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Abstract. Side-chain prediction is an important subproblem of the general pro-
tein folding problem. Despite much progress in side-chain prediction, perfor-
mance is far from satisfactory. As an example, the ROSETTA program that uses
simulated annealing to select the minimum energy conformations, correctly pre-
dicts the first two side-chain angles for approximately 72% of the buried residues
in a standard data set. Is further improvement more likely to come from better
search methods, or from better energy functions? Given that exact minimization
of the energy is NP hard, it is difficult to get a systematic answer to this question.

In this paper, we present a novel search method and a novel method for learn-
ing energy functions from training data that are both based on Tree Reweighted
Belief Propagation (TRBP). We find that TRBP can find the global optimum
of the ROSETTA energy function in a few minutes of computation for approx-
imately 85% of the proteins in a standard benchmark set. TRBP can also effec-
tively bound the partition function which enables using the Conditional Random
Fields (CRF) framework for learning.

Interestingly, finding the global minimum does not significantly improve side-
chain prediction for an energy function based on ROSETTA’s default energy
terms (less than 0.1%), while learning new weights gives a significant boost from
72% to 78%. Using a recently modified ROSETTA energy function with a softer
Lennard-Jones repulsive term, the global optimum does improve prediction ac-
curacy from 77% to 78%. Here again, learning new weights improves side-chain
modeling even further to 80%. Finally, the highest accuracy (82.6%) is obtained
using an extended rotamer library and CRF learned weights. Our results suggest
that combining machine learning with approximate inference can improve the
state-of-the-art in side-chain prediction.

1 Introduction

Proteins are chains of residues, each containing one of 20 possible amino acids. All
amino acids are connected together by a common backbone structure, onto which amino-
specific side-chains are attached. The 3-dimensional structure of a protein can thus be
fully defined by the dihedral angles that specify the backbone conformation on the one
hand (φ, ψ and ω angles), and the side-chain conformations on the other hand (up to 4
dihedral angles, denoted χ1 to χ4).
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% Success
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Surface 75.7 %
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(a) (b)

Fig. 1. (a) Buried and exposed residues of Barnase (PDB code 1brn). The challenge in side-
chain prediction is to locate the native side-chain conformation (sticks), starting from the protein
backbone (depicted as a cartoon), and its amino acid sequence. Blowups for specific regions
are shown for buried residues (left) and exposed residues (right). Note that due to packing, core
residues are significantly more constrained than their exposed counterparts. (b) Success rate of
the state-of-the-art ROSETTA package using default parameters. It can be seen that even for
the core, the fraction of residues for which either the χ1 or χ2 angles are incorrectly modeled
is about 30%. Is improvement more likely to come from better search methods or from better
energy functions?

The problem of predicting the residue side-chain conformations given a backbone
structure is considered of central importance in protein-folding and molecular design
and has been tackled extensively using a wide variety of methods (for a recent review,
see [1]). The typical way to predict side-chain configurations is to define an energy
function and a discrete set of possible side-chain conformations, and then search for the
minimal energy configuration.

Despite much progress, the performance of side-chain prediction is far from satis-
factory. To illustrate the state-of-the-art, Figure 1b shows the results of the ROSETTA
package [2] on a standard benchmark set. The prediction success is typically reported
separately for core residues and surface residues, since core residues are much more
tightly constrained (see Figure 1a). ROSETTA uses an elaborate energy function for
side-chain modeling that contains 8 energy terms. Simulated annealing is used to search
for the minimal energy configuration. As can be seen, the success rate for the first two
angles is around 72% for core residues and 53% for surface residues. Thus even for the
better constrained residues, the prediction is wrong for almost one third of the residues.

One can think of two different approaches to improve this performance: (1) using a
better optimization algorithm to find a lower energy conformation; and (2) changing the
energy function. Deciding between these two approaches is currently difficult because
simulated annealing and many of the other minimizers used in side-chain prediction are
only guaranteed to find local minima of the energy function. We therefore do not know
if a better optimizer would find a better solution.

Obviously a method that can find the global optimum of the energy function could
shed light on this question. Unfortunately, it has been shown that for energy functions
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typically used in side-chain prediction, finding the global optimum is NP complete [3].
While this makes it extremely unlikely that we will be able to find the global optimum
for all proteins in polynomial time, it leaves open the option for finding the global op-
timum for some proteins. Indeed, methods such as dead-end-elimination (DEE) [4,5,6]
and linear programming relaxations [7] have been shown to find the global optimum
for simple energy functions in side-chain prediction. However, as reported in [7], these
techniques do not work well for more complicated energy functions and to the best of
our knowledge, no one has successfully found the global optimum for the elaborate
ROSETTA energy function.

In this paper, we present a novel search method and a novel method for learning
energy functions from training data that are both based on Tree Reweighted Belief
Propagation (TRBP). We find that TRBP can find the global optimum of the ROSETTA
energy function in a few minutes of computation for approximately 85% of the proteins
in a standard benchmark set. TRBP can also effectively bound the partition function
which enables using the Conditional Random Fields (CRF) framework for learning of
better energy functions.

Interestingly, finding the global minimum does not significantly improve side chain
prediction for an energy function based on ROSETTA’s default energy terms (less than
0.1%), while learning new weights gives a significant boost from 72% to 78%. A recent
modification of the ROSETTA energy function is aimed at optimal side-chain model-
ing and uses a softer van der Waals term [8]. This energy function yields significantly
better results than ROSETTA’s default parameters (77% with simulated annealing).
In this case, the global optimum improves prediction accuracy by 1.2%. Learning new
weights again improves side-chain modeling, to 80%. Finally, not unexpectedly, the
use of extended rotamer libraries improves modeling: combined with CRF learned
weights it yields the highest accuracy (82.6%). Our results suggest that combining ma-
chine learning with approximate inference can improve the state-of-the-art in side-chain
prediction.

2 Side-Chain Prediction

The input to the side-chain prediction task, which we will denote by y, is a list of amino-
acids that make up the protein as well as the three-dimensional shape of the backbone.
The output, which we will denote by x, is up to 4 dihedral angles, denoted χ1 to χ4,
for each amino acid. In principle, the output is a continuous valued vector whose length
is 4 times the number of amino acids in the protein. However, the common practice is
to discretize the output space into a small number of possible angles. These discrete
angles (usually up to 3 possibilities per angle) define a discrete set of possible side-
chain configurations called rotamers [9]. Side-chain prediction thus becomes a discrete
optimization problem:

x∗ = arg min
x∈R

E(x, y) (1)

where R is the discrete set of rotamer configurations, and the energy function E(x, y)
is, typically, defined in terms of pairwise interactions among nearby residues and inter-
actions between a residue and the backbone. Approaches to side-chain prediction differ
in their choices of energy functions and search methods.
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Search Methods. Although the minimization problem for side-chain prediction has
been shown to be NP hard [3], recent years have shown significant progress in search
methods. Simulated annealing with Monte Carlo sampling used in Rosetta is a fast
and efficient method to locate energy minima, but is not guaranteed to find the global
minimum energy conformation.

The dead end elimination (DEE) algorithm is an exhaustive search algorithm that
tries to reduce the search space as much as possible. It is based on a simple condition
that identifies rotamers that cannot be members of the global minimum energy confor-
mation [4,5,6]. In cases where enough rotamers can be eliminated, the global minimum
energy conformation can be found by an exhaustive search of the remaining rotamers.

Kingsford et al. [7] used the method of Linear Programming (LP) Relaxation to
locate the global optimum. They rewrote equation (1) as an integer program and then
relaxed the integer constraints to obtain a linear program. They found that for an energy
function similar to SCWRL [1], the LP solution was almost always integral, meaning
that the LP relaxation found the global minimum. However, once they added a second
energy term, the percentage of problems for which LP found an integer solution dropped
dramatically. They also discussed using a commercial Integer-Programming package
(CPLEX) and found it could work on the two-term energy functions that LP could
not solve.

Energy Functions. Many of the early energy functions were primarily based on the
repulsive part of the van der Waals energy term. The successful SCWRL program [1,9]
approximates the repulsive portion of the 12-6 Lennard-Jones potential with a piecewise
linear function. SCWRL also takes into account the prior probabilities of rotamers in a
training set.

ROSETTA’s energy function that is used for side-chain prediction also includes a re-
pulsive term and prior probabilities of rotamers, but combines these with six other terms
to obtain an atomic level, physically realistic energy function. Specifically it contains
the following energy terms [10]:

1. The attractive portion of a 12-6 Lennard-Jones potential (herein denoted by atr).
2. The repulsive portion of a 12-6 Lennard-Jones potential (rep). This term is damp-

ened in order to compensate for the use of a fixed backbone and rotamer set.
3. A solvation term, calculated using the model of Lazaridis and Karplus [11] (sol).
4. Rotamer energy: Backbone dependent internal free energies of rotamers, estimated

from PDB statistics performed by Dunbrack and Karplus [9] (dun).
5. A hydrogen-bonding potential, dependent both on distance and angles [12]. For his-

torical reasons, this term was divided into: (a) Side-chain to side-chain interactions
(hbond 1); (b) Side-chain to backbone interactions (hbond 2); and (c) Backbone to
backbone interactions (constant for the task of side-chain prediction).

6. A pair term that primarily reflects the electrostatic attraction and repulsion (pair).
It describes the tendency of polar amino acid residues to contact each other, based
on a statistical analysis of PDB structures of seeing two amino acids close together
in space (after accounting for the intrinsic probabilities of these amino acids to be
in that environment).

7. An internal term that reflects clashes within a side-chain conformation (intra).
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The energy function, E(x, y) is defined as a weighted sum of the eight terms. De-
noting by λi the weight of the ith term, the energy is:

E(x, y; λ) =
8∑

i=1

λiEi(x, y) (2)

2.1 Learning Energy Functions

Most current energy functions are based on a combination of parameters that describe
different aspects of a protein structure, some from physical chemistry (such as atr and
rep), others from analyses of given protein structures (such as dun).

What is the relative importance of the different terms in the energy function? The
supervised learning problem of setting the relative contribution, i.e. the weights, of the
energy terms can be formulated as follows: given a set of training proteins {xt, yt}T

t=1,
where xt is the side-chain configuration in the crystal structure of protein t and yt

denotes its backbone structure, seek parameters λ that maximize the prediction success
rate. Kuhlman and Baker [2] used a conjugate gradient-based optimization method to
optimize the weights of these energy terms by decreasing the energy of the native state
relative to a small number of decoy configurations.

Conditional Random Fields [13] provide a principled way of learning energy func-
tions from labeled data [14, 15, 16]. Defining the probability of the native side-chain
configuration (for a given backbone structure) as:

Pr(xt|yt; λ) =
1

Zt(λ)
e−E(xt,yt;λ) (3)

with:
Zt(λ) =

∑

x∈R
e−E(x,yt;λ) (4)

CRFs seek to maximize the product of the probabilities Pr(xt|yt; λ) over all training
proteins {xt, yt}T

t=1. The term “Conditional Random Fields” comes from the fact that
we are maximizing the conditional likelihood – we are not maximizing the joint proba-
bility of side-chain and backbone, but rather the conditional probability of a side-chain
configuration given the backbone. CRFs have several attractive properties for learning
energy functions: the conditional log likelihood is a convex function of the parameters
λ and the gradient of the log likelihood is simply:

∂ ln Pr(xt|yz; λ)
∂λi

= −Ei(xt)+ < Ei >λ (5)

Hidden Conditional Random Fields (HCRFs) [17, 18] extend conditional random
fields to settings where some of the variables are hidden. This is simply done by marginal-
izing out the hidden variables. In practice, a Viterbi approximation in which the marginal-
ization is replaced with maximization, is often used [15]. This leads to maximizing:

Pr(xt|yt; λ) ≈ max
h

1
Zt(λ)

e−E(xt,yt,h;λ) (6)

where h are the hidden variables.
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Applying the CRF framework to side-chain prediction raises a tremendous compu-
tational challenge. Note that calculating Zt (equation (4)) requires summing over all
possible side-chain configurations for a given protein. For the vast majority of proteins
this summation is intractable. Similarly, calculating the gradient in equation (5) is based
on taking expectations which requires a weighted sum over all possible side-chain con-
figuration for a given protein. Finally, equation (6) requires maximizing over all possi-
ble configurations for the hidden variables. Similar computational problems arise with
other supervised learning methods for learning energy functions [19, 15].

3 Tree Reweighted Belief Propagation

To summarize the results of the previous section, side-chain prediction raises major
computational difficulties, either in finding the global minimum of the energy or cal-
culating the partition function with respect to an energy function. In this work, we use
tree-reweighted belief propagation (TRBP) to address both problems.

Tree-reweighted belief propagation (TRBP) is a variant of belief propagation intro-
duced by Wainwright and colleagues [20]. We start by briefly reviewing ordinary max-
product belief propagation (see e.g. [21,22]). The algorithm receives as input a graph G
and the potentials Ψij , Ψi. In energy minimization settings, the potentials are inversely
related to the energy: Ψij(xi, xj) = e−E(xi,xj), Ψi(xi) = e−E(xi). In the side-chain
prediction setting the nodes of the graphs correspond to residues, and there are edges
between any two residues that interact [23].

At each iteration, a node i sends a message mij(xj) to its neighbor in the graph j.
The messages are updated as follows:

mij(xj) ← αij max
xi

Ψij(xi, xj)Ψi(xi)
∏

k∈Ni\j

mki(xi) (7)

where Ni\j refers to all neighbors of node i except j. The constant αij is a normaliza-
tion constant typically chosen so that the messages sum to one (the normalization has
no influence on the final beliefs). After the messages have converged, each node can
form an estimate of its local “belief” defined as:

bi(xi) ∝
∏

j∈Ni

mji(xi)Ψi(xi) (8)

It is easy to show that when the graph is singly-connected, choosing an assignment
that maximizes the local belief will give the minimal energy configuration [22]. In fact,
when the graph is a chain, equation (7) is simply a distributed computation of dynamic
programming. When the graph has cycles, ordinary belief propagation (BP) is no longer
guaranteed to converge, nor is there a guarantee that it can be used to find the minimal
energy configuration.

In tree-reweighted BP (TRBP), the algorithm receives an additional set of input edge
appearance probabilities, ρij . These edge appearance probabilities are essentially free
parameters of the algorithm and are derived from a distribution over spanning trees of
the graph G. They represent the probability of an edge (i, j) to appear in a spanning tree
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under the chosen distribution. As in standard belief propagation, at each iteration a node
i sends a message mij(xj) to its neighbor in the graph j. The messages are updated as
follows:

mij(xj) ← αij max
xi

Ψ
1/ρij

ij (xi, xj)Ψi(xi)

∏
k∈Ni\j

mρki

ki (xi)

m
1−ρji

ji (xi)
(9)

Note that for ρij = 1 the algorithm reduces to standard belief propagation.
After one has found a fixed-point of these message update equations, the singleton

and pairwise beliefs are defined as:

bi(xi) ∝ Ψi(xi)
∏

j∈Ni

m
ρji

ji (xi)

bij(xi, xj) ∝ Ψi(xi)Ψj(xj)Ψ
1/ρij

ij (xi, xj) ·

∏
k∈Ni\j

mρki

ki (xi)

m
1−ρji

ji (xi)

∏
k∈Nj\i

m
ρkj

kj (xj)

m
1−ρij

ij (xj)

The theoretical properties of TRBP are a subject of ongoing research [20,24,25,26].
We briefly summarize some relevant properties:

– If the TRBP beliefs contain no ties, that is for every i the maximum of bi(xi) is
attained at a unique value, then the assignment that locally maximizes the beliefs is
the global minimum of the energy function.

– If the TRBP beliefs contain ties, running an additional algorithm on a problem de-
fined only on nodes that have ties, gives an easily verified condition for the solution
to be a global optimum (see [26] for details).

– Using the sum-product version of TRBP (in which the maximization in equation (9)
is replaced with summation) it is possible to calculate a rigorous upper bound
ZTRBP on the partition function.

− log ZTRBP =< E >b −

⎛

⎝
∑

ij

ρijH(bij) +
∑

i

ciH(bi)

⎞

⎠ (10)

where ci = 1−
∑

j ρij and < E >b is the average energy with respect to the TRBP
beliefs, and H(bij), H(bi) are the entropies of the beliefs.

We used these properties of TRBP for minimizing and learning energy functions
for side-chain prediction. For minimizing energy functions, we used the max-product
version of TRBP followed by post-processing as described in [26]. For learning energy
functions, we replaced the partition function Z(λ) in equations (3),(6) with the TRBP
bound ZTRBP (λ). This enables us to maximize a lower bound on the probability:

Pr(xt|yt; λ) =
1

Z(λ)
e−E(xt,yt;λ) ≥ 1

ZTRBP (λ)
e−E(xt,yt;λ) (11)

We used the implementation of TRBP publically available at www.cs.huji.ac.
il/˜talyam/inference.html. The same package was also used to solve the LP
relaxation, as discussed in [27].

file:www.cs.huji.ac.il/~talyam/inference.html
file:www.cs.huji.ac.il/~talyam/inference.html
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4 Results

In the first part of this study, we evaluate whether location of the global minimum energy
conformation improves side-chain modeling accuracy. We then proceed to improving
the energy function by optimizing the weights of the different parameters in the energy
function to maximize the probability of native side-chain conformations. We show that
this improves side-chain prediction accuracy more than finding the minimum energy
conformation. The next step evaluates those approaches on an additional energy func-
tion with a softer repulsive term, and finally we investigate the use of extended rotamer
libraries.

Data set and Evaluation. A data set of 276 single chain proteins, up to 700 amino
acids long (all in all 64,397 positions) was used for this study (taken from the Roset-
taDesign webserver [28]). We randomly selected 20% of these proteins (55 proteins,
11,067 positions) as a training set and used the remaining 80% (221 proteins, 53,330
positions) as a test set.

We define the success rate of an energy function as the percentage of side-chain
angles that are predicted correctly, i.e. when the predicted angles are in the same bin as
those of native side-chain conformation in the crystal (e.g. gauche+, gauche−, or trans).
As widely accepted, we report the success rates for the first angle (χ1) and the first two
angles (χ1 and χ2) on all test set proteins. We also calculated the success rate separately
for core residues, defined as residues with more than 19 interacting neighbors, and
surface residues (up to 19 interacting neighbors), where residues are termed neighbors
if the distance between their Cβ atoms is less than 10Å.

4.1 Location of Global Minimum Energy Configuration

Our first set of experiments was designed to measure the importance of locating the
global minimum energy conformation of the energy functions currently used in side-
chain prediction. We first asked which methods can find the global optimum in reason-
able time? Consistent with Kingsford et al.’s report, the LP relaxation works well for
the simple SCWRL energy function (over 90% in a database of 370 proteins) but rarely
does so for the ROSETTA function (less than 5%). In other words, the LP solution is
almost never integer for the ROSETTA energy functions. In contrast, the TRBP method
finds the global optimum in over 80% of the proteins in our database for ROSETTA,
while the commercial Integer Programming package (CPLEX) can find the minimum
for all the examples in our database (although its run time is generally much larger than
that of TRBP). Also consistent with the report in [7], DEE [5] never found the global
optimum for these problems, indicating that not enough rotamers could be eliminated.

How much then does location of the global minimum energy conformation improve
performance? Our results indicate that the improvement obtained from locating the
global minimum energy (compared to simulated annealing) is negligible: side-chain
modeling accuracy for the first two χ angles of core, surface and all residues are essen-
tially unchanged (Figure 2).

Given a method that can find the global minimum energy, a better comparison of
the usefulness of different energy functions for side-chain modeling can be performed:
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Fig. 2. The location of the global minimum energy conformation does not improve side-chain
modeling for the ROSETTA original (default) energy function. The percentages of correctly pre-
dicted χ1 side-chain angles (a), and both χ1 and χ2 angles (b) are indicated for the whole set of
side-chains, as well as for the buried and exposed subsets separately.
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Fig. 3. Comparison of different energy functions with global minimization. Side-chain predic-
tion success rate for energy functions that use either ROSETTA’s repulsive van der Waals and
rotamer energy terms (vdw rep) only, the full ROSETTA energy function with uniform weights,
or ROSETTA’s default weights.

For which energy function do the global energy minima coincide best with near-native
models? Figure 3 compares different energy functions defined by different weightings
of ROSETTA’s eight energy terms – using only the repulsive van der Waals (rep) and
rotamer energy (dun) terms (which simulates the setup of SCWRL [1]), using a uniform
weighting on all eight terms, and using ROSETTA’s default weights. It can be seen that
the van der Waals and rotamer terms on its own give the worst performance, followed
by a uniform weighting of ROSETTA’s eight terms and the best performance is given
by ROSETTA’s weights. These results are consistent with previously reported conclu-
sions. Note however that in the present study effects due to correlation between the
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energy function and the search algorithm are excluded since only proven global energy
minima are considered. For all three cases, we can therefore conclusively attribute the
improvement in performance to a more accurate energy function.

4.2 Learning

Our second set of experiments deals with the effect of reweighting the energy terms
in ROSETTA. We compared the default ROSETTA weights to those obtained using
supervised learning by two learning methods: (1) the standard CRF framework – when
all angles are considered observed; and (2) the Hidden CRF framework – when angles
χ3, χ4 are considered hidden. Note that our database includes ground truth for all angles
based on crystallography, but we hypothesized that due to the large variability in the
angles far from the backbone, ignoring the crystallographic “ground truth” might enable
better performance on the first two angles. As mentioned earlier, we used a small subset
of the proteins as a training set, and report here results for the test set—proteins that
were not seen by the learning algorithm.
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Fig. 4. The success rates, obtained using CRF and HCRF learned weights compared to
ROSETTA’s weights. Learning gives a significant improvement in performance.

Figure 4 shows χ1 and χ2 success rates on the test set using ROSETTA’s original
weights and the weights learned by the CRF and the HCRF algorithms. Both learning
algorithms improve over ROSETTA’s weightings.

Note that the improvement obtained by reweighting the terms (either using CRFs
or using Hidden CRFs) is far larger than that obtained by using a better minimizer.
Whereas going from simulated annealing to global minimization yields less than 0.1%
improvement for the first two angles in core residues, reweighting the energy terms
increases performance by almost 6%.

Figure 5a shows the weights learned by CRF and HCRF compared to ROSETTA’s
weights. While the change in most weights is mild, the repulsive van der Waals weight
almost vanishes. Note however that complete exclusion of the repulsive term from
ROSETTA’s default energy function significantly decreases the success rates. The rea-
son for the significant reduction of the van der Waals repulsive term is its sensitivity
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to discretization. Native structures are well-packed, therefore modeling with near-to-
native, discrete conformations (that is, using rotamers) can easily lead to clashes.
Consequently, when optimizing an energy function that distinguishes near-native
conformations from wrong conformations, the repulsive term will be down-weighted.
While an energy function with low repulsive weight might be useful for selecting cor-
rect side-chain conformations from a discrete set of possible combinations, procedures
that involve continuous minimization will be impeded by the missing term that con-
tributes significantly in guiding the structure towards the correct conformation.

ROSETTA’s default function ROSETTA Soft repulsive function
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Fig. 5. ROSETTA’s weights (a) and ROSETTA soft repulsive weights (b) compared to CRF and
HCRF learned weights. Weights are normalized so that attractive weights equal 1.

When we analyzed the performance for different amino acids, we found that the
greatest improvements were obtained on aromatic amino acids – Phenylalanine (F),
Tyrosine (Y), Tryptophan (W) and Histidine (H). These bulky aromatic rings tend to
clash if no extra rotamers are included in the rotamer library [29]. Since the repulsive
contribution to the energy function is significantly reduced as a consequence of the low
repulsive weight (Figure 5a), the selection of near-native conformations that clash with
the surrounding environment – but still create favorable contacts that contribute to other
terms in the energy function – is improved.

5 Results with “Soft Repulsion”

The fact that better performance can be obtained by decreasing the weight of the repul-
sive term has been observed previously in ROSETTA (e.g. [30]). In order to overcome
this unnaturally small contribution of the repulsive part of the Lennard-Jones poten-
tial, a “dampened” version has been developed (the “-soft rep” option, referred to as
DampRep in [8]). In this function, the repulsive energy increases less dramatically when
two atoms are brought together, and therefore, clashes are penalized less in the course
of discrete optimization. This energy function was shown to allow improved side-chain
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modeling in ROSETTA [8]. In order to evaluate the importance of the search strategy
and the energy function optimization, we conducted additional experiments based on
this energy function.
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Fig. 6. The location of the global minimum energy conformation improves side-chain modeling
for the ROSETTA soft repulsive energy function. Legend as in Figure 2.

We again found that TRBP can obtain the global optimum in a few minutes of com-
putation for the majority of the proteins in our database (approximately 80%) while
the LP relaxation and DEE could not. Figure 6 again shows that using the global op-
timizer leads to only a small improvement in prediction accuracy (approximately 1%
improvement for the first two χ angles of core residues). Consistent with our earlier ex-
periments, the gain from using a different energy function is larger than that using better
minimizers – note that using simulated annealing with the “soft repulsion” energy gives
better results than global optimization of the default ROSETTA function.

Figure 7 shows the results of applying reweighting to ROSETTA with soft repul-
sion. Even though this energy function had been optimized for side-chain modeling,
supervised learning is able to find better reweighting of the energy terms. In particular,
the new weights allow an improvement of correct modeling of χ1 and χ2 angles from
78% to 80%. Note that our test set contains approximately 32,000 residues for which
both χ1 and χ2 are defined, so that a 2% improvement corresponds to approximately
640 residues and is highly significant. For this data set the HCRF learning criterion
performed slightly better than the CRF criterion.

Figure 5b confirms that indeed, in the soft repulsive function the Lennard-Jones re-
pulsive term is of comparable size to the Lennard-Jones attractive term. Interestingly,
the contribution of hydrogen bonds is significantly increased.

Using a large rotamer library. A bottleneck in further improvement of side-chain
modeling is the rotamer library from which side-chain conformations are selected. Side-
chains that are not adequately represented in the library, cannot be correctly modeled.
Therefore, in addition to energy functions and search methods, another direction of pos-
sible improvement is to modify the discrete set of rotamers that define the search space
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Fig. 7. The success rates, obtained using CRF and HCRF learned weights compared to
ROSETTA’s soft repulsive weights

[31, 32]. We therefore repeated our experiments using extra rotamers to core residues,
for which accurate modeling is especially important to guarantee tight packing.

The much larger number of rotamers makes minimization much slower; TRBP can
still obtain the global optimum for 70%-90% of the proteins in our data set, whereas the
commercial Integer Programming package (CPLEX) fails to find the optimum for many
proteins due to memory limitations (even after pruning the search space using DEE).

Indeed, extended sampling improves the performance of ROSETTA’s soft repulsive
energy function by more than 1% even when simulated annealing is used (81.4% for
χ1∧χ2 in core positions). Using the global minimum energy configurations when avail-
able (and the configurations obtained by simulated annealing otherwise) only slightly
improved accuracy (less than 0.25%). In this case, using CRF learned weights leads to
only a small improvement (0.35%, to 81.9%). The highest accuracy (82.6%) is obtained
with weights learned using a local HCRF variant, in which we maximize the sum of the
marginal log likelihoods of the native rotamers (and treat all other positions as hidden).
For speed reasons we used ordinary BP in this variant.

6 Discussion

Side-chain prediction is an important subtask of the protein folding problem and has
multiple applications in linking protein structure and function. Traditionally, it has been
approached by formulating energy functions over a discrete set of angles and using dis-
crete optimization algorithms to find the minimal energy configuration. Despite much
progress in search methods and energy functions, performance is far from satisfactory
and it has been difficult to systematically determine whether the energy functions or the
search methods are to blame. In this paper, we have shown that using tree-reweighted
belief propagation (TRBP) it is possible to find the global minimum for many side-chain
prediction problems in a few minutes. TRBP can also be used to bound the partition
function and this is useful for learning new weights in the CRF framework. Using these
computational tools we have shown that (1) global optimization tends to yield a smaller



394 C. Yanover, O. Schueler-Furman, and Y. Weiss

improvement in performance than adapting the energy function, and that (2) supervised
learning can be used to automatically reweight the energy terms to obtain relatively
large improvement in side-chain modeling. By combining our learned weights with
global optimization we obtain significantly better performance on test data compared to
the ROSETTA package, widely considered the state-of-the-art.

The present study suggests that supervised learning can also be used to devise novel
energy terms, in addition to reweighting the existing ones. In addition, we plan to learn
task-specific weights in a more general setting; for example, by focusing on interface
modeling in protein-protein interactions (e.g. docking). We believe that the tools of ap-
proximate inference and machine learning will have great benefit in many applications
of structural biology.
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