiatric disor-
ders in particular, is limited by the lack of fundamental under-
standing of the pathophysiology of these disorders (Insel
2012), the use of simple diagnostic labels which represent
heterogeneous symptom profiles (Kapur et al. 2012), the lack
of accessible surrogate endpoints for therapeutic response, and
the difficulty in translation from preclinical studies to clinical
phases (Mak et al. 2014). This had led to an increased interest
in objective biological measures (biomarkers) of the effects of
pharmacological treatments. Neuroimaging has been identi-
fied as a potentially powerful probe for studying pharmaco-
logical effects on the brain with utility across several phases of
drug development spanning preclinical and clinical (Borsook
et al. 2006; Medhi et al. 2014; Wise and Preston 2010; Wong
et al. 2009). Specifically, neuroimaging can provide insight
into drug penetration and distribution, target engagement,
pharmacodynamics, mechanistic action and potentially, proof
of clinical efficacy (Wong et al. 2009). Magnetic resonance
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imaging (MRI)-based techniques hold great potential offering
high spatial and temporal resolution in a non-invasive manner
and obviating the need for radiolabeled ligands for the specific
target of interest. However, several operational and analytical
issues need to be considered and clarified before realising the
potential of neuroimaging for drug development (Borsook
et al. 2010; Schwarz et al. 2011a, b; Wise and Preston 2010).

In this review, we focus on the analytical aspects of
utilising neuroimaging data. Traditional mass-univariate or
region-of-interest approaches perform statistical tests at each
voxel and have been of great value in understanding brain
function and its perturbation in the presence of pharmacolog-
ical treatments, providing a straightforward method for
localising brain changes at the group level (Mehta and O’Daly
2011). These studies have demonstrated sensitivity to different
compounds (Honey and Bullmore 2004), and indicated that
simple one-to-one mapping of drugs and brain changes are
unlikely. That is, different imaging modalities may be sensi-
tive to different aspects of drug effect. Even within a single
functional MRI (fMRI) task, univariate studies have already
established that different components of task performance
(e.g. correct responses or errors) show different modulatory
effects of drugs in the same subjects during the same scanning
session (Dodds et al. 2008; Pauls et al. 2012). Integration of
such effects represents an extant challenge.

An alternative approach for the analysis of neuroimaging
data is provided by machine learning methods whereby predic-
tions can be made for the individual based on the distributed
pattern of effects across the whole brain, i.e. a multivariate
approach at the single-subject level. Crucially, a machine learn-
ing model can be trained on data from one study and applied to
an independent study. Unlike group-level statistics, we can
readily use these methods to assess the generalisability of our
findings to new, unseen data. Combining machine learning
with neuroimaging data is well-suited to make inference on
questions pertaining to drug discovery, such questions include
the following: What should I measure and when should I mea-
sure it? Who should I recruit to this study? How does the
pharmacological agent behave using an experimental medicine
model? How does a compound differ from and/or resemble
existing compounds? To answer these questions, we can build
models that range from agnostic (no prior hypothesis) to
models that are tailored to the question and incorporate mech-
anistic information (Doyle et al. 2013c). This flexibility enables
the exploration of the data to answer a particular question and
where appropriate incorporate prior knowledge which may un-
cover previously unknown associations and thus ultimately
contribute to hypothesis generation (Oquendo et al. 2012).

The field of machine learning spans many paradigms but in
the context of this review, we refer mainly to discriminative
learning whereby the aim is to learn the mapping between a
data source (e.g. neuroimaging) and a set of labels, which
could be binary (e.g. placebo or drug) or real-valued

(symptom scores). The primary outcome measure for these
analyses is how well the discriminative model generalises to
new data. To ideally assess generalisation, the model would be
trained using one cohort and tested using an independent co-
hort. However, in neuroimaging, particularly pharmacological
imaging, it is rare to have access to sufficiently similarly ac-
quired cohorts; therefore, we employ cross-validation where-
by models are often trained using a subset of the entire dataset
and then tested on the remaining ‘unseen’ data from the
dataset. This process is then iterated to achieve an estimate
of the models’ generalisation to unseen data. Another consid-
eration for neuroimaging is the relationship between the num-
ber of subjects (N) and the number of features (P); it is often
the case that P≫N which is an ill-posed problem. To circum-
vent this, we can employ sophisticated machine learning
methods which incorporate regularisation (Cortes and Vapnik
1995; Rasmussen and Williams 2006). Both regularisation
and cross-validation help to alleviate overfitting so that the
model generalises well to new data.

In this review, we will discuss specific studies that have
utilised machine learning methods with neuroimaging data.
We specifically focus on studies which present methods that
have potential for inclusion in drug discovery and develop-
ment pathways. Several of the studies highlighted here arose
from the recently completed Innovative Medicines Initiative
Joint Undertaking consortium, NEWMEDS. The majority of
methods can be accessed via an open-source toolbox (PIPR)
developed as part of the NEWMEDS project which can be
downloaded from http://www.kcl.ac.uk/ioppn/depts/
neuroimaging/research/imaginganalysis/Software/PIPR.aspx.

Nomenclature

Data This is the information that we can collect from the
participants, i.e. neuroimaging, genetics, cognitive test scores,
symptoms, etc. The data are collected in a matrix which has
dimensions N×P where N is the number of samples and P is
the number of features. For neuroimaging data, a single vol-
ume could be used as a sample where all voxels are collected
in a single vector. In this review, we will include examples of
machine learning applied to structural MRI, fMRI and perfu-
sion imaging. Structural MRI is a non-invasive technique for
examining the anatomy of the brain. There are several meth-
odological approaches for structural imaging which highlight
different aspects of normal and abnormal brain tissue. fMRI is
a collection of techniques that aim to increase our understand-
ing of brain function. fMRI indirectly measures changes in
neural activity by detecting associated changes in blood oxy-
genation levels in microcirculation. Perfusion imaging refers
to a collection of techniques measuring blood flow and blood
haemodynamic properties. A particular example is the use of
arterial spin labelling (ASL) to quantify regional cerebral
blood flow (rCBF).
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Labels The target that we want to discriminate or predict. The
labels are binary [−1, 1] for traditional classification tasks. For
example, binary labels may be used to indicate the placebo and
active compounds groups. The labels are real valued for regres-
sion tasks; these could represent symptom severity scores. For
ordinal regression, the labels are ranking [1, 2, 3,…, R] where
R is the number of labels; these could represent drug doses as
low, medium and high or a more abstract representation of
symptom severity as mild, moderate and severe.

Overfitting This occurs when the model is overly complex
(e.g. too many parameters are used to relate the data to the
label) and is not likely to generalise well to new data, i.e. the
predictions for the test data will have poor accuracy.

Kernel methods Kernel functions are employed within ma-
chine learning algorithms as ameans of quantifying the similarity
between data samples (Shawe-Taylor and Cristianini 2004). Al-
gorithms involving kernel methods are particularly advantageous
in neuroimaging where the number of voxels greatly exceeds the
number of samples (i.e. N≪P) as most operations can be per-
formed directly on the kernel representation of the data whose
dimensions are determined by the number of samples, i.e. the
kernel matrix is N×N. Kernel functions can also perform non-
linear mappings from data input space to a feature space which is
usually of higher dimensions. In some cases, these non-linear
mappings may provide increased predictive power. For neuroim-
aging data, linear kernel functions are generally preferred as the
data are already very high dimensional, therefore further increas-
ing the dimensionality is not likely to benefit the model.

Regularisation This is an important concept in ill-posed
(N≪P) machine learning problems. Regularisation involves
incorporating a penalty for complexity, hence helping to
alleviate overfitting.

Cross-validation This is utilised when a completely indepen-
dent cohort are not available to test the model. Instead, the data
are partitioned in training and test sets whereby the training data
are used for model selection and the performance of the model
on the test set is used an estimate of generalisability. Cross-
validation (CV) can be implemented using two main ap-
proaches: leave-one-out CV (LOOCV) or k-fold CV. For
LOOCV, the data from N-1 subjects is used for training and
the data from the Nth subject is used for testing. This process is
then iterated until each subject has been used as a test case. For
k-fold CV, the original dataset is partitioned into k equally sized
samples. Note that the partitioning can be random or stratified
(e.g. in the case of multisite data, it may be sensible to ensure
that data from different scanners in spread evenly across the
folds). Data from k-1 folds are used to train the model and data
from the kth fold are used to test the model. The process is then
iterated until each fold has been used as test data.

Support vector machine The support vector machine (SVM)
is the most common approach for binary classification of neu-
roimaging data, i.e. the discrimination between two groups
(Burges 1998). SVMs employ kernel methods to efficiently
represent high-dimensional data. SVMs incorporate
regularisation which helps this method to be less susceptible
to overfitting. The SVMprovides categorical predictions on the
test data. When using a linear kernel function for neuroimaging
data, the brain regions driving classification can be visualised
as a multivariate map by extracting the weight vector. This aids
the neurobiological interpretation of the model.

Gaussian process learning This methodology can be used to
perform classification or regression based on high-
dimensional data (Rasmussen and Williams 2006). Similarly
to SVMs, Gaussian process learning employs kernel functions
for efficient data representation. Learning is performed using a
Bayesian framework which provides probabilities predictions,
hence quantifying the uncertainty of the predictions. More-
over, the Bayesian framework provides an elegant solution
for model selection and model comparison.

Weight vector For both SVMs and GP learning methods, the
weight vector can be extracted to aid interpretation of the
predictive model. A general misconception about the weight
vector is that we can directly relate large weights at particular
voxels to a large change in magnitude of the signal across
groups. Given that these multivariate maps are sensitive to
spatial correlations and variance in the data, directly linking
weights with magnitude is not appropriate. Nonetheless, these
maps can provide an insight into the spatial pattern of brain
regions driving the predictive model. The interpretation of the
weight vector is an active topic in machine learning for neu-
roimaging data with a potential solution for linear models
presented by Haufe et al. (2014).

Who should I recruit?—personalised medicine
approaches

As highlighted by Borsook et al. (2013), misclassification of
study subjects (i.e. incorrect diagnosis, a mild form of the
disease under investigation, challenging comorbities) is a ma-
jor cause of failure in CNS trials. Therefore, it may be advan-
tageous to stratify patients according to a particular biological
and/or symptomatic aspect/s of the disease. Ideally, translating
mechanistic knowledge (genetics, molecular biology, neuro-
biology, behaviour, etc.) may lead to finer grain diagnostic
categories which could, in theory, help us to better predict
treatment response and to develop more targeted interven-
tions. To move closer to this paradigm, several challenges
need to be overcome and particularly so in psychiatry as
highlighted by Kapur et al. (2012): lack of biological gold
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standard, an overabundance of underpowered studies, the
findings of which are difficult to translate and rarely replicated
and disproportionate, focus on the comparison of healthy con-
trols and prototypical patients which is a poor proxy for the
clinical setting. A potentially exciting shift would be to move
away from simple diagnostic labels which group patients pre-
senting with highly heterogeneous symptom profiles and in-
stead focus on developing and validating interventions on
stratified patient groups identified by homogenous biological,
cognitive and/or behavioural profiles; a particular example of
this rationale in the community is the NIH-funded research
domain criteria project (Insel 2014). We have illustrated a
simplistic patient stratification scheme in Fig. 1 where the
stratified groups could relate to subtypes of the disorder, those
with varying risk for disease progression, those with varying
likelihood of treatment response and so on.

The identification of homogenous groups could be a more
appropriate entry point for studying the disease and treatment
response. These subgroups could be mined from the available
data using unsupervised learning. Unsupervised learning can be
used for exploratory analyses to discover hidden groupings in
the data and is conceptually similar to ‘clustering’. Latent class
(LC) analysis has been used in many psychiatric studies to
uncover symptomatic groupings within a disorder. Kendler
et al. (1996) applied LC analysis to 14 disaggregated DSM-
III-R symptoms for major depression in order to uncover dif-
ferent subtypes of depression. The analysis revealed seven clas-
ses, of which three represented clinically significant depressive
syndromes: mild typical depression, severe typical depression
and atypical depression. These findings were later replicated by
Sullivan et al. (1998) who applied LC analysis to the National
Comorbidity Survey data. Their analysis revealed that typical
depression is clustered by severity and the atypical subtype is
also clustered within a class. These latent subgroups could be a
useful classification for selection of patients for trials.

It may also be advantageous to enrich a trial with patients
who are likely to remain stable or likely to progress to a more
pathological state during the course of the trial. Numerous
machine learning approaches have been developed to predict
the transition from mild cognitive impairment to Alzheimer’s
disease (AD) (Cuingnet et al. 2011). In our work, we applied
multivariate ordinal regression in a Gaussian process frame-
work to baseline imaging data in order to predict the disease
state at 12 months from baseline (Doyle et al. 2014). We
applied this methodology to baseline structuralMRI data from
1023 participants from two studies: the US-based Alzheimer’s
Disease Neuroimaging Initiative (ADNI) and the European-
based AddNeuroMed programme. Volumetric segmentation,
cortical surface reconstruction and cortical parcellation, based
on the FreeSurfer package (4.5.0, http://surfer.nmr.mgh.
harvard.edu/), were used to quantify baseline cortical
thicknesses and volumes of subcortical brain regions. Right
and left hemisphere measures were averaged. In total, this
results in 57 measures to be used as input features for
ordinal regression, 34 regional cortical thickness measures
and 23 regional volumes. The ADNI data were used in a k-
fold cross-validated manner and the AddNeuroMed data were
used as a completely independent test set. Areas under the
receiver operator curve (AUC) of 0.75 and 0.81 were achieved
for the ADNI and AddNeuroMed data, respectively. Ordinal
regression was found to outperform binary classification. This
study illustrates that machine learning applied to imaging data
can provide accurate predictions for disease trajectories at the
individual level and these models can generalise with a similar
level of accuracy to a completely independent cohort.

Knowing which patients are likely to respond to a particu-
lar treatment could greatly benefit the patient’s recovery and
the financial costs associated with treatment. For example, in
psychiatry, treatment is usually chosen on an empirical basis
informed by the clinical characteristics such as comorbidity

Fig. 1 Illustration of patient
stratification. Patients can be
stratified by likelihood of
response to treatment (predictive
model trained on longitudinal
data); risk of disease progression
(predictive model trained on
longitudinal data); subtypes of the
illness defined by symptoms,
cognition, neurobiology, genetics,
etc. (data driven). The underlying
assumption is that patient
stratification leads to more
homogenous subtypes which is
advantageous for clinical trials
and drug discovery
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and treatment history (Fu et al. 2013). Often, the clinical effi-
cacy of treatment is evaluated after 6 to 12 weeks, and those
who do not respond to treatment may have experienced per-
sistent or transient symptoms throughout this period. Re-
sponse prediction could ideally be used to identify non-
responders that may require a different treatment at an earlier
stage than is currently possible, and thus, these patients can be
spared ineffective treatment and their associated side effects.

In neuroimaging to date, most machine learning studies
for predicting treatment response have focused on cohorts
diagnosed with psychiatric disorders. Using a sample cohort
(N=18, 9 per group), Costafreda et al. (2009) applied SVMs
to voxel-based morphometry data extracted from structural
brain images in order to predict clinical response to antide-
pressant medication with an accuracy of 88.9 %. Using a
similar rationale but in a larger cohort (N=46), Gong et al.
(2011) used baseline structural images acquired before treat-
ment with a single antidepressant drug to predict response.
An accuracy of 69.6 % was achieved for predicting those
that would later respond to treatment and those that would
not. Khodayari-Rostamabad et al. (2010) acquired electroen-
cephalography (EEG) data in patients diagnosed with
schizophrenia prior to treatment with clozapine. Using an
independent test cohort (N=14), they achieved 85 % accu-
racy in predicting response to clozapine. Hahn et al. (2015)
acquired an fMRI paradigm in medication-free patients with
panic disorder with agoraphobia after which cognitive be-
havioural therapy was conducted over several weeks. Gauss-
ian process classification was used to predict response in 46
patients with an accuracy of 79 % on combining predictions
from two aspects of the fMRI paradigm.

What data should I collect?

The data collected from participants or patients in order to
study the effect of a compound or disease process is often
driven by hypotheses based on the pharmacology or patholo-
gy of the illness. This can help narrow the options for data
collection but nonetheless, a number of options may still be
available for consideration including neuroimaging, genetics,
behaviour, cognition and environment. Multimodal machine
learning could be applied to data spanning these options to
infer, in a data-driven manner, which modality was most sen-
sitive to the research question. In Fig. 2, we illustrate how this
could be achieved using multiple kernel learning (MKL). For
MKL, data sources of widely different dimensionality can be
combined using computationally cheap operations via the ker-
nel trick, i.e. each modality is represented by a kernel whose
dimensions are determined by the number of samples rather
than features. Aweighting across data sources can be learned
within the MKL framework providing an indication of the
contribution of each modality to the predictive performance.

Combining data-driven frameworks such as MKL with infor-
mation such as financial cost and/or tolerance of the partici-
pants to data acquisition may produce a more informed choice
of marker. Similarly, removing the most expensive or difficult
to acquire data and observing the cost to sensitivity would
provide an important insight into how data collection could
be prioritised.

When should I collect the data?

A primary consideration in neuropharmacology is whether the
drug crosses the blood brain barrier and if so, what is the
pharmacodynamic profile. Often, the effects of the drug in
question can be hypothesised to have distributed changes
across the brain or, in some cases, the mechanism of action
is not fully known.

In Doyle et al. (2012), a Gaussian process framework was
developed which simultaneously ‘learned’ the discrimination
between the blood oxygen level-dependent (BOLD) response
to a saline versus ketamine infusion and also the shape of the
BOLD response to ketamine which afforded maximal dis-
crimination. This approach could discriminate between keta-
mine and saline with an accuracy of 91 % and predicted that
the peak BOLD response occurred at 282 s (141 volumes)
after the infusion commenced, and then slowly decayed after
this peak. This study illustrates how machine learning
methods can be tailored to a particular question to produce a
model that is highly accurate, but also provides information
regarding the dynamics of the time series phMRI data, i.e. that
the BOLD response to ketamine peaks on average 282 s after
intravenous infusion. Moreover, we obtain a predictive prob-
ability of belonging to the ketamine class. These probabilities
could help identify non-responders or related to behavioural or
pharmacokinetic data.

Oxytocin plays an important role in the development of
mammalian social behaviour (Donaldson and Young 2008).
Experimental paradigms involving oxytocin are limited by the
absence of data relating to the pharmacodynamics of oxytocin
in the human brain. Consequently, Paloyelis et al. (2014) in-
vestigated the effects of the administration of intranasal oxy-
tocin on resting-state regional cerebral blood flow in healthy
male volunteers. Using arterial spin labelling, rCBF volumes
were acquired in 15 min before and up to 78 min after admin-
istration of either placebo or intranasal oxytocin. Gaussian
process classification was implemented in a leave-one-out
cross-validated framework to discriminate between baseline
rCBF maps (prior to treatment) and post treatment rCBF
maps. The results indicated that oxytocin-induced changes in
rCBF were sustained over the entire post treatment period
with a peak change observed between 39 and 51 min.

These exemplar studies (Doyle et al. 2012; Paloyelis et al.
2014), illustrate that machine learning methods can be
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implemented to not only provide discriminative information
but also to model the pharmacodynamic profile of the com-
pound’s effects in the brain. This profile provides an important
insight into experiment design and when to ideally perform
tasks which are likely to be altered by the compound. For, e.g.
in the case of oxytocin, our work indicates that approximately
40 min after administration would be the optimal time to con-
duct a behavioural/fMRI paradigm.

How does the pharmacological agent behave using
an experimental medicine model?

Experimental medicine models of brain disorders provide an
approach to study the action of existing and novel compounds
in a controlled setting and crucially in the absence of con-
founds typically present in the disease population—chronic
effects of the illness, medication, environment, etc. A partic-
ular example of an experimental medicine model would be the
administration of a compound known to induce symptoms
reminiscent of the disorder of interest and the subsequent ad-
ministration of a compound which is hypothesised to reduce
these particular symptoms. Often for this paradigm, the main
outcome is to assess if the treatment affected the induced
disease-like state. In the context of neuroimaging, we can
employ machine learning methods to assess the effect of treat-
ment. We illustrate the methodology using two compounds
often used in experimental medicine models—ketamine and
scopolamine. Fundamentally, we want to extract a single out-
comemeasure from brain imaging data. In Fig. 3, we illustrate
a pipeline for investigating the effect of a pre-treatment with

compound ‘A’ on the response to compound ‘Z’. In this
example, the classifier is trained using data collected from
participants on placebo or compound Z. This classifier is
then tested using data collected from an independent partic-
ipant on placebo, both compounds ‘A + Z’ and compound Z
producing a probability of having received compound Z.
Using these probabilities, we can infer the effect of A on
Z. These data could also be analysed using a multivariate
ordinal regression framework (Doyle et al. 2013a). Multivar-
iate ordinal regression inherently models the natural ordering
in the data labels for example discrete states along a contin-
uum of disease progression healthy → at risk → early dis-
ease state → chronic disease state. Using this approach,
training data spanning all ordinal states are modelled rather
than only the extremes. In addition, we can also extract a
weight map which enables us to visualise the brain regions
strongly driving the predictions on the test data.

Ketamine is an NMDA receptor antagonist, which when
administered at sub-anaesthetic doses, induces symptoms re-
sembling schizophrenia and exacerbates symptoms in patients
diagnosed with schizophrenia (Krystal et al. 1994). While not
producing a precise phenocopy, acute administration of keta-
mine has been used to model the pathophysiological features
of schizophrenia in healthy human participants, with a partic-
ular interest in glutamatergic contributions. In our work, we
investigated the effect of acute ketamine administration on the
blood oxygen level-dependent (BOLD) response and the ef-
fect of pre-treatment on this response using a randomised
cross-over design in 16 healthy male volunteers. Previously,
we have shown that acute administration of ketamine pro-
duces a BOLD response that is reproducible and reliable (De

Fig. 2 A pipeline for performing classification using multiple disparate
data source. The scheme represents a typical multiple kernel learning
approach. Each modality is represented by a kernel which is in the
dimensions of subjects (N). Data can be combined using a set of rules
to create a single kernel from several kernels for, e.g. a weighted sum

where the weightings are optimised to increase or decrease the
contribution of each modality. In this graphical illustration we observe
that neuroimaging followed by the neuropsychological battery and so on,
had the greatest contribution to the predictive model
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Simoni et al. 2013). To perturb the ketamine effect, two pre-
treatment compounds were administered: the anticonvulsant,
lamotrigine and the antipsychotic, risperidone (Doyle et al.
2013b). The key outcome measure in this case is an assess-
ment of the extent to which these pre-treatments attenuate
the BOLD response to ketamine. Initially, we trained a bi-
nary classifier to discriminate between the placebo condition
and the ketamine condition and then tested this classifier on
the placebo, ketamine and the presumed attenuated states
produced by lamotrigine + ketamine and risperidone + ke-
tamine from an independent participant; this process was
iterated until each of the volunteers was used as a test case.
We found that the probability of belonging to the ketamine
class was significantly reduced following pre-treatment with
lamotrigine and risperidone.

Scopolamine is a non-selective muscarinic receptor antag-
onist that induces impairments across multiple cognitive do-
mains in healthy human volunteers (Bymaster et al. 1993).
Therefore, acute administration of scopolamine can be used
to model impairment and provide an opportunity to improve
cognitive performance in participants who would otherwise
perform at a neurotypical cognitive level (Lenz et al. 2012).
The model is a commonly used translational tool to model
cholinergic deficits in cognition as might be present in a range
of neurodegenrerative conditions. In our work, we investigat-
ed the effect of scopolamine on regional cerebral blood flow
(rCBF) and its potential reversal by pre-treatment with
donepezil (Doyle et al. 2013a), an acetylcholinesterase inhib-
itor which has been previously shown to improve cognitive
deficits in Alzheimer’s disease (Di Santo et al. 2013) and
reverses scopolamine-induced cognitive impairment (Cho
et al. 2011). We modelled the ordinal trend in cerebral blood
flow in 15 healthy male volunteers as placebo − donepezil +

scopolamine − scopolamine. However, because scopolamine
is a non-selective muscarinic acetylcholine receptor antagonist
and donepezil will enhance cholinergic transmission to both
nicotinic and muscarinic receptors, donepezil is not expected
to simply reverse the effects of scopolamine when co-
administered alongside the antagonist. Independent effects of
donepezil are also expected. Thus, we would not predict the
effects to be globally ordinal; that is, the effects of donepezil
may attenuate scopolamine effects in some areas but not
others. Therefore, we perform ordinal regression on three re-
gions of interest previously indicated in neuroimaging stud-
ies—the thalamus and the occipital lobe and additionally, the
anterior cingulate cortex (ACC) which receives cholinergic
innervation from the basal forebrain. Ordinal regression could
discriminate the placebo, pre-treated scopolamine and scopol-
amine sessions with high accuracy (recalling random chance
level is 33.3 % for a three-class problem) in the thalamus
(80 %) and the ACC (73.3 %) with more modest accuracy in
the occipital lobe (64.4 %). This study used machine learning
methods to confirm that pre-treatment with donepezil can re-
duce the scopolamine-induced effects on rCBF. The approach
was applied in a multivariate manner to anatomically defined
regions of interest which provides a more locally oriented
interpretation of the model’s performance and validating its
potential use in profiling other compounds which may directly
or indirectly attenuate scopolamine effects.

Here, we have provided examples of howmachine learning
can provide a framework for validating pharmacological
models of disease and their perturbation using existing treat-
ments. We observed that both the ketamine and scopolamine
models were attenuated using existing compounds with ma-
chine learning providing an interpretable marker of attenua-
tion. The combination of state-of-the-art statistical tools with

Fig. 3 A pipeline for quantifying attenuation of response to compound
‘Z’ by pre-treatment compound ‘A’. The classifier is trained using data
from participants on placebo and Z. This classifier is then tested using
data from an independent participant in a repeated measures design
treated with either placebo, ‘A + Z’ and Z producing a probability of

belonging to treatment group Z. Using these probabilities, we can infer
the extent of attenuation. The arrows denote the increasing response in to
treatment from the placebo session, to the A + Z session and finally, the Z
session
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pharmacological models is an exciting avenue for investigat-
ing the repurposing of existing compounds and the mecha-
nisms of action of either existing or novel compounds. The
use of well-characterised models such as ketamine or scopol-
amine also invites dose-finding studies, where minimally ef-
fective doses can be selected to be taken forward into further
experimental studies or early phase trials.

How does a compound differ from and/or resemble
existing compounds?

The comparison of pharmacological agents is a natural ques-
tion in drug discovery. In general, it may be advantageous to
compare a novel or existing compound to a library of relevant
compounds across a wide variate of attributes. This has gained
traction to profile and screen for attributes including absorp-
tion, distribution, metabolism and excretion properties
(Lavecchia 2014; Liao et al. 2009). Automated profiling of
compounds could help to gain a richer understanding of the
compounds and help to decide which to prioritise for screen-
ing. Therefore, there are two questions: how are they different
and how are they similar? Of course, we note here that these
questions are not simply the inverse of each other. The first
question pertaining to differentiation is the more conventional
setting for machine learning where the classes that we are
learning to discriminate represent different compounds. This
setting is exemplified in a neuroimaging study in healthy vol-
unteers by Marquand et al. (2012). In this study, a multi-class
classifier was trained to discriminate between placebo, acute
administration of atomoxetine and acute administration of
methylphenidate using regional cerebral blood flow (rCBF)
measured using arterial spin labelling. Sparse multinomial lo-
gistic regression was used to perform multi-class classifica-
tion. This method is formulated to discriminate between two
or more classes and incorporates penalties that are optimised
using the training data to produce a sparse weight vector (i.e.
weight vector for some voxels is set to zero). This study illus-
trated that multi-class classification was sensitive to differen-
tial effects of atomoxetine and methylphenidate on rCBF pro-
viding highly accurate predictions about class membership
and also an insight into the brain regions driving the discrim-
ination. The use of arterial spin labelling is attractive as a
quantitative, translational tool (Bruns et al. 2009; Marquand
et al. 2012; Wang et al. 2011) and additional insights may also
be provided when coupled with task-dependent effects.

Duff et al. (2015) applied ranking support vector machines
to eight fMRI studies investigating the effects of six different
analgesic compounds on brain responses to painful stimuli.
First, the SVMs were trained to distinguish between placebo
and analgesic compound to assess the pharmacodynamic effect.
Moderate to strong evidence (accuracies ranging from 70 to
91 %) was found for an analgesic effect in five out of six

compounds tested. Second, SVMswere used to assess evidence
for clinical efficacy by training on brain responses to pain in the
presence of either placebo or an analgesic compound. Success-
ful discrimination was reported for five of the compounds in the
range of 69 to 83 %. Finally, the authors investigated whether a
framework based on a limited number of existing compounds
could be effective. To achieve this, they trained the machine
learning algorithm using data from a single study and then tested
this algorithm on the remaining studies. While the discrimina-
tive performance of the model for identifying an analgesic effect
was reduced, nonetheless in many cases an analgesic effect
could be accurately identified. In this study, the authors have
shown that machine learning and imaging data from multiple
studies can identify drug effects on brain activity and clinical
efficacy. This type of multi-study, multi-drug paradigm could
leverage existing data to optimise drug discovery.

A consideration for these approaches would be how to
assess similarity of the effect of compounds (e.g. A and B).
An obvious suggestion would be to train a model to discrim-
inate between placebo and compound A and to test this model
on compound B. For compound B, we could assign the prob-
ability of belonging to the class represented by compound A;
if this probability is high, then we can infer that they are likely
to be similar, but what can we infer if the probability is not
high? In this latter case, we may not be able to say anything
definitive about compound B in the context of compound A.
This situation could arise when compound B has modes of
action which do not completely overlap with compound A.
Then, it may be more appropriate to analyse these compounds
using techniques which relate two independent multivariate
patterns, i.e. modelling the relationship between induced
changes in brain activity as a result of compound A and a
result of compound B. This can be achieved using techniques
such as canonical correlation analysis (Cherry 1996) which is
closely related to partial least squares (Sun et al. 2009). Ca-
nonical correlation analysis aims to find a set of linear trans-
formation variables for each class (compounds A and B) so
that the data are maximally correlated. Therefore, it does not
produce a consensus map which we can interpret as a type of
‘similarity heat map’. Further development is required to pro-
duce a multivariate measure of similarity that can be
interpreted at the regional level.

Discussion

In this review, we have detailed several machine learning ap-
proaches, which help to answer questions around drug char-
acterisation in the context of imaging data. These approaches
could be readily used to help enhance drug discovery and
development. Here, we have chosen to focus on neuroimaging
as a marker of pharmacodynamic effects in the context of
personalised/stratified medicine.We note that this review does
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not exhaustively cover different feature extraction approaches
for neuroimaging data, i.e. the inputs to the machine learning
method. For example, surogates for functional connectivity
can be extracted from fMRI (Bullmore and Sporns 2009;
Smith et al. 2011). Models based on these metrics could pro-
vide insight into the effect of pharmacological agents on brain
function at a network level. For a detailed illustration of this
approach in the context of pharmacological neuroimaging, we
refer readers to the work of Joules et al. (2015).

The methods presented here are highly flexible and could
therefore be also used for different data types and their com-
bination which may ultimately lead to more accurate predic-
tive models. These models could help to answer fundamental
questions spanning the drug discovery pipeline: (1) Who
should I recruit into this trial (Fig. 1)? (2) What should I
measure (Fig. 2) and when should I measure it? (3) How does
the compound behave using an experimental medicine model
(Fig. 3)? (4) How does this compound differ from and/or
resemble existing compounds?

To realise the potential of these tools , further development
and tailoring of the methodology is necessary. One of the most
common pitfalls in machine learning studies is overfitting. To
help alleviate overfitting, techniques which penalise complex-
ity can be employed and ideally models should be tested on
independent data. In neuroimaging, the models are often test-
ed using cross-validation. It is crucial to ensure that this cross-
validation structure is preserved throughout the entire pipeline
to avoid circularity (Kriegeskorte et al. 2010). A basic exam-
ple could be using the entire dataset to select regions of the
brain that are strongly affected by either the compound or a
pathology and then performing a machine learning analysis
using only these regions in the same dataset. This would result
in a machine learning model with inflated performance that is
not likely to generalise well to new data.

It may be beneficial to move away from the ‘black box’
biomarker approach (i.e. only the inputs and outputs are avail-
able, the internal processes are known) and instead move to-
wardsmodels that are interpretable and tailored to the particular
question and perhaps incorporate mechanistic aspects of the
mode of action of the drug (Doyle et al. 2013c). Development
of methods that are robust to missing data and data acquired
using different protocols or scanners are also an important con-
sideration. While machine learning can exploit existing data to
help inform several aspects of the study, an unresolved question
is how to determine the sample size for these multivariate
methods. Several methods, primarily for genetic data, have
been proposed in the literature (Figueroa et al. 2012; Guo
et al. 2010); however, a consensus has not yet been reached.
Further work is required to assess these methods for machine
learning in neuroimaging data. Moreover, in the absence of
prior knowledge of the properties of the data, it may be difficult
to reach a useful estimate for how many subjects will be re-
quired. Throughout the entire pipeline, it is essential to be

mindful of the potential confounds that could produce mislead-
ing results. For example, if a compound is a stimulant or a
sedative, then a systematic difference in motion in the scanner
or performance on a cognitive task could be present and this
difference could drive discrimination between placebo and
drug. As with all studies, the potential confounds should ideally
be identified before the study and appropriate measures should
be taken to help alleviate their effects.

We have highlighted several studies which demonstrate the
utility of machine learning to answer important questions for
drug discovery and development. Further refinement and tai-
loring of these techniques may hold tremendous potential for
drug discovery and drug validation.
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